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Abstract

For a given point ~a in Zd, we prove that a cluster in the d-dimensional subcritical
Bernoulli bond percolation model conditioned on connecting points (0, ..., 0) and n~a if
scaled by 1

n‖~a‖ along ~a and by 1√
n

in the orthogonal directions converges asymptotically
to Time × (d− 1)-dimensional Brownian bridge. 1

1 Introduction.

In this paper we describe the limiting structure of a bond percolation cluster in subcritical
phase, conditioned on reaching a faraway point on square lattice. We will start with a
brief description of the Bernoulli bond percolation model based on the material rigorously
presented in [9] and [11]. We will also recall the definition of Brownian bridge. The result
of this research establishes a link between the geometrical behavior of a large percolation
cluster in subcritical phase and that of Brownian bridge, and will be presented in light of
recent developments in the field.

Percolation: For each edge of the d-dimensional square lattice Zd in turn, we declare
the edge open with probability p and closed with probability 1−p, independently of all other
edges. If we delete the closed edges, we are left with a random subgraph of Zd. A connected
component of the subgraph is called a “cluster”, and the number of edges in a cluster is the
“size” of the cluster. The probability θ(p) that the point (0, 0) belongs to a cluster of an
infinite size is zero if p = 0, and one if p = 1. However, there exists a critical probability
0 < pc < 1 such that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc. In the first case, we say that
we are in the subcritical phase of Bernoulli bond percolation model and in the second case
we say that we are in the supercritical phase of Bernoulli bond percolation model. We say
that two points in Zd are connected to each other whenever they belong to the same cluster.

Brownian bridge: Given that Bt is the d-dimensional Brownian motion, a sample-
continuous Gaussian process Bo

t ≡ Bt − tB1 (0 ≤ t ≤ 1) is called the Brownian bridge. We
observe that E[Bo

i,sB
o
j,t] = δi,js(1− t) for all 0 ≤ s ≤ t ≤ 1 and all 1 ≤ i, j ≤ d, where Bo

t =
(Bo

1,t, B
o
2,t, ..., B

o
d,t) and δi,j is the Kronecker coefficient. In fact the d-dimensional Brownian
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bridge can be also defined as a sample-continuous Gaussian process Bo
t = (Bo

1,t, B
o
2,t, ..., B

o
d,t)

on [0, 1] with mean zero and covariance E[Bo
i,sB

o
j,t] = δi,js(1 − t) for all 0 ≤ s ≤ t ≤ 1

and all 1 ≤ i, j ≤ d. Notice that, given either of the two equivalent definitions, Bo
t is a

Gaussian process such that Bo
0 = Bo

1 = 0 a.s. For more details see [2], [7] or [8]. The process

Bo,~a
t ≡ Bo

t + t~a is the Brownian bridge that connects points zero and ~a.

We will introduce the reader to the problem: Consider a point ~a in Zd and the d-
dimensional model of subcritical bond percolation (p < pc) conditioned on the event of zero
being connected to n~a. We first show that a specifically chosen path connecting points zero
and n~a and going through some appropriately defined points on the cluster (regeneration
points), if scaled 1

n‖~a‖ times along ~a and 1√
n

times in the direction orthogonal to ~a, converges

to Time × (d − 1)-dimensional Brownian bridge as n → +∞, where the scaled interval
connecting points zero and n~a serves as a [0, 1] time interval. In other words, we prove that
a scaled “skeleton” going through the regeneration points of the cluster converges to Time
× (d − 1)-dimensional Brownian bridge. In a subsequent step, we show that after scaling
the hitting area of the orthogonal hyper-planes shrinks, implying that for n large enough, all
the points of the scaled cluster are within an ε-neighborhood of the points in the “skeleton”.
One of the major tools used in this research was the renewal technique developed in [1], [4],
[5], [6] and [10] as part of the derivation of the Ornstein-Zernike estimate for the subcritical
bond percolation model and other processes. A major result related to the study is that for
~a = (1, 0, ..., 0), the hitting distribution of the cluster in the intermediate planes, x1 = tn~a,
0 < t < 1 obeys a multidimensional local limit theorem (see [4]). Dealing with all non-axis ~a
became possible only after the corresponding technique analyzing the so called Wulff shape
and further mastering the regeneration structures and equi-decay profiles was developed in
[5] and [10]. This technique played a central role in obtaining the research results of the
paper.

Invariance principle. The result of section 3 (see subsection 3.2) that we cite below is
to play an important role in proving the Brownian bridge asymptotics for subcritical bond
percolation in section 2. It can be also interpreted on its own: establishing a Brownian
bridge limiting behavior for a scaled “directed” random walk, conditioned on arriving to a
faraway point n~a, where by a directed random walk we mean a random walk in which the
steps {ζi} are i.i.d. and the probability P [ζi · ~a > 0] = 1.

We let X1, X2, ... to be i.i.d. random variables (vectors) on Zd with the span of the
lattice distribution equal to one (see [8], section 2.5), and let there be a λ > 0 such that the
moment-generating function

E[eθ·X1 ] <∞

for all ‖θ‖ < λ. Now, suppose there is a vector ~a ∈ Zd such that P [~a · Xi] > 0] = 1. Let
~g1, ..., ~gd denote the new orthonormal basis such that ~g1‖~a, and lets write [·, ·]g ∈ R × Rd−1

for the first and the last d − 1 coordinate of a point in the new basis. Then we can define
ti ∈ R and Yi ∈ Rd−1 to be such that X1 + ... + Xi = [ti, Yi]g ∈ Zd when written in the new
orthonormal basis. Observe that ~a = [‖~a‖, 0]g .

