Markov Chain Monte Carlo and mixing rates Yevgeniy Kovchegov Department of Mathematics Oregon State University **Ising Model.** Every vertex v of G = (V, E) is assigned a spin $\sigma(v) \in \{-1, +1\}$. The probability of a configuration $\sigma \in \{-1, +1\}^V$ is $$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$ **Ising Model.** Every vertex v of G = (V, E) is assigned a spin $\sigma(v) \in \{-1, +1\}$. The probability of a configuration $\sigma \in \{-1, +1\}^V$ is $$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$ **Ising Model.** $\forall \sigma \in \{-1, +1\}^V$, the Hamiltonian $$\mathcal{H}(\sigma) = -\frac{1}{2} \sum_{u,v:\ u \sim v} \sigma(u)\sigma(v) = -\sum_{edges\ e=[u,v]} \sigma(u)\sigma(v)$$ and probability of a configuration $\sigma \in \{-1, +1\}^V$ is $$\pi(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}, \quad \text{where} \quad \beta = \frac{1}{T}$$ $Z(\beta) = \sum_{\sigma \in \{-1,+1\}^V} e^{-\beta \mathcal{H}(\sigma)}$ - normalizing factor. #### Ising Model: local Hamiltonian $$\mathcal{H}(\sigma) = -\frac{1}{2} \sum_{u,v:\ u \sim v} \sigma(u)\sigma(v) = -\sum_{edges\ e = [u,v]} \sigma(u)\sigma(v)$$ The local Hamiltonian $$\mathcal{H}_{local}(\sigma, v) = -\sum_{u: u \sim v} \sigma(u)\sigma(v)$$. Observe: conditional probability for $\sigma(v)$ is given by $\mathcal{H}_{local}(\sigma, v)$: $$\mathcal{H}(\sigma) = \mathcal{H}_{local}(\sigma, v) - \sum_{e=[u_1, u_2]: u_1, u_2 \neq v} \sigma(u_1) \sigma(u_2)$$ #### Ising Model via Glauber dynamics. Observe: conditional probability for $\sigma(v)$ is given by $\mathcal{H}_{local}(\sigma, v)$: $$\mathcal{H}(\sigma) = \mathcal{H}_{local}(\sigma, v) - \sum_{e=[u_1, u_2]: u_1, u_2 \neq v} \sigma(u_1)\sigma(u_2)$$ #### Ising Model via Glauber dynamics. Randomly pick $v \in G$, erase the spin $\sigma(v)$. Choose σ_+ or σ_- : $$Prob(\sigma \to \sigma_{+}) = \frac{e^{-\beta \mathcal{H}(\sigma_{+})}}{e^{-\beta \mathcal{H}(\sigma_{-})} + e^{-\beta \mathcal{H}(\sigma_{+})}}$$ $$= \frac{e^{-\beta \mathcal{H}_{local}(\sigma_{+},v)}}{e^{-\beta \mathcal{H}_{local}(\sigma_{-},v)} + e^{-\beta \mathcal{H}_{local}(\sigma_{+},v)}} = \frac{e^{-2\beta}}{e^{-2\beta} + e^{2\beta}} .$$ ## Glauber dynamics: Rapid mixing. Glauber dynamics - a random walk on state space S (here $\{-1,+1\}^V$) s.t. needed π is stationary w.r.t. Glauber dynamics. In high temperatures (i.e. $\beta = \frac{1}{T}$ small enough) it takes $O(n \log n)$ iterations to get " ε -close" to π . Here |V| = n. Need: $$\max_{v \in V} deg(v) \cdot \tanh(\beta) < 1$$ Thus the Glauber dynamics is a fast way to generate π . It is an important example of **Gibbs sampling**. #### Close enough distribution and mixing time. What is " ε -close" to π ? Start with σ_0 : If $P_t(\sigma)$ is the probability distribution after t iterations, the total variation distance $$||P_t - \pi||_{TV} = \frac{1}{2} \sum_{\sigma \in \{-1, +1\}^V} |P_t(\sigma) - \pi(\sigma)| \le \varepsilon.