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Ising Model. Every vertex v of G = (V, E) is
assigned a spin o(v) € {—1,41}. The prob-
ability of a configuration o € {—1,4+1}" is

e—BH(o) 1
(o) = Z(8) , Where (3= f
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Ising Model. Vo € {—1,4+1}", the Hamilto-
nian

He)=-> Y o= - ¥ oo

U, v U~ edges e=[u,v]
and probability of a configuration o € {—1,4+1}"
IS

. e_/BH(O-) n _ 1
(o) = Z05) where 5_f
Z(B) = ZGE{_1,+1}V e—BH(o) _ normalizing
factor.




Ising Model: local Hamiltonian

1

Hle)=-75 > oo = - >  a(wo(v)

u,v. u~v edges e=[u,v]
The local Hamiltonian
Hlocal(avv) — = Z o(u)o(v) .
u. u~v
Observe: conditional probability for o(v) is
given by Hjoeqi(o,v):

H(o) = Hipeal(o,v)— > o(uy)o(uz)

e=[uy,u2]: uy,uoFv



Ising Model via Glauber dynamics.

|
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Observe: conditional probability for o(v) is
given by Hj,eqi(o,v):

H(o) = Hiocai(o,v) = > o(u1)o(u2)

e=[u1,un]: uy,usFv



Ising Model via Glauber dynamics.

|
— 41 — -1 — -1 — -1 — 41 —
— 41 — -1 ? +1 — -1 —
— 41 — -1 — -1 — 41 — -1 -
|

Randomly pick v € G, erase the spin o(v).
Choose o4 or o_:

o PH(o4)
e—ﬁH(o_)+e—ﬁH(0+)
_ e_ﬁHlocal(U—l-fU) e—Qﬁ
- e_BHlocal(U—aU)_|_e_ﬁHlocal(‘7-|—7v)_ 6_254—625 i

PI‘Ob(O‘ — O'_|_) —




Glauber dynamics: Rapid mixing.

Glauber dynamics - a random walk on state
space S (here {—1,41}Y) s.t. needed 7 is
stationary w.r.t. Glauber dynamics.

In high temperatures (i.e. 3 = £ small enough)

it takes O(nlogn) iterations to get “e-close”
to w. Here |V| =n.

Need: |max,cy deg(v) - tanh(8) < 1

Thus the Glauber dynamics is a fast way to
generate w. It is an important example of
Gibbs sampling.



Close enough distribution and mixing time.

What is “e-close” to n? Start with oq:

| | | | |
— +1 — 41 — +1 — +1 — +1 —

— 41 — 41 — 41 — -1 — -1 -

If P(o) is the probability distribution after ¢
iterations, the total variation distance

|P-mllry =5 Y IR w0l <e.

cc{-1,+1}V



Who researched mixing times? D.Aldous,
P.Diaconis, J.A.Fill, M.Jerrum, A.Sinclair and
many more names.



Close enough distribution and mixing time.

Total variation distance:

1
=2 @) —v(z)| = sup, [n(A)—v(A)|

|lp—v||lry 1=
2 eSS

Mixing time:

tmiz(e) == Inf{t : |B—nlry <e, all oo} .

In high temperature, t,,;,(¢) = O(nlogn).



Coupling Method.
S - sample space

{p(i,7)}i jes - transition probabilities

Construct process ( iit ) on S x S such that
}

X¢ is a {p(i,j)}-Markov chain
Y; is a {p(i,j)}-Markov chain

Once X;=Y;, let Xt—|—1:Yt—|—17 Xt_|_2:Y%_|_2,...






Coupling Method.
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Coupling time: Tippiing = Min{t : Xy = Y3}

Successful coupling: Prob(T,y,piing <o0)=1



Mixing times via coupling.

Let T;; be coupling time for <§t> given
’ t
Xo=1and Ygp=73. Then
E|T; ;]
|Px, — Pyllry < P[T; ; > t] < %
Now, if we let Yg ~ 7, then for any Xg € S,

max; jes E[T; ;] ..
; <

1Px,—7llrv = ||Px,—Pyllrv <

max; ics E|[T; ;]
. :

whenever t >



Mixing times via coupling.

max; ics E[T; ;]
. :

| Px, — |l7v < € whenever t >

Thus
max; ;es E[T; ;]

bl @) = T {t : HPX,; — 7|7y < 5} <

So,

3

O(tmiw) < O(Tcoupling) -

Thus constructing a coupled process that
minimizes E[T,.,,ping] 9ives an effective up-
per bound on mixing time.



Coupon collector.

5 4 qds
1850 ‘4 & (&

n types of coupons: (1], |2...,[n

Collecting coupons: coupon / unit of time,
each coupon type is equally likely.

Goal: To collect a coupon of each type.

Question: How much time will it take?



Coupon collector.

cl c2| |cl| |c3| |[c3| [c2| |c4]| |ch
T T T T T

m=1 m T3 T4 Ts

Here 1 = 1, E[TQ —7‘1] = ﬁ,

Elr3 — 1] = 15,....Eltn — T—1] = n.

Hence

1 1 1
E[Tn]=n<1—|—§—|—§—|----—|—;) = nlog n+0(n)



Coupon collector and random card-to-
random location shuffling.

Shuffling a deck of n different cards:

11 (2] |3] |4]| |5] |6] |7] |8




Coupon collector and random card-to-
random location shuffling.

Shuffling a deck of n different cards:

1) (2] |3] |4]| |5] |6] |7] |8

Pick a card at random:

1] (2] |3] |4] |B| |6 |7| |8




Coupon collector and random card-to-
random location shuffling.
Shuffling a deck of n different cards:

1) (2] |3]| |4]| |5] |6] |7] |8

Pick a card at random:

1| (2] |3] |4] |B| |6 |7| |8

Pool it out, and place it anywhere in the
deck:

1| (2] |5| |3| |4 |6 |7| |8

Iterate. Question: t,,;.(e¢) =7



Random card-to-random location:
Cover time: Teover - €ach card was selected
at least once.

2| /5| 3] |1]| |6] 8] |7] |4

Coupon collector = E[T¢over] = nlogn+0O(n)
Cover time as well as coupling time (both

strong stationary time) provides an effective
upper and lower bound on mixing time.

Here  Elt,;.(e¢)] = nlogn + O(n)



Shuffling by random transpositions.
Pick two cards at random:

1) (2] |3 |4| |5] |6] |7] |8

Transpose them:

1] (2] |3] |4| |7| |6] |5 |8

Iterate:

. etc.



Shuffling by random transpositions.

3 |2 6| |4] |7]| |1]| |B]| |8

Here coupon collector gives only a lower bound
of %n log n.

Goal: get O(nlog(n)) upper bound with cou-
pling method - hidden coupon collector.



Obtaining O(nlog(n)) via super-fast cou-
pling. (Joint work with R.Burton)

Diaconis and Shahshahani (early 80’s):
The mixing time for shuffling a deck of n
cards by random transpositions is of order
O(nlog(n)) with cut-off asymptotics at %n log(n).

Method used: representation theory.
We answer an open problem (Y. Peres):

Provide a coupling proof of O(nlog(n)) mix-
ing rate.



A coupling. (Aldous and Fill) <« [al],i >:
moves card |a| to location 2z in both pro-
cesses, A; and By.

Even in case of two discrepancies (d = 2)
at di and do:

Ay ... |4] 6] bl |9 |a 8| |7 |2
By: ... (4| 6] |a] |9 |b| |8] |7] |2
T T
do dq
Label-to-location coupling:
2

n
E[Tcouplz'ng] — 2 — too large.



A coupling.
moves card
cesses, A; and Bg.

(Aldous and Fill) <« |a

d

JT >

to location 2 in both pro-

Case of two discrepancies (d = 2):

Ati
By -

4| 16| |3 5 8] 7] |2
4| 6| |5 3] 18] |7] |2
T 1

do

dq



A coupling. (Aldous and Fill) <« [al],i >:
moves card |a| to location 2z in both pro-
cesses, A; and Bs.

Case of two discrepancies (d = 2):

Ay .. |4 16| |3 19| |B| |8] |T] |2
B .. |4 16| |[B| (9 |3 |8] |7T]| |2
7 T 7
dp dq i1
Ay 7| 16| |3 /9| |B| |8]| |4] |2
By 7| |6 |B] 19| |3]| |8] |4] |2
i 7

S
N

¥
o



A coupling.
moves card

(Aldous and Fill) «

d

d

J1 >

to location 2 in both pro-
cesses, A; and Bs.

Case of two discrepancies (d = 2):

Ay .. |7 16| 3] 19| || |8 |4] |2
By - .. |7 16| |B|l 19| |3| |8] |4] |2
T 7 7
13 dp dq
Ati { 3 6 9 5 8 4 2
By - 7 |3 |5] |9 |6]| [8]| |4] |2
7 7
do dq



A coupling.
moves card

(Aldous and Fill) «

d

d

J1 >

to location 2 in both pro-
cesses, A; and Bg.

Case of two discrepancies (d = 2):

A ... (7] [3] [e6] [9] [B] [8] [4] [2
B:: ... 7] [3] [5] [9] [6] [8] [4] [2
T
13
Ay 71 [3] [6] [9] [5] [8] [4] [2
By : 71 [3] [6] [9] [5] [8] [4] [2

Label-to-location coupling: E[Toupling]

S



A coupling. (Aldous and Fill) <« |al],7 >:
moves card |a| to location 2 in both pro-
cesses, A; and Bg.

Mixing: order O(n?) instead of O(nlogn):

noon2 T2 5
E[Tcouplz'ng] e Z 72 e (E - 1) n
d=2

Problem: slows down significantly when the
number of discrepancies is small enough.



Obtaining O(nlog(n)) via super-fast cou-
pling. (Joint work with R.Burton)

Tunneling into the future approach.

Coupling time:

E|T, ] < 1 + log
; ‘n n
couplingl > ¢ ( 1 ) ( 8)

forany O<e<kr<l.



Two discrepancies (d = 2) at dq and d»:

Ay ... 4] 16| |b| |9] |a| |8] |al]| |2
By ... |4| |6] |a| |9] |[b] [8| |al
T T T
dp dq 11

Label-to-location coupling:

n2
I8\ eomaiitog, = YR too large.



Jump < |a| 71 > of |a| to random location
11 at exponential time tq:

From

Ay 4| 16| |b| |9]| |a| |8] |al] |2

By : 4| 16| |a| (9| |b| |8| |al| |2
T T T
do dq 11

to

Ay 4| |6 b Ol |al| (8| |a] |2

By 41 16| |al| |9 b |8 |a| |2
T T T

do dq 11



Different way of saying the same:

N

Start with
Ay 4| |6 b 9| |al 8 a
By - 4| 16| |al 9 b 8 a
T T T
do /i1 i1/dq dy/d>

where at time tq1 the locations relabel ac-
cording to

dl/dz — 11
il/dl — dq |.
dg/il — do




,21 > at time t1; ~ exponential (%)

4| 16 b 9] al 3 a 2
4| 16 al 9] b 3 a 2
T T T
do /i1 i1/dq dy/d>
4| 16 b 9| |[al| |8| |a| |2
4| 16| |al| |9 b 38| |a] |2
T T T




The following association map will deter-
mine jumps of |al |

N
(@)

b
al

al

O
0]
Q
N

Ati
By -

N
(@)

©
O
00
Q
N

Card |al | will jump to position i, on the as-
soc. map at time to, even if to < t1.




al |2

By 4| |6] a1l |9] |b| [8] [a] |2
T T 1
b S * 5
2 ]_ Zl

Now 1o 7& 7,>'1< and

1
to ~ exponential <(1 —1/n) - _)
n

< |al|i] >=<|al||a| > is label-to-label,
we can skip.




If :1 = dq or do, discrepancies cancel at tq;

if 45 = d] or d5, discrepancies cancel on the
assoc. map at t».

If t1 < to, | assoc. map — real picture|at ¢4,
Wwe create one more assoc. map.




Case tp < t1, and 5 = d5. On association

map:
Start with
Ay 4| |6 b O al 8
By - 4| |6 al 0] b 8
T T
do /i1 i1/d1
At time t-:
Ay 4| |6 al 9 b 3
B 4| |6 al 9 b 3
i T
do/i1 i1/d1

a 2
a 2
;
dy/d>
a 2
a 2
;
dy/d>




At time 5

Ay 4| |6 |al ) b 8 a 2
By 4| 16| |al 9 b 8 a 2
T I T

dp /i1 i1/d1 dy/d>
At time t:
Ay 4| |6| |al| |9 |b| |8] |a| |2
By : 4| 16| |al| |9 |b| |8]| |a| |2

T T 1

L
N

S
o

l1




Case tp < t1, and 5 = d5. Same evolution,
original association:

Start with
Ay ... 4] 16| |b| |9] |a| |8] |al]| |2
By ... 4| |6| |a| |9 [b] |8] |al]| |2
T T T
do dq 11
At time t5:
Ay ... |4] |6| |al| |9] |a| |8 b 2
B ... |4] |6 d

©
— O
00
Q
el
N



At time 5

Ay 4| 16| |al| |9]| |a| |8| |b| |2
By 4| |6 a O |b| |8| |al]| |2
T T T
do d1 i1
At time t:
Ay 4| |6| |al| |9 |b| |8] |a| |2
By : 4| |6| |al| |9] |b| |8]| |a| |2
T T T
dQ dl il




Here
2

n
E [Tcoupling] ~ E



Chain of association maps:
< |al| > > occurs at to

Ay ... |a2| |6 b, |9| |al| |8| |a| |2

By: ... (a2]| |6]| |al] |9 b| (8| |[a] |2
T T T T
1 d5 dj i1

di is i1/dy before t1, and d; after ty;
d5 is do /i1 before t;, and do after ty;
] is dy/do before ¢, and iy after t;.




New association map:

Ay ... |al 6 b 9| |a2| |8| |a| |2

By: ... |al 6| |a2| |9 b 8| |a| |2
T T T T
1/d5 5/12 ip/dq i1

where at to,

1/d5 — o

dé/iQ — dz

io/d] — dj |.




a2 | will do label-to-location jump w.r.t. the

following assoc. map

Ati
By -

al| |6 b O |a2| (8] |a]| |2

al| (6| [a2| |9 b 8| |a| |2
T T T T

SO S

di* is ip/d] before to, and dj after to;
d5* is d5/ip before to, and d5 after tp;

>|<>l<

2]

<

is dj /d5 before to, and iy after t.

a2, i3 > occurs at t3 ~ exponential ((1 —2/n) - %)




And so on, creating a chain of k£ = |en]
association maps.

In case of d = 2 discrepancies, the avg. time
of discrepancy cancelation on one of assoc.
maps is

’I’L2 n

Blbl= a1 T a




General d:

n2 n

2(k+ 1)d  2ed’

E[Ty] =

Coupling time (all discrepancies):

1 K
2€+ (1 —kr)(k—2¢)

-nlogn

) [Tcouplz'ng] <

for any 0 <e< k<1l