Now, let M and Ma denote respectively the covariance matrix of X1 and the (d-1)-
dimensional linear transformation corresponding to the last d-1 coordinates of M in the
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new basis (the covariance matrix of the last d-1 coordinates of X1). Then there is a (d-1)-
dimensional linear transformation Aa such that Ma = AaA

T
a (see [3], p.384). We will also

denote by µa the projection of E[X1] on < ~a >, e.g. µa = (E[X1] · ~g1)~g1.
We define the process [t, Y ∗

n,k(t)]g to be the interpolation of 0 and [ 1
n‖~a‖ti,

1√
n
Yi]

i=0,1,...,k
g ,

in subsection 3.2 we will show that

Technical Theorem. The process

{Y ∗
n,k for some k such that [tk, Yk]g = n~a}

conditioned on the existence of such k converges weakly to
√

‖~a‖
‖µa‖AaB

o, where Bo = {Bo
t }

is the (d-1)-dimensional Brownian bridge.

2 The Main Result in Subcritical Percolation.

In this section we will work only with subcritical percolation probabilities p < pc.

2.1 Preliminaries

Here we briefly go over the definitions that one can find in Section 4 of [5].
We start with the inverse correlation length ξp(~x):

ξp(~x) ≡ − lim
n→∞

1

n
log Pp(0↔ [n~x]),

where the limit is always defined due to the FKG property of the Bernoulli bond percolation
(see [9]). Now, ξp(~x) is the support function of the compact convex set

Kp ≡
⋂

~n∈Sd−1

{~r ∈ Rd : ~r · ~n ≤ ξp(~n)},

with non-empty interior int{Kp} containing point zero.
Let ~r ∈ ∂Kp, and let ~e be a basis vector such that ~e ·~r is maximal. For ~x, ~y ∈ Zd define

Sr
~x,~y ≡ {~z ∈ Rd|~r · ~x ≤ ~r · ~z ≤ ~r · ~y}.

Note that Sr
~x,~y = ∅ if ~r · ~y < ~r · ~x.

Let Cr
~x,~y denote the corresponding common open cluster of x and y when we run the per-

colation process on Sr
~x,~y

⋂
Zd. Let also ∆r be the set of all basis vectors orthogonal to ~r,

and their negatives. For the simplicity of notations (to avoid writing (1− p)|∆r| coefficient)
in the future, we restrict ourself to the case when vector ~r has all non-zero coefficients (e.g.
|∆r| = 0).

Definition 1. For ~x, ~y ∈ Zd lets define hr-connectivity {~x ←hr→ ~y} of ~x and ~y to be the
event that
1. ~x and ~y are connected in the restriction of the percolation configuration to the slab Sr

~x,~y.
2. If ~x 6= ~y, then Cr

~x,~y

⋂
Sr

~x,~x+~e = {~x, ~x + ~e} and Cr
~x,~y

⋂
Sr

~y−~e,~y = {~y − ~e, ~y}.
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Set
hr(~x) ≡ Pp[0←hr→ ~x]

and hr(0) = 1.

Definition 2. For ~x, ~y ∈ Zd lets define fr-connectivity {~x ←fr→ ~y} of ~x and ~y to be the
event that
1. ~x 6= ~y
2. ~x←hr→ ~y .
3. For no ~z ∈ Zd \ {~x, ~y} both {~x←hr→ ~z} and {~z ←hr→ ~y} take place.

Set
fr(~x) ≡ Pp[0←fr→ ~x]

and fr(0) = 0.

Definition 3. Suppose 0←hr→ ~x, we say that ~z ∈ Zd is a regeneration point of Cr
0,~x if

1. ~r · ~e ≤ ~r · ~z ≤ ~r · (~x− ~e)
2. Sr

~z−~e,~z+~e

⋂
Cr

0,~x contains exactly three points: ~z − ~e, ~z and ~z + ~e, where ~e is defined as
before.

The following is the Ornstein-Zernike equality in subcritical phase of Bernoulli bond
percolation.

Theorem. ∃ positive functions A(·, ·) on (0, pc)× Sd−1 s. t.

Pp[0↔ ~x] =
A(p, n(~x))

‖~x‖ d−1
2

e−ξp(~x)(1 + o(1)) (1)

uniformly in ~x ∈ Zd, where n(~x) ≡ ~x
‖~x‖ .

We refer the reader to [5] for the proof of the above theorem.

2.2 Probability measure Qr
r0

(x)

It had been proved in section 4 of [5] that for a given ~r0 ∈ ∂Kp there exists λ̄ > 0 such that

Fr0(~r) =
∑
x∈Zd

f~r0(x)e~r·~x = 1 whenever ~r ∈ Bλ̄(~r0)
⋂

∂Kp,

where Bλ̄(·) denotes the Euclidean ball of radius λ̄ around the given point in parenthesis,
and therefore

Qr
r0

(~x) ≡ fr0(~x)e~r·~x is a probability measure on Zd.

