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Abstract

We study an inhomogeneous quantum walk on a line that evolves according to

alternating coins, each a rotation matrix. For the quantum walk with the coin

alternating between clockwise and counterclockwise rotations by the same angle,

we derive a closed form solution for the propagation of probabilities, and provide

its asymptotic approximation via the method of stationary phase. Finally, we

observe that for a π
4 angle, this alternating rotation walk will replicate the

renown Hadamard walk.
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1. Introduction

A quantum walk is the quantum mechanical analog of the classical random

walk, a stochastic model following the motion of a particle along a graph. His-

torically, classical walks have been successful in the design efficient computer

algorithms for traditional computers. With the rise of quantum computing,

quantum walks have been used to create new algorithms, such as Grover’s search

algorithm and Shor’s factorization algorithm which provide quadratic and pos-

sibly exponential speedup, respectively, over their classical counterparts. Re-

cently, [1] proved that quantum walks are universal for quantum computation,

meaning that any quantum algorithm can be reconstructed as a quantum walk

algorithm. With this in mind, quantum walks merit further research about their
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unique properties.

The two main types of quantum walks are discrete-time versus continuous

time quantum walks [2, 3, 4]. While significant work has been done on both

types of walks, for the purpose of this paper we will focus on discrete-time

quantum walks. Perhaps, the most well-known of these types of quantum walks

is the Hadamard walk. Nayak and Viswanath [5] outline the dynamics of the

Hadamard walk and also derive the asymptotic functional form of its corre-

sponding probability distribution.

Consequently, numerous other studies have analyzed the behavior of the

wave function governing the evolution of the quantum walker by looking into

the features of the coin operator. Montero [6] was able to obtain closed-

form formulas for the evolution of the wave function for a unidirectional quan-

tum walk on an infinite line with an arbitrary coin operator. It has even

been shown that all nonequivalent quantum walks can be reduced to a single-

parameter family of quantum walks [7]. In recent years, a special family of

quantum walks called inhomogeneous quantum walks have received consider-

able attention. Inhomogeneous quantum walks may further categorized as ei-

ther space-inhomogeneous, i.e. the coin operator varies with the position of

the walker, or time-inhomogeneous where a different coin operator is used at

different times. For space-inhomogeneous walks with a periodic coin operator,

Linden and Sharam demonstrate that depending on the period, these walks may

be bounded or unbounded in time [8]. There has also been interest in model-

ing the behavior of classical random walks through quantum walks. Typically,

this behavior can be recovered in the asymptotic limit of quantum walks by

destroying the coherence of the pure state in the quantum system [9]. However,

Montero [9] shows that classical-like walk can be mimicked at all time scales

by an inhomogeneous quantum walk with a time-dependent coin operator. Fi-

nally, in [10], a class of space and time inhomogeneous quantum walks on a line

is considered. There, a remarkable U(1) gauge invariance is observed, and a

continuous limit of these quantum walks is investigated.

Continuing with the topic of inhomogeneous quantum walks, in this paper
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we explore a discrete-time one dimensional quantum walk which is both space-

and time- inhomogeneous. In particular, our coin operator varies at even and

odd times/positions, so we call this type of walk an alternating quantum walk.

For a subclass of alternating quantum walks that we call the rotations walks, in

which the coin alternates between clockwise and counterclockwise rotations by

the same angle θ we obtain a closed-form expression for the coefficients of the

wave function and perform asymptotic analysis to arrive at a formula for the

walk’s probability distribution.

Before, we delve into the analysis of our quantum walk, we present a brief

overview on the construction of a quantum walk.

For a one-dimensional quantum walk, we allow a particle to move on the in-

teger points of the line and at each time step, the spin or chirality of the particle

undergoes a unitary transformation and then the particle moves accordingly to

the left or right or a superposition of these chirality states. The quantum walk

model for discrete-time walks consists of two quantum mechanical systems: a

walker and a coin, and an evolution operator that is applied to both systems

at discrete times only [2]. The walker keeps track of the particle’s position and

is recorded as a vector in a Hilbert space of infinite, but countable dimension

denoted Hp = {|j〉 ; j ∈ Z}. The coin space is two-dimensional Hilbert space

denoted Hc, spanned by the two basis states
{
|↑〉 , |↓〉

}
where |↑〉 =

(
1 0

)T
and |↓〉 =

(
0 1

)T
. The state of the total system is contained in the space

H = Hc ⊗Hp.