$$ Who researched mixing times? D.Aldous, P.Diaconis, J.A.Fill, M.Jerrum, A.Sinclair and many more names. ## Close enough distribution and mixing time. #### **Total variation distance:** $$\|\mu - \nu\|_{TV} := \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)| = \sup_{A \subset S} |\mu(A) - \nu(A)|$$ #### Mixing time: $$t_{mix}(\varepsilon) := \inf\{t : \|P_t - \pi\|_{TV} \le \varepsilon, \text{ all } \sigma_0\}$$. In high temperature, $t_{mix}(\varepsilon) = O(n \log n)$. ## Coupling Method. S - sample space $\{p(i,j)\}_{i,j\in S}$ - transition probabilities Construct process $\left(egin{array}{c} X_t \\ Y_t \end{array} ight)$ on S imes S such that X_t is a $\{p(i,j)\}$ -Markov chain Y_t is a $\{p(i,j)\}$ -Markov chain Once $X_t = Y_t$, let $X_{t+1} = Y_{t+1}$, $X_{t+2} = Y_{t+2}$,... # Coupling Method. ## Coupling Method. Coupling time: $T_{coupling} = \min\{t : X_t = Y_t\}$ Successful coupling: $Prob(T_{coupling} < \infty) = 1$ # Mixing times via coupling. Let $T_{i,j}$ be coupling time for $\begin{pmatrix} X_t \\ Y_t \end{pmatrix}$ given $X_0 = i$ and $Y_0 = j$. Then $$||P_{X_t} - P_{Y_t}||_{TV} \le P[T_{i,j} > t] \le \frac{E[T_{i,j}]}{t}$$ Now, if we let $Y_0 \sim \pi$, then for any $X_0 \in S$, $$\|P_{X_t} - \pi\|_{TV} = \|P_{X_t} - P_{Y_t}\|_{TV} \le \frac{\max_{i,j \in S} E[T_{i,j}]}{t} \le \varepsilon$$ $$\max_{i,j \in S} E[T_{i,j}]$$ whenever $t \geq \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}$. #### Mixing times via coupling. $$\|P_{X_t} - \pi\|_{TV} \le \varepsilon$$ whenever $t \ge \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}$. Thus $$t_{mix}(\varepsilon) = \inf \left\{ t: \ \|P_{X_t} - \pi\|_{TV} \le \varepsilon \right\} \le \frac{\max_{i,j \in S} E[T_{i,j}]}{\varepsilon}.$$ So. $$O(t_{mix}) \leq O(T_{coupling})$$. Thus constructing a coupled process that minimizes $E[T_{coupling}]$ gives an effective upper bound on mixing time. #### Coupon collector. n types of coupons: $\boxed{1}$, $\boxed{2}$,..., \boxed{n} Collecting coupons: coupon / unit of time, each coupon type is equally likely. Goal: To collect a coupon of each type. Question: How much time will it take? #### Coupon collector. Here $$\tau_1 = 1$$, $E[\tau_2 - \tau_1] = \frac{n}{n-1}$, $E[\tau_3 - \tau_2] = \frac{n}{n-2}$,..., $E[\tau_n - \tau_{n-1}] = n$. Hence $$E[\tau_n] = n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = n\log n + O(n)$$ Coupon collector and random card-to-random location shuffling. Shuffling a deck of n different cards: 1 2 3 4 5 6 7 8 # Coupon collector and random card-to-random location shuffling. Shuffling a deck of n different cards: 1 2 3 4 5 6 7 8 Pick a card at random: 1 2 3 4 **5** 6 7 8 # Coupon collector and random card-to-random location shuffling. Shuffling a deck of n different cards: 1 2 3 4 5 6 7 8 Pick a card at random: 1 2 3 4 **5** 6 7 8 Pool it out, and place it anywhere in the deck: 1 2 **5** 3 4 6 7 8 Iterate. Question: $t_{mix}(\varepsilon) = ?$ #### Random card-to-random location: Cover time: T_{cover} - each card was selected at least once. 2 **5** 3 **1** 6 8 **7 4** Coupon collector $\Rightarrow E[T_{cover}] = n \log n + O(n)$ Cover time as well as coupling time (both strong stationary time) provides an effective upper and lower bound on mixing time. Here $E[t_{mix}(\varepsilon)] = n \log n + O(n)$ #### Shuffling by random transpositions. Pick two cards at random: 1 2 3 4 **5** 6 **7** 8 Transpose them: 1 2 3 4 **7** 6 **5** 8 Iterate: **3** 2 **1** 4 **7** 6 **5** 8 **3** 2 **6 4 7 1 5** 8 ...etc. ## Shuffling by random transpositions. **3** 2 **6** 4 **7 1 5** 8 Here coupon collector gives only a lower bound of $\frac{1}{2}n \log n$. Goal: get $O(n \log(n))$ upper bound with coupling method - hidden coupon collector. Obtaining $O(n \log(n))$ via super-fast coupling. (Joint work with R.Burton) # Diaconis and Shahshahani (early 80's): The mixing time for shuffling a deck of n cards by random transpositions is of order $O(n \log(n))$ with cut-off asymptotics at $\frac{1}{2}n \log(n)$. Method used: representation theory. We answer an **open problem** (Y. Peres): Provide a coupling proof of $O(n \log(n))$ mixing rate. Even in case of **two discrepancies** (d = 2) at d_1 and d_2 : $$A_t$$: ... 4 6 **b** 9 **a** 8 7 2 ... B_t : ... 4 6 **a** 9 **b** 8 7 2 ... d_2 d_1 Label-to-location coupling: $$E[T_{coupling}] = \frac{n^2}{4}$$ - too large. Case of **two discrepancies** (d = 2): Case of **two discrepancies** (d = 2): $$A_t$$: ... 4 6 3 9 5 8 7 2 ... B_t : ... 4 6 5 9 3 8 7 2 ... A_t : Case of **two discrepancies** (d = 2): Case of **two discrepancies** (d = 2): $$A_t$$: ... 7 3 6 9 5 8 4 2 ... B_t : ... 7 3 5 9 6 8 4 2 ... $$A_t$$: ... 7 3 6 9 5 8 4 2 ... B_t : ... 7 3 6 9 5 8 4 2 ... Label-to-location coupling: $E[T_{coupling}] = \frac{n^2}{4}$ Mixing: order $O(n^2)$ instead of $O(n \log n)$; $$E[T_{coupling}] \approx \sum_{d=2}^{n} \frac{n^2}{d^2} \approx \left(\frac{\pi^2}{6} - 1\right) n^2$$ Problem: slows down significantly when the number of discrepancies is small enough. Obtaining $O(n \log(n))$ via super-fast coupling. (Joint work with R.Burton) Tunneling into the future approach. Coupling time: $$E[T_{coupling}] \leq \left[\frac{1}{2\varepsilon} + \frac{\kappa}{(1-\kappa)(\kappa-\varepsilon)}\right] \cdot n \log n$$ for any $0 < \varepsilon < \kappa < 1$. Two discrepancies (d = 2) at d_1 and d_2 : $$A_t$$: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 Label-to-location coupling: $$E[T_{coupling}] = \frac{n^2}{4}$$ - too large. Jump \ll $[\mathbf{a}], i_1 \gg$ of $[\mathbf{a}]$ to random location i_1 at exponential time t_1 : #### From $$A_t$$: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 d_2 ... to $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2 d_1 d_1 Different way of saying the same: Start with $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2/i_1 i_1/d_1 d_1/d_2 where at time t_1 the locations relabel according to $$\begin{bmatrix} d_1/d_2 & \longrightarrow i_1 \\ i_1/d_1 & \longrightarrow d_1 \\ d_2/i_1 & \longrightarrow d_2 \end{bmatrix}.$$ Jump $\ll [\mathbf{a}], i_1 \gg \text{at time } t_1 \sim \text{exponential } \left(\frac{1}{n}\right).$ From $$A_t$$: ... 4 6 b 9 a1 8 a 2 ... B_t : ... 4 6 a1 9 b 8 a 2 ... d_2/i_1 i_1/d_1 d_1/d_2 to $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2 d_1 d_1 d_2 ... The following association map will determine jumps of $\boxed{a1}$. $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... Card $[\mathbf{a1}]$ will jump to position i_2 on the assoc. map at time t_2 , even if $t_2 < t_1$. $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2^* d_1^* i_1^* Now $i_2 \neq i_1^*$ and $$t_2 \sim ext{exponential}\left((1-1/n)\cdot rac{1}{n} ight)$$ $\ll |\mathbf{a1}|, i_1^* \gg = \ll |\mathbf{a1}|, |\mathbf{a}| \gg \text{ is label-to-label,}$ we can skip. If $i_1 = d_1$ or d_2 , discrepancies cancel at t_1 ; if $i_2^*=d_1^*$ or d_2^* , discrepancies cancel on the assoc. map at t_2 . If $t_1 < t_2$, assoc. map \rightarrow real picture at t_1 , we create one more assoc. map. Case $t_2 < t_1$, and $i_2^* = d_2^*$. On association map: ### Start with $$A_t$$: ... 4 6 **b** 9 **a1** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... d_2/i_1 i_1/d_1 d_1/d_2 # At time t_2 : $$A_t$$: ... 4 6 a1 9 b 8 a 2 ... B_t : ... 4 6 a1 9 b 8 a 2 ... \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow d_2/i_1 i_1/d_1 d_1/d_2 # At time t_2 : # At time t_1 : $$A_t$$: ... 4 6 **a1** 9 **b** 8 **a** 2 ... B_t : ... 4 6 **a1** 9 **b** 8 **a** 2 ... A_t : ... A_t : ... A_t : ... A_t : A_t : ... A_t : A_t : ... A_t : A_t : A_t : ... A_t : Case $t_2 < t_1$, and $i_2^* = d_2^*$. Same evolution, original association: #### Start with $$A_t$$: ... 4 6 **b** 9 **a** 8 **a1** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 d_2 ... # At time t_2 : $$A_t$$: ... 4 6 **a1** 9 **a** 8 **b** 2 ... B_t : ... 4 6 **a** 9 **b** 8 **a1** 2 ... d_2 d_1 d_1 # At time t_2 : $$A_t$$: ... 4 6 a1 9 a 8 b 2 ... B_t : ... 4 6 a 9 b 8 a1 2 ... d_2 d_1 d_1 # At time t_1 : Here $$E[T_{coupling}] \approx \frac{n^2}{8}$$ ### Chain of association maps: $\ll |\mathbf{a1}|, i_2 \gg \text{occurs at } t_2$ d_1^* is i_1/d_1 before t_1 , and d_1 after t_1 ; d_2^* is d_2/i_1 before t_1 , and d_2 after t_1 ; i_1^* is d_1/d_2 before t_1 , and i_1 after t_1 . New association map: $$A_t$$: ... **a1** 6 **b** 9 **a2** 8 **a** 2 ... B_t : ... **a1** 6 **a2** 9 **b** 8 **a** 2 ... d_1^*/d_2^* d_2^*/i_2 i_2/d_1^* i_1^* where at t_2 , **a2** will do label-to-location jump w.r.t. the following assoc. map d_1^{**} is i_2/d_1^* before t_2 , and d_1^* after t_2 ; d_2^{**} is d_2^*/i_2 before t_2 , and d_2^* after t_2 ; i_2^{**} is d_1^*/d_2^* before t_2 , and i_2 after t_2 . $$\ll \boxed{\mathbf{a2}}, i_3 \gg \text{occurs at } t_3 \sim \text{exponential}\left((1-2/n) \cdot \frac{1}{n}\right)$$ And so on, creating a **chain** of $k = \lfloor \varepsilon n \rfloor$ association maps. In case of d=2 discrepancies, the avg. time of discrepancy cancelation on one of assoc. maps is $$E[T_2] = \frac{n^2}{4(k+1)} = \frac{n}{4\varepsilon}.$$ General d: $$E[T_d] = \frac{n^2}{2(k+1)d} \approx \frac{n}{2\varepsilon d}.$$ Coupling time (all discrepancies): $$E[T_{coupling}] \leq \left[rac{1}{2arepsilon} + rac{\kappa}{(1-\kappa)(\kappa-arepsilon)} ight] \cdot n \log n$$ for any $0 < arepsilon < \kappa < 1$.