Also, it was shown that

µ = µr0(~r) ≡ Er
r0

X =
∑
~x∈Zd

~xQr
r0

(~x) = ∇rlogFr0(~r) 6= 0
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and
Fr0(~r) <∞ for all ~r in Bλ̄(~r0).

The later implies

Fr0(~r) =
∑
~x∈Zd

fr0(~x)e~r·~x =
∑
~x∈Zd

Qr0
r0

(~x)eθ·~x <∞

for θ = ~r − ~r0 ∈ Bλ̄(0), e.g. the moment generating function Er0
r0

(eθ·X1) of the law Qr0
r0

is
finite for all θ ∈ Bλ̄(0).

Now, there is a renewal relation (see section 1 and section 4 of [5]),

hr0(~x) =
∑
~z∈Zd

fr0(~z)hr0(~x− ~z) with hr0(0) = 1

and therefore

hr0([Nµ]) = e−r·[Nµ]
∑

k

k⊗
1

Qr
r0

(X1 + ... + Xk = [Nµ]) for N > 0,

where X1, X2, ... is a sequence of i.i.d. random variables distributed according to Qr
r0

,
as hr0-connection is a chain of fr0-connections with junctions at the regeneration points of
Cr0

0,x.

2.3 Important Observation

We would like the reader to notice a certain relationship between the notions of the regen-
eration points and that of fr0-connectivity as they were defined in section 2.1. That is for a
given vector ~x ∈ Zd, the event of
• {0←hr0→ ~x with exactly one regeneration point ~x1 }

is equivalent to the union of two independent events:
• { 0←fr0→ ~x1 },
• { ~x1 ←fr0→ ~x }.
Thus the probability of the above event is equal to

fr0(~x1)fr0(~x− ~x1).

More generally, the probability PX that 0 ←hr0→ ~x with exactly k-1 regeneration points
~x1, ~x1 + ~x2, ...,

∑k−1
i=1 ~xi (where

∑k
i=1 ~xi = ~x) can be factored as following

PX ≡ P [0←hr0→ ~x ; regeneration points: ~x1, ~x1 + ~x2, ...,

k−1∑
i=1

~xi]

= P [0←fr0→ ~x1]P [~x1 ←fr0→ ~x1 + ~x2]...P [
k−1∑
i=1

~xi ←fr0→
k∑

i=1

~xi = ~x]

= fr0(~x1)fr0(~x2)...fr0(~xk). (2)
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2.4 The Result

In this section we fix ~a ∈ Zd, we let ~r0 = ~aR+
⋂

∂Kp and ~r ∈ Bλ̄(~r0)
⋂

∂Kp (say ~r = ~r0).
Then we recall that

Er
r0

[eθ·X1 ] <∞

for all ‖θ‖ < λ̄(0). We also denote h(x) ≡ hr0(x) and f(x) ≡ fr0(x).
First, we introduce the new orthonormal basis {~g1, ~g2, ..., ~gd}, where ~g1 = ~a

‖~a‖ . We use

[·, ·]g ∈ R × Rd−1 to denote the coordinates of a vector with respect to the new basis.
Obviously ~a = [‖~a‖, 0]g. We want to prove that the process corresponding to the last d− 1
coordinates in the new basis of the scaled ( 1

n‖~a‖ times along ~a and 1√
n

times in the orthogonal

d-1 dimensions) interpolation of regeneration points of Cr0

0,n~a conditioned on 0←h→ n~a
converges weakly to a linear transformation of the (d-1)-dimensional Brownian bridge Bo(t),
where t represents the scaled first coordinate in the new basis.

Let MQ,r0,r denote the covariance matrix of a random variable distributed according
to Qr

r0
and let M̄r0,r denote the (d-1)-dimensional linear transformation corresponding to

the last d-1 coordinates of MQ,r0,r in the new basis (the covariance matrix of the last
d − 1 coordinates of a random variable distributed according to Qr

r0
). We also recall from

[5] that the covariance matrix MQ,r0,r = Hess
(
log Fr0(~r)

)
is uniformly non-degenerate

for ~r ∈ Bλ̄(~r0)
⋂

∂Kp. There is a (d-1)-dimensional linear transformation Ar0,r such that
M̄r0,r = Ar0,rA

T
r0,r. We recall that µr0(~r) denotes the mean of a Qr

r0
-distributed random

variable and we let µa denote the projection of µr0(~r) on < ~a >, e.g. µa = (µr0(~r) · ~g1)~g1.
Let X1, X2, ... be i.i.d. random variables distributed according to Qr

r0
law. We interpolate

0, X1, (X1 +X2), ..., (X1 + ... +Xk) and scale by 1
n‖~a‖ ×

1√
n

along < ~a > × < ~a >⊥ to get the

process [t, Y ∗
n,k(t)]g. The technical theorem (see section 1 or 3.2) implies the following

Theorem 1. The process

{Y ∗
n,k for some k such that X1 + ... + Xk = n~a}

conditioned on the existence of such k converges weakly to
√

‖~a‖
‖µa‖Ar0,rB

o, where Bo = {Bo
t }

is the (d-1)-dimensional Brownian bridge.

Now, let for ~y1, ..., ~yk ∈ Zd with positive increasing first coordinates γ(~y1, ..., ~yk) be the
last (d − 1) coordinates in the new basis of the scaled ( 1

n‖~a‖ ×
1√
n
) interpolation of points

0, ~y1, ..., ~yk (where the first coordinate is time). To be precise we write ~yi = [yi,x, yi,y]g, where
yi,x ∈ R and yi,y ∈ Rd−1. If we also let [y0,x, y0,y]g = 0, then y0,x < y1,x < y2,x < ... < yk,x.
Now we can explicitly define γ(~y1, ..., ~yk) as

γ(~y1, ..., ~yk)[t] =
1√
n

yi,y +
1√
n

(n‖~a‖t− yi,x

yi+1,x − yi,x

)
(yi+1,y − yi,y)

whenever
yi,x

n‖~a‖ ≤ t ≤ yi+1,x

n‖~a‖ (i = 0, 1, ..., k − 1). Notice that γ(~y1, ..., ~yk) ∈ Co[0, 1]d−1 as a

function of scaled first coordinate whenever ~yk = n~a. By the important observation (2) that
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we have made before, for any function Ψ(·) on C[0, 1]d−1,∑
k

∑
~x1+...+~xk=n~a Ψ(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))

×P [0←hr0→ n~a ; regeneration points: ~x1, ~x1 + ~x2, ...,
k−1∑
i=1

~xi]

=
∑

k

∑
~x1+...+~xk=n~a

Ψ(γ(~x1, ~x1 + ~x2, ...,

k∑
i=1

~xi))f(~x1)...f(~xk)

= e−r·n~a
∑

k

∑
~x1+...+~xk=n~a

Ψ(γ(~x1, ~x1 + ~x2, ...,

k∑
i=1

~xi))Q
r
r0

(~x1)...Q
r
r0

(~xk).

Therefore, for any E ⊂ C[0, 1]d−1 and corresponding indicator function IE(·) on C[0, 1]d−1,

Pp[γ(regeneration points, n~a) ∈ E | 0←h→ n~a]

=

∑
k

∑
~x1+...+~xk=n~a IE(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))f(~x1)...f(~xk)∑

k

∑
~x1+...+~xk=n~a f(~x1)...f(~xk)

=

∑
k

∑
~x1+...+~xk=n~a IE(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))Q

r
r0

(~x1)...Q
r
r0

(~xk)∑
k

∑
~x1+...+~xk=n~a Qr

r0
(~x1)...Qr

r0
(~xk)

= P [Y ∗
n,k ∈ E for the k such that X1 + ... + Xk = n~a | ∃k such that X1 + ... + Xk = n~a].

Hence, we have proved the following

Corollary. The process corresponding to the last d−1 coordinates (in the new basis {~g1, ..., ~gd})
of the scaled ( 1

n‖~a‖ ×
1√
n
) interpolation of regeneration points of Cr0

0,n~a (where the first coordi-

nate is time) conditioned on 0←h→ n~a converges weakly to
√

‖~a‖
‖µa‖Ar0,rB

o, where Bo = {Bo
t }

is the (d-1)-dimensional Brownian bridge.

Observe that if ~a‖~e1, then we do not need to change the basis, e.g. ~a lies on the first axis

and we let ~gi = ~ei for all i = 1, 2, ..., d. We also let ~r = ~r0. In this case, if ~X = (X1, ...,Xd) is
a random vector distributed according to Qr

r0
, then, due to the lattice symmetry,

Cov(Xi,Xj) = δi,jσ
2
X whenever 2 ≤ i, j ≤ d,

where δi,j =

{
1 if i = j

0 otherwise
and σ2

X = V ar(Xi) for all i = 2, ..., d. Hence Ar0,r = σX I and

√
‖~a‖
‖µa‖

Ar0,rB
o =

√
‖~a‖
‖µa‖

σXBo.

Thus the enhanced version of the above corollary, stated at the end of this section, will once
again confirm the multidimensional local limit theorem proved in [4].
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2.5 Shrinking of the Cluster and Main Theorem

Here for ~a ∈ Zd we let r0 = ~aR+
⋂

∂Kp again. Before we proceed with the proof that the
scaled percolation cluster Cr0

0,n~a shrinks to the scaled interpolation skeleton of regeneration
points, we need to observe the following easy consequence of ξp(·) being the support function
of Kp and strict convexity of ∂Kp (see [5]): if ~r = ∇ξp(~r0) then Qr

r0
is a probability measure.

With the help of the above statement we shall show that the consequent regeneration
points are situated relatively close to each other:

Lemma.

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0←h→ n~a] <

1

n

for n large enough.

Proof. Let ~r ≡ ∇ξp(~r0) = ∇ξp(~a). Since ξp(x) is strictly convex (see section 4 in [5]),

ξp(~a)− ξp(~a− ~x
n
)

(‖~x‖
n

)
<

~x

‖~x‖
· ∇ξp(~a)

for ~x ∈ Zd (~x 6= 0), and therefore

ξp(n~a)− ξp(n~a− ~x) = ‖~x‖
ξp(~a)− ξp(~a− ~x

n
)

(‖~x‖
n

)
< ~x · ∇ξp(~a) = ~r · ~x.

Thus, since Qr
r0

(x) decays exponentially and therefore

eξp(n~a)−ξp(n~a−x) < Qr
r0

(x)

and also decays exponentially. Hence by Ornstein-Zernike result (1),

Pp[n
1/3 < |x|, x-first reg. point |0←h→ n~a] =

∑
n1/3<|x|

f(x)
h(n~a− x)

h(n~a)
<

1

n2

for n large enough. So, since the number of the regeneration points is no greater than n,

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0←h→ n~a] <

1

n

for n large enough.

Now, it is really easy to check that there is a constant λg > 0 such that

f(~x) > e−λg‖~x‖

for all ~x such that f(~x) 6= 0 (here we only need to connect points ~e and ~x − ~e with two
non-intersecting open paths surrounded by the closed edges), and there exists a constant
λu > 0 such that

Pp[ percolation cluster C(0) 6⊂ [R;Bd−1
R (0)]g] < e−λuR
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for R large enough due to the exponential decay of the radius distribution for subcritical
probabilities (see [9]). Here Bd−1

R denotes the (d-1)-dimensional Euclidean ball of radius R.
Hence, for a given ε > 0

Pp[ cluster Cr0

0,~x 6⊂ [R,Bd−1
ε
√

n
(0)]g | 0←f→ x] < eλg‖~x‖−λuε

√
n,

and therefore, summing over the regeneration points, we get

Pp[ scaled cluster Cr0

0,n~a 6⊂ ε-neighbd. of [0, 1]× γ( reg. points ) | 0←g→ n~a]

<
1

n
+ neλgn1/3−λuε

√
n

for n large enough.

We can now state the main result of this paper:

Main Theorem. The process corresponding to the last d− 1 coordinates (in the new basis
{~g1, ~g2, ..., ~gd}) of the scaled ( 1

n‖~a‖ ×
1√
n
) interpolation of regeneration points of Cr0

0,n~a (where

the first coordinate is time) conditioned on 0←h→ n~a converges weakly to
√

‖~a‖
‖µa‖Ar0,rB

o,

where Bo = {Bo
t } is the (d-1)-dimensional Brownian bridge.

Also for a given ε > 0

Pp[ scaled cluster Cr0

0,n~a 6⊂ ε-neighbd. of [0, 1]× γ( reg. points, n~a) | 0←h→ n~a]→ 0

as n→∞.

2.6 From Sr
0,n~a ∩ Zd to all of Zd.

Here we are going to transform the preceding theorem that deals only with the restriction
Cr0

0,n~a of the percolation cluster to the strip Sr0

0,n~a to the statement about the entire percolation
cluster C0,n~a, where C~x,~y denotes the cluster connecting points ~x and ~y. For this we will
need to employ the techniques originally developed in [6] (pages 228-229) , [4], [5] (pages
347-349) and [10] (pages 674-675).

Definition 4. For ~x, ~y ∈ Zd and ~r ∈ ∂Kp, we say that x and y are dr-connected and write
{~x←dr→ ~y} whenever the following two conditions hold:
1. ~x and ~y are connected (both points belong to the common percolation cluster C~x,~y).
2. There is no ~z ∈ Sr

~x+~e,~y−~e such that C~x,~y

⋂
Sr

~z−~e,~z+~e = {~z − ~e, ~z, ~z + ~e}, where, as before, ~e
is the basis vector that maximizes ~r · ~e.

The points ~z from part 2 of the above definition are once again called the regeneration
points in the direction of ~r. Only this time we need the endpoints to be connected on the
entire lattice, without restricting it to Sr

0,n~a. The dr-connectivity defined as above is the

connectivity with no regeneration points in the given direction. We set dr(~x) ≡ Pp[0←dr→ ~x]
and dr(0) = 0.

Now, we define the connectivity with exactly one regeneration point:

9



Definition 5. For ~x, ~y ∈ Zd and ~r ∈ ∂Kp, we say that x and y are ur-connected and write
{~x←ur→ ~y} whenever the following three conditions hold:
1. ~x and ~y are connected (both points belong to the common percolation cluster C~x,~y).
2. If ~x 6= ~y, then C~x,~y

⋂
Sr

~y−~e,~y = {~y − ~e, ~y}, where ~e is the basis vector that maximizes ~r · ~e.
3. There is exactly one point ~z ∈ Sr

~x+~e,~y−~e such that C~x,~y

⋂
Sr

~z−~e,~z+~e = {~z − ~e, ~z, ~z + ~e}

We set ur(~x) ≡ Pp[0←ur→ ~x] and ur(0) = 0.
We observe that for a given direction ~r, the rightmost and the leftmost regeneration

points connecting zero to ~x are hr-connected, while if glued together, the remaining parts of
the cluster compile into a ur-connected component:

P [0↔ ~x] = dr(~x) +
∑

~x1+~x2=~x

ur( ~x1)hr(~x2). (3)

According to the construction in [5], for a fixed ~r ∈ ∂Kp, there exist constants ν1 > 0
and ν2 > 0 such that

dr(~x) ≤ e−ν1‖~x‖Pp[0↔ ~x]

and
ur(~x) ≤ e−ν2‖~x‖Pp[0↔ ~x].

Thus, for a given ~a ∈ Zd, ~r0 = ~aR+
⋂

∂Kp and n large enough, the probability
Pp[0 ←d→ n~a | 0 ↔ n~a] is negligibly small. Also, if we denote by ~xg and ~xL the first and
the last regeneration points whenever 0↔ n~a, then there exist ν3 ∈ (0, ν2) such that

Pp[‖n~a− ~xL + ~xg‖ ≥ n
1
3 | 0↔ n~a] =

1

Pp[0↔ n~a]

∑
~x∈Zd:‖~x‖≥n

1
3

u(~x)h(n~a− ~x)

≤ e−ν3n
1
3

Pp[0↔ n~a]

∑
~x∈Zd:‖~x‖≥n

1
3

h(~x)h(n~a− ~x)

→ 0 (4)

as

1

h(n~a)

∑
~x∈Zd

h(~x)h(n~a− ~x) =
∑
~x∈Zd

Pp[~x is a regeneration point | 0↔ n~a]

= E[#regeneration points | 0↔ n~a]

< n‖~a‖.

The above formulas (3) and (4), together with the Main theorem of the previous subsec-
tion imply the more general form of the result valid for the percolation process conditioned
on connecting zero to n~a on the entire lattice without restrictions. Here the direction ~r0, the
new basis and the interpolation skeleton γ of the regeneration points and boundary points
are defined in exactly the same way as in the preceding subsection of this manuscript.
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Main Theorem on Zd. The process corresponding to the last d− 1 coordinates (in the new
basis {~g1, ~g2, ..., ~gd}) of the scaled ( 1

n‖~a‖ ×
1√
n
) interpolation of regeneration points of C0,n~a

(where the first coordinate is time) conditioned on 0↔ n~a converges weakly to
√

‖~a‖
‖µa‖Ar0,rB

o,

where Bo = {Bo
t } is the (d-1)-dimensional Brownian bridge.

Also for a given ε > 0

Pp[ scaled cluster C0,n~a 6⊂ ε-neighbd. of [0, 1]× γ( reg. points, n~a) | 0↔ n~a]→ 0

as n→∞.

The last part of the above theorem states that the rescaled percolation cluster shrinks
to the interpolation skeleton of regeneration and boundary points. The proof of it is almost
identical to that presented in subsection 2.5. Once again ~r is a point in Bλ̄(~r0)

⋂
∂Kp The

covariance matrices MQ,r0,r and M̄r0,r as well as Ar0,r and the projection of the mean µa are
defined as before.

3 Convergence to Brownian Bridge.

As it was mentioned in the introduction, this section is entirely dedicated to proving the
Technical theorem. Recall that we already used the theorem to prove the main result of the
preceding section.

Various forms of conditional limit theorems and conditional invariance principles consti-
tute a traditional subject in the probability theory, and were thoroughly studied by Liggett,
Durrett, Resnick and others. The conditional invariance principle that we will cite in the
first subsection of this section is based upon the results proved in [13], [14] and [15] where
weak convergence of conditioned sums of independent random variables was studied in full
generality for many different cases. We will use one of the results from [15] to prove the
Technical theorem. Notice that the Technical theorem of this section is a specific version of
the conditional invariance principle, useful in its own way. The reader is referred to [2] for
more on weak convergence, and to [12] for more on weak convergence in this particular case.

3.1 An invariance principle.

We let Z1, Z2, ... be i.i.d. random variables (vectors) on lattice L ( e.g. P [Z1 ∈ L] = 1)
with the span of the d-dimensional lattice distribution equal to one (see [8], section 2.5) with
finite mean µ = EZ1 and covariance matrix MZ . Also we require the origin to be a point in
the interior of the closed convex hull of {z : P [Z1 = z] > 0}.

Consider a d-dimensional walk Xj that starts with X0 = 0 and for a given Xj, the (j+1)-st
step to be Xj+1 = Xj + Zj+1. After interpolation we get

X(t) = X[t] + (t− [t])(X[t]+1 −X[t])

for 0 ≤ t < ∞. Now, define Xn(t) ≡ X(nt)√
n

for 0 ≤ t ≤ 1. Observe that Xn(t) ∈ Cd
0 [0, 1],

where Cd
0 [0, 1] is the space of all d-dimensional continuous functions on [0, 1] with the corre-

sponding topology defined by the distance function ρ(f, g) = maxx∈[0,1] |f(x)− g(x)| for any
two functions f and g in Cd

0 [0, 1].
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Since MZ is symmetric nonnegative definite, there is a linear transformation AZ : Rd → Rd

such that MZ = AZAT
Z . One of the implications of [15] (p. 202) is

Theorem 2. Xn(t) conditioned on Xn(1) = 0 converges weakly to AZBo
d, where Bo

d is the
d-dimensional Brownian Bridge.

and for a ∈ Rd,

Theorem 3. If a(n) ∈ L is such that a(n)√
n

= a + o(1), then the process {Xn(t) − tXn(1)},
conditioned on Xn = a(n), converges weakly to AZBo

d.

Also the convergence is uniform in the following sense: here and in the next section,
when we say that convergence is uniform, what we really mean is that if we fix a compact
set L ∈ Rd, then for a given Borel set E ∈ Cd

0 [0, 1] and any small ε > 0, there is an integer
NL > 0 such that for all n > NL∣∣P [

1

σ
{Xn(t)− tXn(1)} ∈ E |Xn ∈ L]− P [AZBo

d ∈ E]
∣∣ < ε. (5)

Observe that the local CLT in this case will imply that∣∣P [
1

σ
{Xn(t)− tXn(1)} ∈ E |Xn = a(n)]− P [AZBo

d ∈ E]
∣∣ < ε.

for all n large enough and all a(n) such that a(n)√
n
∈ L .

3.2 General Case.

We begin with the settings needed for the invariance principle that will be proved in this
subsection. For a given non-zero vector ~a ∈ Zd, we let X1, X2, ... be i.i.d. random variables
(vectors) in Zd with the span of the lattice distribution equal to one (see [8]) such that the
probability P [~a · X1 > 0] = 1 with the finite mean µ = EX1 ∈ Zd and there is a constant
λ > 0 such that the moment-generating function

E[eθ·X1 ] <∞

for all θ inside the Euclidean ball of radius λ around zero. Also we let P~a denote the
projection map on < ~a > and P⊥

~a denote the orthogonal projection on < ~a >⊥. Now we can
decompose the mean µ = µa + µor, where µa ≡ P~aµ and µor ≡ P⊥

~a µ.
Now, borrowing the notations from the introduction section, we let M and Ma denote

respectively the covariance matrix of X1 and the (d-1)-dimensional linear transformation
corresponding to the last d-1 coordinates of M in the new basis (the covariance matrix of
the last d-1 coordinates of X1). Then, as we already mentioned, there is a d-dimensional
linear transformation A such that M = AAT (see [3], p.384). Similarly there is a (d-1)-
dimensional linear transformation Aa such that Ma = AaA

T
a .

As we did in the preceding sections of this manuscript, we introduce the new orthonormal
basis {~g1, ~g2, ..., ~gd}, where ~g1 = ~a

‖~a‖ . We again use [·, ·]g ∈ R×Rd−1 to denote the coordinates
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of a vector with respect to the new basis. We let X1 + ...+Xi = [ti, Yi]g ∈ Z×Zd−1. Note: ti
and Yi don’t have to be independent. Since the first coordinate Ti is positive with probability
one, the first step will be to interpolate [ti, Yi]g, and prove that if scaled and conditioned
on [tn, Yn]g = X1 + ... + Xn = [n‖~a‖, 0]g = n~a, the new process will converge weakly to the
Brownian bridge (with the first coordinate being the time axis).

We first let X̄i ≡ Xi − µa, then EX̄i = µor and M is the covariance matrix for each X̄i.
From here on we let Sj ≡ [tj, Yj]g = X1 + ... + Xj and S̄j ≡ X̄1 + ... + X̄j = Sj − jµa for any
positive integer j. We again interpolate:

X̄(t) = S̄[t] + (t− [t])X̄[t]+1

for 0 ≤ t ≤ ∞, and scale down by introducing X̄k(t) ≡ X̄(kt)√
k

. The statement below follows

immediately from the last theorem. [·] will denote the integer rounding for points in Rd.

Corollary. For k = k(n) = [n‖~a‖
‖µa‖ + k0

√
n], {X̄k(t)− tX̄k(1)} conditioned on S̄k = n~a− kµa

(e.g.[tk, Yk]g = n~a) converges weakly to {ABo
d}, where Bo

d is the d-dimensional Brownian
bridge.

Here we boldly used the theorem of the preceding subsection: namely observe that

S̄k = n~a− kµa = −k0

√
nµa + O(1).

If we let α(k) = n~a−kµa√
k

, then the process {X̄k(t)− tX̄k(1)} is being conditioned on X̄k(1) ≡
S̄k√

k
= α(k), where α(k) = −k0

√
‖µa‖
‖~a‖ µa + o(1).

Notice that we didn’t use the fact that the moment generating function is finite on some
interval around zero. We only needed the first two moments of X1 to be finite. One can also

notice that since α(k) = −k0

√
‖µa‖
‖~a‖ µa + o(1), the convergence must be uniform (in sense of

(5) ) for all k0 in a compact set . Now, if we consider only the last d−1 coordinates of X̄k(t),
w.r.t. the new basis the last Corollary will imply the following:

Lemma 1. For k = k(n) = [n‖~a‖
‖µa‖ + k0

√
n], Yk(t) conditioned on tk = n‖~a‖ and Yk = 0

converges weakly to {AaB
o}, where Bo is the (d− 1)-dimensional Brownian bridge.

Notice that the convergence is again “uniform” for k0 in a compact set. The Lemma above
above can be interpreted in the following way: the interpolation of [ i

k
, 1√

k
Yi]g conditioned on

[tk, Yk]g = n~a converges to Time×{AaB
o}, where Bo for the rest of the section will denote

the (d− 1)-dimensional Brownian bridge. Now, if we define the process [t, Y ∗
n,k(t)]g to be the

interpolation of [ 1
n‖~a‖ti,

1√
n
Yi]

i=0,1,...,k
g , then

Theorem 4. For k = k(n) = [n‖~a‖
‖µa‖+k0

√
n],

√
n
k
Y ∗

n,k(t) conditioned on tk = n‖~a‖ and Yk = 0

converges weakly to {AaB
o}.

Proof: Here we observe that the mean E[ ti
n‖~a‖−

ti−1

n‖~a‖ ] is actually equal to ‖µa‖
n‖~a‖ = 1

k−k0
√

n
+o( 1

n
),

and that for a given ε > 0, the probability of the ‖[ 1
n‖~a‖ti,

1√
n
Yi]g − [ i

k
, 1√

k
Yi]g‖ = | tj

n‖~a‖ −
j
k
|

exceeding ε for some j ≤ k,
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P [ max
0≤j≤k

|tj −
n‖~a‖

k
j| ≥ nε | Sn = n~a] ≤ P [ max

0≤j≤k
‖Sj −

n‖~a‖j
k

µa‖ ≥ nε | Sk = n~a]

≤ P [ max
0≤j≤k

|S̄j| ≥ n
ε

2
| S̄k = [n‖~a‖ − k‖µa‖, 0]g]

→ 0

as n→ +∞ since n‖~a‖ − k‖µa‖ = −‖µa‖k0

√
n + o(

√
n).

Now, the next step is to prove that the process

{Y ∗
n,k for some k such that [tk, Yk]g = n~a}

conditioned on the existence of such k converges weakly to the {
√

‖~a‖
‖µa‖AaB

o}

First we notice that the last theorem easily implies the following

Lemma 2. For given k = k(n) = [n‖~a‖
‖µa‖ + k0

√
n], Y ∗

n,k(t) conditioned on tk = n‖~a‖ and

Yk = 0 converges weakly to {
√

‖~a‖
‖µa‖AaB

o}

For a fixed M > 0, convergence in the lemma above is also uniform for
k ∈ [n‖~a‖

‖µa‖ −M
√

n, n‖~a‖
‖µa‖ + M

√
n] (e.g. k0 ∈ [−M, M ]). For the future purposes we denote

κ ≡ ‖µa‖
‖~a‖ and IM ≡ [n

κ
−M

√
n, n

κ
+ M

√
n]

⋂
Z.

Finally, we want to prove the following technical result, in which we use the truncation

argument as M → +∞ to show the weak convergence of Y ∗
n,k to {

√
‖~a‖
‖µa‖AaB

o} in case when

we condition only on the existence of such k.

Technical Theorem. The process

{Y ∗
n,k for some k such that [tk, Yk]g = n~a}

conditioned on the existence of such k converges weakly to {
√

‖~a‖
‖µa‖AaB

o}

Proof: Take M large. We notice that due to the uniformity of convergence for all k = k(n) ∈
IM established following the previous theorem, for given E ⊂ Cd−1[0, 1],

max
k∈IM

|P [Y ∗
k ∈ E | [tk, Yk]g = n~a]− P [{ 1√

κ
AaB

o} ∈ E]| = o(1).

Hence,

limn→+∞

∑
k∈IM

P [Sk = n~a]P [Y ∗
n,k ∈ E|Sk = n~a]∑

k∈IM
P [Sk = n~a]

= P [{ 1√
κ
AaB

o} ∈ E].
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Therefore we are only left to prove that truncation works as M → +∞. Now, for any
ε > 0 there exists M > 0 such that

(1 + ε)
∑
k∈IM

P [Sk = n~a] ≤
∑

k

P [Sk = n~a] ≤ (1 + 2ε)
∑
k∈IM

P [Sk = n~a]

for n large enough, as by the large deviation upper bound, there is a constant C̄LD > 0 such
that

P [Sk = n~a] ≤ e−C̄LD
(n−kκ)2

k
∧|n−kκ|,

and therefore ∃CLD > 0 such that∑
|n−kκ|>n2/3

P [Sk = n~a] < e−CLDn1/3

.

Also, by the local CLT,

P [Sk = n~a] = P [S̄k = (n− kκ)~a] = k−
d
2

(
(2π)d detM

)− 1
2 e−

(n−kκ)2

2k
~aT M−1~a + o(

1

kd/2
)

implying (if one writes the corresponding Riemann sum) that∑
|n−kκ|≤n2/3

P [Sk = n~a] =
(κ

n

) d−1
2

[
(
(2π)d detM

)− 1
2

∫ +∞

−∞
e−

x2

2
~aT M−1~adx + o(1)]

where ∑
k∈IM

P [Sk = n~a] =
(κ

n

) d−1
2

[
(
(2π)d detM

)− 1
2

∫ M
√

κ

−M
√

κ

e−
x2

2
~aT M−1~adx + o(1)].

Therefore

1

1 + 2ε

∑
k∈IM

P [Sk = n~a]P [Y ∗
n,k ∈ E|Sk = n~a]∑

k∈IM
P [Sk = n~a]

≤
∑

k P [Sk = n~a]P [Y ∗
n,k ∈ E|Sk = n~a]∑

k P [Sk = n~a]

≤ 1

1 + ε

∑
k∈IM

P [Sk = n~a]P [Y ∗
n,k ∈ E|Sk = n~a]∑

k∈IM
P [Sk = n~a]

for all open E ⊂ Cd−1[0, 1]. Taking the lim inf and lim sup of the fraction in the middle
completes the proof.
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