We model the state of the total system using the wave function. Hence, we

define |ψj(t)〉 = aj(t) |↑〉+ bj(t) |↓〉 to be the wave function at a given position j

and time t with coefficients aj(t) and bj(t). Then, |ψ(t)〉 =
∑
j∈Z |ψj(t)〉 is the

total wave function over all integers at time t Finally, the total probability of

the particle being at j during time t is Pj(t) =
∣∣aj(t)∣∣2 +

∣∣bj(t)∣∣2.

To perform a quantum walk, we begin with our initial state |ψ(0)〉. We may

continue to apply this transformation, multiplying by U each time, which means

that |ψ(t)〉 = U t |ψ(0)〉, where t represents the number of time steps.

3



The transformation U is defined as

U = S · (C ⊗ I).

where C represents the coin operator, I is the identity matrix in the position

space and S is the conditional shift operator defined as

S =
∑
j∈Z
|↑〉 〈↑| ⊗ |j + 1〉 〈j|+

∑
j∈Z
|↓〉 〈↓| ⊗ |j − 1〉 〈j| .

S shifts the position of the particle by one unit to the left or to the right. If

the spin is up, then S will move the particle to the right (from j to j + 1) and

a down spin will lead S to move the particle to the left (from j to j − 1).

The rest of the paper is organized as follows: Section 2 presents our main

results from the rotations walk and the Appendix gives further technical details

and numerical calculations.

2. Results and Discussion

In this section, we present the results for our alternating quantum walk.

Since at even times, the coin operator is a clockwise rotation and at odd times

we use a counter-clockwise rotation, we call this quantum walk the rotations

walk.

2.1. The Rotations Walk

2.1.1. Definition

We define our rotations walk such that Codd = (Ceven)
−1

, where the coin

operator Codd will be used at odd times and Ceven is to be applied at even time

steps. More specifically, we have

Ceven =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 and Codd =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 , (1)

where θ is a fixed constant and θ ∈ [0, 2π].
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2.1.2. Recursion Formulas and Fourier Transform

Using the wave function and the definition of a quantum walk, we find recur-

sion formulas for both aj(t+ 1) and bj(t+ 1) from aj(t) and bj(t), respectively,

for both coin operators.

For Ceven, this gives for j ∈ Z,

aj(t+ 1) = cos(θ)aj−1(t)− sin(θ)bj−1(t) (2)

bj(t+ 1) = sin(θ)aj+1(t) + cos(θ)bj+1(t). (3)

Similarly, for Codd we get for j ∈ Z,

aj(t+ 1) = cos(θ)aj−1(t) + sin(θ)bj−1(t)

bj(t+ 1) = − sin(θ)aj+1(t) + cos(θ)bj+1(t).

We take the Fourier transform of the recursion formulas in order to express

the recursion with a 2 × 2 matrix. After performing a Fourier transform the

recurrence relations for the walk at even times, we may express the transformed

ât+1(s) and b̂t+1(s) in the following manner:

ât+1(s)

b̂t+1(s)

 = Me

ât(s)
b̂t(s)

 , where Me =

cos(θ)e−is − sin(θ)e−is

sin(θ)eis cos(θ)eis


(4)

andât+1(s)

b̂t+1(s)

 = Mo

ât(s)
b̂t(s)

 , where Mo =

cos(θ)e−is sin(θ)e−is

− sin(θ)eis cos(θ)eis

 .

Although we apply the operators in alternating order1, we may still write

them as:

M t = (MoMe)
t/2 (t even) and M t = Me(MoMe)

(t−1)/2 (t odd),

1Note that the operators Me and Mo are non-commutative.
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where

MoMe =

e−2is cos2(θ) + sin2(θ) − cos(θ) sin(θ)
(
e−2is − 1

)
cos(θ) sin(θ)

(
e2is − 1

)
e2is cos2(θ) + sin2(θ)

 . (5)

Given initial states â0(s) and b̂0(s) and the matrix MoMe as defined above, we

define ât(s)
b̂t(s)

 = (MoMe)
t/2

â0(s)

b̂0(s)

 (6)

for even t. For convenience let us rename M := MoMe.

2.1.3. Formulas for ât(s) and b̂t(s)

Subsequently, we diagonalize the matrix (5) obtaining its eigenvalues λ1,2 =

e±iωs , where ωs is the angle in
[−π

2 ,
π
2

]
with ωs = 2 arcsin

(
sin(s) cos(θ)

)
uniquely

defined. The corresponding eigenvectors and further details on how these eigen-

values were derived are presented in B.2. Now we choose an initial condition of

|↑〉 ⊗ |0〉; that is, the particle begins its walk at the origin oriented to the right.

Hence, after performing the matrix multiplication and simplifying, we arrive at:

ât(s) =
1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]
(7)

and

b̂t(s) =
eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)
(8)

for all even t, where we let A = sin2(s) cos2(θ). The expressions for ât(s) and

b̂t(s) when t is odd are obtained via (4) from the above formulas (7) and (8).

2.1.4. Closed-form Formulas for aj(t) and bj(t)

Finally, we take the inverse Fourier transform of (7) and (8) to arrive at final

closed-form formulas for aj(t) and bj(t) when t is even:

aj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
ei(js+ωst/2) (9)
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bj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

ei(js+ωst/2) (10)

Next, we combine the equations (9) and (10) with (2) and (3) to obtain the

following closed-form formulas for aj(t) and bj(t) when t is odd: the expression

for bj(t) will be the same as in (10), while

aj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

(
−1 +

cos(s) cos(θ)√
1−A

)
ei(js+ωst/2) (11)

Thus, we observe the following peculiar behavior of the rotations walk. If

the rotations walk begins at |↑〉 ⊗ |0〉, the expression for bj(t) will be the same

for all t whether odd or even, while the expression for aj(t) will differ for odd

and even values of t by alternating the sign. Here, the general formula for aj(t)

can be written as follows

aj(t) =
(−1)t + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
ei(js+ωst/2) (t = 0, 1, . . .).

(12)

2.1.5. Probability Distribution

As the aforementioned integrals cannot be exactly calculated, we approxi-

mate the integrals asymptotically using the method of stationary phase (refer

to Appendix A.2). Applying this method, we find the following asymptotic

expressions:

aj(αt, t)

bj(αt, t)

 ∼
1 + (−1)αt√

2πt
∣∣ω′′sα∣∣×



(1 + α) cos
(
φ(sα, α) t+ π/4

)
−α tan(θ) cos

(
φ(sα, α) t+ π/4

)
−
√

1− α2 sec2(θ) sin
(
φ(sα, α) t+ π/4

)
(13)

where we substituted j = αt for α ∈ [−1, 1].

Therefore, we can calculate the probability of observing the particle at any

point j = αt. The asymptotic distribution for points α = j/t between
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− cos(θ) + ε and cos(θ)− ε, for any small constant ε > 0 is

P (α, t) =
∣∣a(αt, t)

∣∣2 +
∣∣b(αt, t)∣∣2 . (14)

2.2. Alternative Representation of the Hadamard Walk

Our numerical calculations (see Figure 1) suggest that for θ = π
4 , the alter-

nating rotations walk collapses exactly into famous the Hadamard walk. This

was a rather unintuitive, so we aim to prove it analytically.

Figure 1: The probability distributions of the single-coined Hadamard walk and our double-

coined alternating rotations walk match exactly.

Nayak and Vishwanath [5] found closed-form integral formulas for the co-

efficients aj(t) and bj(t) which are presented in (15) and (16). There, for the

Hadamard walk with the initial condition |↑〉 ⊗ |0〉,

aj(t) =
1 + (−1)j+t

4π

∫ π

−π

e−is√
1 + cos2(s)

ei(js−ωst)ds (15)

and

bj(t) =
1 + (−1)j+t

4π

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds. (16)
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To do this, we first substitute −j for j into both (15) and (16) and then

take the conjugate of the entire integral expression. We can do this because the

amplitudes are real since the entries in the coin operators are real which implies

that aj(t) = aj(t) and bj(t) = bj(t). After these modifications, the coefficients

of the wave function with initial condition of |↑〉 ⊗ |0〉 for the Hadamard walk

become:

aj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

(
1− cos(s)√

1 + cos2(s)

)
ei(js+ω̃st) (17)

bj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

eis√
1 + cos2(s)

ei(js+ω̃st) (18)

where sin(ω̃s) = − sin(s)√
2

. We use ω̃s in place of ωs to distinguish from the

ωs in (12) and (10).

We have defined ωs = 2 arcsin
(
sin(s) cos(θ)

)
, so we have cos(ωs) = 1 −

2 sin2(s) cos2(θ). If we substitute θ = π/4 into the expression for ωs, we get

cos(ωs) = 1 − 2 sin2(s) cos2(π4 ) = 1 − 2
(

1√
2

)2
sin2(s) = 1 − sin2(s) = cos2(s).

Thus, cos(ωs) = cos2(s).

Next, we observe that cos(2ω̃s) = 1−2 sin2(ω̃s) = 1− 2 sin2(s)
2 = 1−sin2(s) =

cos2(s). Hence, we have that cos(ωs) = cos(ω̃s)⇒ ω̃s = ωs
2 .

Substituting θ = π/4 into (12), we obtain

aj(t) =
(−1)t + (−1)j

2

∫ π

−π

ds

2π

1−
1√
2

cos(s)√
1− 1

2

(
1− cos2(s)

)
 ei(js+ωst/2)

=
(−1)t + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s)√

1 + cos2(s)

)
ei(js+(ωs2 )t)

which, when we replace ωs
2 with ω̃s, will match (17) up to a sign in front of the

expression.
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Substituting θ = π/4 into (10), we obtain

bj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

1√
2
eis√

1
2

(
1 + cos2(s)

)ei(js+ωst/2)
=

1 + (−1)j+t

2

∫ π

−π

ds

2π

eis√
1 + cos2(s)

ei(js+(ωs2 )t).

This is exactly (18) after replacing ωs
2 with ω̃s.

Therefore, we have shown that the Hadamard walk, a walk with one coin

operator, can be replicated with two coins when θ = π
4 in the rotations walk.

2.3. Discussion

Many aspects of our research could be further generalized. We worked only

with the same initial state, |↑〉 ⊗ |0〉. Similarly, there are many ways to make

a coin space-inhomogeneous. For example, we could define a coin that is dif-

ferent at every point on the line. We could also study a walk that is strictly

time-inhomogeneous, independent of position, and compare results with similar

space-inhomogeneous walks. Learning to predict and control the behavior of

quantum walks using these variables could make them even more powerful tools

in computing and other applications.

The discovery that the rotations walk could replicate the Hadamard walk

raises several poignant questions. Can all homogeneous walks be modeled by

inhomogeneous walks? Methods to control walks by adjusting their parameters

could lead to insights for answering these questions.
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A. Technical Background

A.1. The Fourier Transform

Let f be a function f : Z → C. Then, we define a Fourier transform f̂ :

[−π, π]→ C as:

f̂t(s) =
∑
j

fj(t)e
−ijs, (A.1)

where i is the imaginary unit and s is a real number, summing over all integer

positions j. Consequently, the inverse Fourier transform is given by

fj(t) =
1

2π

∫ π

−π
f̂t(s)e

ijsds. (A.2)

A.2. The Method of Stationary Phase

The integral expressions for our coefficients aj(t) and bj(t) clearly cannot

be solved by ordinary integration techniques, so we must consider a well-known

method which allows for the asymptotic expansion of integrals called the method

of stationary phase [5].

We consider an integral of the form:

I(t) =

∫ b

a

g(s)eitφ(s)ds (A.3)

as t tends to infinity. We assume that the exponential term in the integral

oscillates rapidly when t is large and if φ, called the phase of the integral, is

not constant in any sub-interval. Also, if g(s) is a smooth function of s, then

terms from adjacent sub-intervals will almost cancel each other out, meaning

that the major contribution to the value of the integral comes from regions

where the oscillations are slow. These regions of slow oscillations occur exactly

at the stationary points, i.e the points where the phase term is stationary. More

precisely, the points c where φ′(c) = 0. Thus, the significant terms in the

expansion come from a small interval around the stationary points.
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Without loss of generality, we assume that φ has exactly one stationary point

occurring at the left endpoint of the interval, a. Furthermore, we make the

assumption that g is smooth and non-vanishing at a. The order of a stationary

point, c, corresponds to the last derivative of φ in the Taylor expansion of

φ(s) at c which is nonzero at c. Suppose that the order of a is p − 1, then

φ′(a) = φ(2)(a) = · · · = φ(p−1)(a) = 0, but φ(p)(a) 6= 0. Then, the dominant

behavior of I is given by

I(t) ∼ g(s)eitφ(s)±iπ/2p

[
p!

t
∣∣φ(p)(a)

∣∣
]1/p

Γ(1/p)

p
, t→ +∞, (A.4)

where we use eiπ/2p (e−iπ/2p) if φ(p)(a) > 0 (φ(p)(a) < 0).

B. Calculations for the Rotations Walk

B.1. Fourier Transform

We would like to find the Fourier transform of the recursion formulas for

the Ceven operator by substituting the formulas for aj(t+ 1) and bj(t+ 1) into

(A.1).

ât+1(s) =
∑
j

aj(t)e
−ijs

=
∑
j

cos(θ)aj−1(t)e−ijs +
∑
j

sin(θ)bj−1(t)e−ijs

=
∑
k

cos(θ)ak(t)e−i(k+1)s +
∑
k

sin(θ)bk(t)e−i(k+1)s

= cos(θ)e−is
∑
k

ak(t)e−iks + sin(θ)e−is
∑
k

bk(t)e−iks

= cos(θ)e−isât(s) + sin(θ)e−isb̂t(s) (B.1)

By a symmetrical argument, we can find the Fourier transform of b̂t+1(s).

b̂t+1(s) = − sin(θ)eisât(s) + cos(θ)eisb̂t(s) (B.2)
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B.2. Diagonalization

Diagonalizing M as defined in (5) involves finding its eigenvalues and a pair

of orthonormal eigenvectors.

For the eigenvalues we find

λ1,2 = 1− 2 sin2(s) cos2(θ)± 2i sin(s) cos(θ)

√
1− sin2(s) cos2(θ). (B.3)

Both eigenvalues lie on the unit circle, and are conjugates of each other, so we

can take the argument of each eigenvalue. Let λ1 = eiωs and λ2 = e−iωs where

ωs is the angle in
[−π

2 ,
π
2

]
where ωs = 2 arcsin(sin(s) cos(θ)) is uniquely defined.

Additionally, we have cos(ωs) = 1 − 2 sin2(s) cos2(θ). Let A := sin2(s) cos2(θ),

so we have cos(ωs) = 1− 2A. Note the definition of A from now on.

Now, we would like to find the corresponding orthonormal eigenvectors, ~u1

and ~u2, for each eigenvalue. This is accomplished by solving

(M − λI)~v = 0 (B.4)

for λ = λ1,2 where v =
(
η1 η2

)T
.

In the process of solving (B.4) we derive the equation

(
cos2(θ)e−2is + sin2(θ)− e±iωs

)
η1 + cos(θ) sin(θ)

(
e−2is − 1

)
η2 = 0. (B.5)

for the eigenvalues λ1,2 = e±iωs , respectively.

If we let η1 = cos(θ) sin(θ)
(
e−2is − 1

)
, solving (B.5) for η2 gives

η2 = e±iωs − cos2(θ)e−2is − sin2(θ). After normalization, we have the following

respective eigenvectors for λ1,2.

~u1,2 :=
1√

N1,2(s)

 cos(θ) sin(θ)
(
e−2is − 1

)
e±iωs − cos2(θ)e−2is − sin2(θ)

 (B.6)

where N1,2(s) := 8A
(

1−A± cos(s) cos(θ)
√

1−A
)

.
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B.3. Finding Formulas for ât(s) and b̂t(s)

Since we assumed that the initial condition is |↑〉 ⊗ |0〉, which is purely up,

we know that a0(t) = δ0,j , where δ is the Kronecker delta, so that

â0(s) =
∑
j

δ0,je
−ijs = δ0,0e

0 = 1(1) = 1.

Likewise, b0(t) = 0 which implies that b̂0(s) = 0.

Therefore, we have that

â0(s)

b̂0(s)

 =

1

0

 , (B.7)

ât(s) =

(
cos2(θ) sin2(θ)

(
e−2is − 1

) (
e2is − 1

))
N1(s)

eiωst/2

+

(
cos2(θ) sin2(θ)

(
e−2is − 1

) (
e2is − 1

))
N2(s)

e−iωst/2, (B.8)

and

b̂t(s) =
cos(θ) sin(θ)

(
e2is − 1

) (
eiωs − cos2(θ)e−2is − sin2(θ)

)
N1(s)

eiωst/2

+
cos(θ) sin(θ)

(
e2is − 1

) (
e−iωs − cos2(θ)e−2is − sin2(θ)

)
N2(s)

e−iωst/2. (B.9)

The formulas in (B.8) and (B.9) can be simplified further simplified to a

form that is easier to work with. Since these are longer calculations, we only

present the final forms of ât(s) and b̂t(s) here.

ât(s) =
1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]

b̂t(s) =
eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)
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B.4. Inverse Fourier Transform

Our main objective is to find formulas for aj(t) and bj(t). This is accom-

plished by taking inverse Fourier transforms of (7) and (8). We substitute both

(7) and (8) into (A.2) to obtain the following coefficients for the quantum walk

at even positions.

aj(t) =
1

2π

∫ π

−π
ât(s)e

ijsds

=
1

2π

∫ π

−π

1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]
eijsds

=
1

2π

∫ π

−π

1

2

(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 · eijsds

+
1

2π

∫ 0

−2π

1

2

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2 · eijsds

Now we perform a change of variable. Let s∗ := s + π. Then, we have

that s = s∗ − π, ds∗ = ds, s∗(−2π) = −π, and s∗(0) = π. Furthermore,

it can be shown that ωs∗−π = −ωs∗ and that cos(s∗ − π) = − cos(s∗) and

sin2(s∗ − π) = sin2(s∗). Using this information the second integral above may

be rewritten as:

1

2π

∫ π

−π

1

2

1 +
cos(s∗ − π) cos(θ)√

1− sin2(s∗ − π) cos2(θ)

 e−iωs∗−πt/2 · eij(s
∗−π)ds∗

=
(−1)j

2π

∫ π

−π

1

2

1− cos(s∗) cos(θ)√
1− sin2(s∗) cos2(θ)

 ei(js
∗+ωs∗ t/2)ds∗

At this stage, rename s := s∗ in the derivation above. Combine and simplify

the two halves of the integral to get the final form of aj(t).

aj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
ei(js+ωst/2)
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Continuing with our calculations, we derive the formula for bj(t) in a similar

manner.

bj(t) =
1

2π

∫ π

−π
b̂t(s)e

ijsds

=
1

2π

∫ π

−π

eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)
eijsds

=
1

2π

∫ π

−π

eis sin(θ)

2
√

1−A

(
eiωst/2 · eijs

)
ds− 1

2π

∫ 0

−2π

eis sin(θ)

2
√

1−A

(
e−iωst/2 · eijs

)
ds

As before letting s∗ := s+ π within the second integral in the above expres-

sion allows us to reduce the integral in the following way

(−1)j

2π

∫ π

−π

eis
∗

sin(θ)

2
√

1− sin2(s∗) cos2(θ)
ei(js

∗+ωs∗ t/2)ds∗

Once again rename s := s∗ in the derivation above and combine the two

halves of the integral to get the final formula for bj(t).

bj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

ei(js+ωst/2)

We observe that for odd positions of j, the amplitudes of both aj(t) and

bj(t) cancel out, as desired.

Thus, we have obtained two integrals that describe the coefficients of the

wave function at a position j and time t. Therefore, we calculate the probability

of being at j at time t as Pj(t) =
∣∣aj(t)∣∣2 +

∣∣bj(t)∣∣2.

B.5. Asymptotic Expansion of aj(t) and bj(t)

Using the method of stationary phase, described in (A.2), we would like

to asymptotically expand the integrals (12) and (10) in order to analyze the

behavior of the wave function as t tends to +∞. To do this, we consider an

17



integral of the form:

I(α, t) =

∫ π

−π

ds

2π
g(s)eiφ(s,α)t (B.10)

If we substitute j = αt for α ∈ [−1, 1] into the expressions in (12) and (10),

we can obtain integrals in the form of (B.10). After doing so we can define2

I1(α, t) :=
1 + (−1)αt

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
eit(αs+ωs/2) for aj(t)

I2(α, t) :=
1 + (−1)αt

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

eit(αs+ωs/2) for bj(t)

Furthermore, we can let

g1(s) :=

(
1− cos(s) cos(θ)√

1−A

)
,

g2(s) :=
eis sin(θ)√

1−A

and since both I1 and I2 have the same phase term, define

φ(s, α) := αs+
1

2
ωs

Initially, we would like to calculate some derivatives which will be useful in

our analysis later.

∂φ

∂s
= α+

1

2
ωs = α+

cos(θ) cos(s)√
1− sin2(s) cos2(θ)

∂2φ

∂s2
=

1

2
ω′′s =

− sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2
∂3φ

∂s3
=

1

2
ω′′′s =

− sin2(θ) cos(θ) cos(s)
(

1 + 2 sin2(s) cos2(θ)
)

(
1− sin2(s) cos2(θ)

)5/2
2Note that t is defined to be the total number of steps taken during the walk.
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After calculating these derivatives, we need to find an appropriate region in

terms of α for which to analyze the asymptotic behavior of the wave function

Ψ as t → +∞. We would like to choose α, so that I1(α, t) and I2(α, t) decay

faster than any inverse polynomial in t in the region |α| + ε, go as t−1/3 in the

regions around |α|, and as t−1/2 in the third interval [5].

In order to look for stationary points of order 2 around |α|, we would like to

have ∂φ
∂s = ∂2φ

∂s2 = 0, but ∂3φ
∂s3 6= 0.

First off, if

∂2φ

∂s2
=
− sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2 = 0,

we must have sin(s) = 0, so s = 0, π are the stationary points.

Additionally, solving ∂φ
∂s = 0 for α results in

α =
∓ cos(θ)

√
1− sin2(s)√

1− sin2(s) cos2(θ)
. (B.11)

If s = 0, π, then α = ± cos(θ). However, we must be careful and observe

that for φ, s = 0⇒ α = − cos(θ) and s = π ⇒ α = cos(θ).

Now we would like to analyze the behaviors of I1 and I2 for |α| = cos(θ) and

|α| < cos(θ)− ε for any constant ε > 0.

We begin with the points α = cos(θ),− cos(θ) where φ has stationary points

of order 2 at s = 0, π. Therefore we apply the method of stationary phase with

p = 3 to find the leading terms for I1 and I2.

First, we evaluate φ(3)(s, α) at s = 0, π which will be used in the formula for

the integral.

φ(3)(0, α) = − sin2(θ) cos(θ)

φ(3)(π, α) = sin2(θ) cos(θ).

Thus, using the above formulas we get
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I1,2(α, t) ∼ 1 + (−1)αt

2

g1,2(s)

2π
ei(φ(s,α)t±π/6)

Γ
(
1
3

)
3

[
3!

t
∣∣φ(3)(s, α)

∣∣
]1/3

∼ 1 + (−1)αt

2

g1(s)

6π
ei(φ(s,α)t±π/6)Γ

(
1

3

) 6∣∣∣t sin2(θ) cos(θ)
∣∣∣

1/3

.

We also need that for I1, g1(0) = 1−cos(θ) and g1(π) = 1+cos(θ). Similarly,

for I2, g2(0) = sin(θ) and g2(π) = − sin(θ). Furthermore, we can find that

φ(0,− cos(θ)) = 0 and φ(π, cos(θ)) = π cos(θ).

Using all of the above information we can finally write more specific formulas

for the leading terms in the integrals I1 and I2.

I1,2
(
− cos(θ), t

)
∼ 1 + (−1)αt

2

g1,2(0)

6π
ei(φ(0,− cos(θ))t−π/6)Γ

(
1

3

) 6∣∣∣t sin2(θ) cos(θ)
∣∣∣

1/3

∼ 1 + (−1)αt

2

g1,2(0)

6π

(√
3

2
− 1

2
i

)
Γ

(
1

3

) 6∣∣∣t sin2(θ) cos(θ)
∣∣∣

1/3

(B.12)

I1,2
(
cos(θ), t

)
∼ 1 + (−1)αt

2

g1,2(π)

6π
ei(φ(π,cos(θ))t+π/6)Γ

(
1

3

) 6∣∣∣t sin2(θ) cos(θ)
∣∣∣

1/3

∼ 1 + (−1)αt

2

g1,2(π)

6π

(
cos

(
π cos(θ)t+

π

6

)
+ i sin

(
π cos(θ)t+

π

6

))

× Γ

(
1

3

) 6∣∣∣t sin2(θ) cos(θ)
∣∣∣

1/3

(B.13)

Now we turn to the interval of most importance to us,
[
− cos(θ) + ε, cos(θ)− ε

]
.

When α lies in this region we would like to have ∂φ
∂s = 0, but ∂2φ

∂s2 6= 0, so each

of φ has two stationary points in this region.
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Solving for (B.14) for s gives

sα = ± arccos

(
−α tan(θ)√

1− α2

)
. (B.14)

Note that we get two stationary points for each value of alpha, namely sα

and −sα.

Once again, we can employ the method of stationary phase but this time for

p = 2. In the most general form, we have 3

I1,2(α, t) ∼ �2×
1 + (−1)αt

2

g1,2(sα)

2π
ei(φ(sα),α)t±π/4)

[
2!

t
∣∣φ(2)(sα, α)

∣∣
]1/2

Γ( 1
2 )

�2

∼ 1 + (−1)αt

2

√
2π

2π
· g1,2(sα)√

t
∣∣ω′′sα ∣∣e

i(φ(sα,α)t±π/4)

∼ 1 + (−1)αt

2

g1,2(sα)√
2πt
∣∣ω′′sα∣∣

(
cos

(
φ(sα, α)t+

π

4

)
± sin

(
φ(sα, α)t+

π

4

))

which can be simplified to

I1,2(α, t) ∼ g1,2(sα)√
2πt
∣∣∣ω′′sα1,2

∣∣∣ ×
 2 cos

(
φ(sα, α)t+ π/4

)
if g is even

2i sin
(
φ(sαα)t+ π/4

)
if g is odd

(B.15)

The phase is

φ(±sα, α) = ±αsα +
1

2
ωsα

where

ω(±sα) = ±2 arcsin

(√
cos2(θ)− α2

1− α2

)
(B.16)

and the second derivative is

3Note that Γ( 1
2

) =
√
π.
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∂2

∂s2
(±sα, α) =

− sin(±sα) sin2(θ) cos(θ)(
1− sin2(±sα) cos2(θ)

)3/2
= ∓ sin2(θ) cos(θ)

√
1− α2 sec2(θ)

1− α2

(
sin2(θ)

1− α2

)−3/2

=
∓(1− α2)

√
cos2(θ)− α2

sin(θ)
.

Therefore, for
∣∣∣ω′′sα ∣∣∣ we can just use

∣∣∣ω′′sα ∣∣∣ =
(1− α2)

√
cos2(θ)− α2∣∣sin(θ)
∣∣ . (B.17)

Next, we find g1(±sα) and g2(±sα).

g1(±sα) = (1 + α)

g2(±sα) = −α tan(θ)± i
√

1− α2 sec2(θ)

Combining the aforementioned calculations, we can write an asymptotic

expression given in (13) for aj(αt, t) and bj(αt, t), where aj(αt, t) := I1 and

bj(αt, t) := I2.

C. