Markov Chain Monte Carlo and mixing rates

Yevgeniy Kovchegov

Department of Mathematics

Oregon State University

Ising Model. Every vertex v of G = (V, E) is assigned a spin $\sigma(v) \in \{-1, +1\}$. The probability of a configuration $\sigma \in \{-1, +1\}^V$ is

$$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$

Ising Model. Every vertex v of G = (V, E) is assigned a spin $\sigma(v) \in \{-1, +1\}$. The probability of a configuration $\sigma \in \{-1, +1\}^V$ is

$$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$

Ising Model. $\forall \sigma \in \{-1, +1\}^V$, the Hamiltonian

$$\mathcal{H}(\sigma) = -\frac{1}{2} \sum_{u,v:\ u \sim v} \sigma(u)\sigma(v) = -\sum_{edges\ e=[u,v]} \sigma(u)\sigma(v)$$

and probability of a configuration $\sigma \in \{-1, +1\}^V$ is

$$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$

 $Z(\beta) = \sum_{\sigma \in \{-1,+1\}^V} e^{-\beta \mathcal{H}(\sigma)}$ - normalizing factor.

Ising Model: local Hamiltonian

$$\mathcal{H}(\sigma) = -\frac{1}{2} \sum_{u,v:\ u \sim v} \sigma(u)\sigma(v) = -\sum_{edges\ e = [u,v]} \sigma(u)\sigma(v)$$

The local Hamiltonian

$$\mathcal{H}_{local}(\sigma, v) = -\sum_{u: u \sim v} \sigma(u)\sigma(v)$$
.

Observe: conditional probability for $\sigma(v)$ is given by $\mathcal{H}_{local}(\sigma, v)$:

$$\mathcal{H}(\sigma) = \mathcal{H}_{local}(\sigma, v) - \sum_{e=[u_1, u_2]: u_1, u_2 \neq v} \sigma(u_1) \sigma(u_2)$$

Ising Model via Glauber dynamics.

Observe: conditional probability for $\sigma(v)$ is given by $\mathcal{H}_{local}(\sigma, v)$:

$$\mathcal{H}(\sigma) = \mathcal{H}_{local}(\sigma, v) - \sum_{e=[u_1, u_2]: u_1, u_2 \neq v} \sigma(u_1)\sigma(u_2)$$

Ising Model via Glauber dynamics.

Randomly pick $v \in G$, erase the spin $\sigma(v)$. Choose σ_+ or σ_- :

$$Prob(\sigma \to \sigma_{+}) = \frac{e^{-\beta \mathcal{H}(\sigma_{+})}}{e^{-\beta \mathcal{H}(\sigma_{-})} + e^{-\beta \mathcal{H}(\sigma_{+})}}$$

$$= \frac{e^{-\beta \mathcal{H}_{local}(\sigma_{+},v)}}{e^{-\beta \mathcal{H}_{local}(\sigma_{-},v)} + e^{-\beta \mathcal{H}_{local}(\sigma_{+},v)}} = \frac{e^{-2\beta}}{e^{-2\beta} + e^{2\beta}} .$$

Glauber dynamics: Rapid mixing.

Glauber dynamics - a random walk on state space S (here $\{-1,+1\}^V$) s.t. needed π is stationary w.r.t. Glauber dynamics.

In high temperatures (i.e. $\beta = \frac{1}{T}$ small enough) it takes $O(n \log n)$ iterations to get " ε -close" to π . Here |V| = n.

Need:
$$\max_{v \in V} deg(v) \cdot \tanh(\beta) < 1$$

Thus the Glauber dynamics is a fast way to generate π . It is an important example of **Gibbs sampling**.

Close enough distribution and mixing time.

What is " ε -close" to π ? Start with σ_0 :

If $P_t(\sigma)$ is the probability distribution after t iterations, the total variation distance

$$||P_t - \pi||_{TV} = \frac{1}{2} \sum_{\sigma \in \{-1, +1\}^V} |P_t(\sigma) - \pi(\sigma)| \le \varepsilon.$$

Who researched mixing times? D.Aldous, P.Diaconis, J.A.Fill, M.Jerrum, A.Sinclair and many more names.

Close enough distribution and mixing time.

Total variation distance:

$$\|\mu - \nu\|_{TV} := \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)| = \sup_{A \subset S} |\mu(A) - \nu(A)|$$

Mixing time:

$$t_{mix}(\varepsilon) := \inf\{t : \|P_t - \pi\|_{TV} \le \varepsilon, \text{ all } \sigma_0\}$$
.

In high temperature, $t_{mix}(\varepsilon) = O(n \log n)$.

Coupling Method.

S - sample space

 $\{p(i,j)\}_{i,j\in S}$ - transition probabilities

Construct process $\left(egin{array}{c} X_t \\ Y_t \end{array}
ight)$ on S imes S such that

 X_t is a $\{p(i,j)\}$ -Markov chain Y_t is a $\{p(i,j)\}$ -Markov chain

Once $X_t = Y_t$, let $X_{t+1} = Y_{t+1}$, $X_{t+2} = Y_{t+2}$,...

Coupling Method.

Coupling Method.

Coupling time: $T_{coupling} = \min\{t : X_t = Y_t\}$

Successful coupling: $Prob(T_{coupling} < \infty) = 1$

Mixing times via coupling.

Let $T_{i,j}$ be coupling time for $\begin{pmatrix} X_t \\ Y_t \end{pmatrix}$ given $X_0 = i$ and $Y_0 = j$. Then

$$||P_{X_t} - P_{Y_t}||_{TV} \le P[T_{i,j} > t] \le \frac{E[T_{i,j}]}{t}$$

Now, if we let $Y_0 \sim \pi$, then for any $X_0 \in S$,

$$\|P_{X_t} - \pi\|_{TV} = \|P_{X_t} - P_{Y_t}\|_{TV} \le \frac{\max_{i,j \in S} E[T_{i,j}]}{t} \le \varepsilon$$

$$\max_{i,j \in S} E[T_{i,j}]$$

whenever $t \geq \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}$.

Mixing times via coupling.

$$\|P_{X_t} - \pi\|_{TV} \le \varepsilon$$
 whenever $t \ge \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}$.

Thus

$$t_{mix}(\varepsilon) = \inf \left\{ t: \ \|P_{X_t} - \pi\|_{TV} \le \varepsilon \right\} \le \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}.$$
 So.

$$O(t_{mix}) \leq O(T_{coupling})$$
.

Thus constructing a coupled process that minimizes $E[T_{coupling}]$ gives an effective upper bound on mixing time.

Coupon collector.

n types of coupons: $\boxed{1}$, $\boxed{2}$,..., \boxed{n}

Collecting coupons: coupon / unit of time, each coupon type is equally likely.

Goal: To collect a coupon of each type.

Question: How much time will it take?

Coupon collector.

Here
$$\tau_1 = 1$$
, $E[\tau_2 - \tau_1] = \frac{n}{n-1}$, $E[\tau_3 - \tau_2] = \frac{n}{n-2}$,..., $E[\tau_n - \tau_{n-1}] = n$.

Hence

$$E[\tau_n] = n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = n\log n + O(n)$$

Coupon collector and random card-to-random location shuffling.

Shuffling a deck of n different cards:

1 2 3 4 5 6 7 8

Coupon collector and random card-to-random location shuffling.

Shuffling a deck of n different cards:

1 2 3 4 5 6 7 8

Pick a card at random:

1 2 3 4 **5** 6 7 8

Coupon collector and random card-to-random location shuffling.

Shuffling a deck of n different cards:

1 2 3 4 5 6 7 8

Pick a card at random:

1 2 3 4 **5** 6 7 8

Pool it out, and place it anywhere in the deck:

1 2 **5** 3 4 6 7 8

Iterate. Question: $t_{mix}(\varepsilon) = ?$

Random card-to-random location:

Cover time: T_{cover} - each card was selected at least once.

2 **5** 3 **1** 6 8 **7 4**

Coupon collector $\Rightarrow E[T_{cover}] = n \log n + O(n)$

Cover time as well as coupling time (both strong stationary time) provides an effective upper and lower bound on mixing time.

Here $E[t_{mix}(\varepsilon)] = n \log n + O(n)$

Shuffling by random transpositions.

Pick two cards at random:

1 2 3 4 **5** 6 **7** 8

Transpose them:

1 2 3 4 **7** 6 **5** 8

Iterate:

3 2 **1** 4 **7** 6 **5** 8

3 2 **6 4 7 1 5** 8

...etc.

Shuffling by random transpositions.

3 2 **6** 4 **7 1 5** 8

Here coupon collector gives only a lower bound of $\frac{1}{2}n \log n$.

Goal: get $O(n \log(n))$ upper bound with coupling method - hidden coupon collector.

Obtaining $O(n \log(n))$ via super-fast coupling. (Joint work with R.Burton)

Diaconis and Shahshahani (early 80's):

The mixing time for shuffling a deck of n cards by random transpositions is of order $O(n \log(n))$ with cut-off asymptotics at $\frac{1}{2}n \log(n)$.

Method used: representation theory.

We answer an **open problem** (Y. Peres): Provide a coupling proof of $O(n \log(n))$ mixing rate.

Even in case of **two discrepancies** (d = 2) at d_1 and d_2 :

$$A_t$$
: ... 4 6 **b** 9 **a** 8 7 2 ... B_t : ... 4 6 **a** 9 **b** 8 7 2 ... d_2 d_1

Label-to-location coupling:

$$E[T_{coupling}] = \frac{n^2}{4}$$
 - too large.

Case of **two discrepancies** (d = 2):

Case of **two discrepancies** (d = 2):

$$A_t$$
: ... 4 6 3 9 5 8 7 2 ... B_t : ... 4 6 5 9 3 8 7 2 ... A_t : ... A_t

Case of **two discrepancies** (d = 2):

Case of **two discrepancies** (d = 2):

$$A_t$$
: ... 7 3 6 9 5 8 4 2 ... B_t : ... 7 3 5 9 6 8 4 2 ...

$$A_t$$
: ... 7 3 6 9 5 8 4 2 ... B_t : ... 7 3 6 9 5 8 4 2 ...

Label-to-location coupling: $E[T_{coupling}] = \frac{n^2}{4}$

Mixing: order $O(n^2)$ instead of $O(n \log n)$;

$$E[T_{coupling}] \approx \sum_{d=2}^{n} \frac{n^2}{d^2} \approx \left(\frac{\pi^2}{6} - 1\right) n^2$$

Problem: slows down significantly when the number of discrepancies is small enough.

Obtaining $O(n \log(n))$ via super-fast coupling. (Joint work with R.Burton)

Tunneling into the future approach.

Coupling time:

$$E[T_{coupling}] \leq \left[\frac{1}{2\varepsilon} + \frac{\kappa}{(1-\kappa)(\kappa-\varepsilon)}\right] \cdot n \log n$$
 for any $0 < \varepsilon < \kappa < 1$.

Two discrepancies (d = 2) at d_1 and d_2 :

$$A_t$$
: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1

Label-to-location coupling:

$$E[T_{coupling}] = \frac{n^2}{4}$$
 - too large.

Jump \ll $[\mathbf{a}], i_1 \gg$ of $[\mathbf{a}]$ to random location i_1 at exponential time t_1 :

From

$$A_t$$
: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 d_2 ...

to

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2 d_1 d_1

Different way of saying the same:

Start with

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2/i_1 i_1/d_1 d_1/d_2

where at time t_1 the locations relabel according to

$$\begin{bmatrix} d_1/d_2 & \longrightarrow i_1 \\ i_1/d_1 & \longrightarrow d_1 \\ d_2/i_1 & \longrightarrow d_2 \end{bmatrix}.$$

Jump $\ll [\mathbf{a}], i_1 \gg \text{at time } t_1 \sim \text{exponential } \left(\frac{1}{n}\right).$

From

$$A_t$$
: ... 4 6 b 9 a1 8 a 2 ... B_t : ... 4 6 a1 9 b 8 a 2 ... d_2/i_1 i_1/d_1 d_1/d_2

to

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2 d_1 d_1 d_2 ...

The following association map will determine jumps of $\boxed{a1}$.

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ...

Card $[\mathbf{a1}]$ will jump to position i_2 on the assoc. map at time t_2 , even if $t_2 < t_1$.

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2^* d_1^* i_1^*

Now $i_2 \neq i_1^*$ and

$$t_2 \sim ext{exponential}\left((1-1/n)\cdot rac{1}{n}
ight)$$

 $\ll |\mathbf{a1}|, i_1^* \gg = \ll |\mathbf{a1}|, |\mathbf{a}| \gg \text{ is label-to-label,}$ we can skip.

If $i_1 = d_1$ or d_2 , discrepancies cancel at t_1 ;

if $i_2^*=d_1^*$ or d_2^* , discrepancies cancel on the assoc. map at t_2 .

If $t_1 < t_2$, assoc. map \rightarrow real picture at t_1 , we create one more assoc. map.

Case $t_2 < t_1$, and $i_2^* = d_2^*$. On association map:

Start with

$$A_t$$
: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2/i_1 i_1/d_1 d_1/d_2

At time t_2 :

$$A_t$$
: ... 4 6 a1 9 b 8 a 2 ... B_t : ... 4 6 a1 9 b 8 a 2 ... \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow d_2/i_1 i_1/d_1 d_1/d_2

At time t_2 :

At time t_1 :

$$A_t$$
: ... 4 6 **a1** 9 **b** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... A_t : ... A_t : ... A_t : ... A_t : A_t : ... A_t : A_t : ... A_t : A_t : A_t : ... A_t : A_t :

Case $t_2 < t_1$, and $i_2^* = d_2^*$. Same evolution, original association:

Start with

$$A_t$$
: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 d_2 ...

At time t_2 :

$$A_t$$
: ... 4 6 **a1** 9 **a** 8 **b** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1

At time t_2 :

$$A_t$$
: ... 4 6 a1 9 a 8 b 2 ... B_t : ... 4 6 a 9 b 8 a1 2 ... d_2 d_1 d_1

At time t_1 :

Here

$$E[T_{coupling}] \approx \frac{n^2}{8}$$

Chain of association maps:

 $\ll |\mathbf{a1}|, i_2 \gg \text{occurs at } t_2$

 d_1^* is i_1/d_1 before t_1 , and d_1 after t_1 ; d_2^* is d_2/i_1 before t_1 , and d_2 after t_1 ; i_1^* is d_1/d_2 before t_1 , and i_1 after t_1 .

New association map:

$$A_t$$
: ... **a1** 6 **b** 9 **a2** 8 **a** 2 ... B_t : ... **a1** 6 **a2** 9 **b** 8 **a** 2 ... d_1^*/d_2^* d_2^*/i_2 i_2/d_1^* i_1^*

where at t_2 ,

a2 will do label-to-location jump w.r.t. the following assoc. map

 d_1^{**} is i_2/d_1^* before t_2 , and d_1^* after t_2 ; d_2^{**} is d_2^*/i_2 before t_2 , and d_2^* after t_2 ; i_2^{**} is d_1^*/d_2^* before t_2 , and i_2 after t_2 .

$$\ll \boxed{\mathbf{a2}}, i_3 \gg \text{occurs at } t_3 \sim \text{exponential}\left((1-2/n) \cdot \frac{1}{n}\right)$$

And so on, creating a **chain** of $k = \lfloor \varepsilon n \rfloor$ association maps.

In case of d=2 discrepancies, the avg. time of discrepancy cancelation on one of assoc. maps is

$$E[T_2] = \frac{n^2}{4(k+1)} = \frac{n}{4\varepsilon}.$$

General d:

$$E[T_d] = \frac{n^2}{2(k+1)d} \approx \frac{n}{2\varepsilon d}.$$

Coupling time (all discrepancies):

$$E[T_{coupling}] \leq \left[rac{1}{2arepsilon} + rac{\kappa}{(1-\kappa)(\kappa-arepsilon)}
ight] \cdot n \log n$$
 for any $0 < arepsilon < \kappa < 1$.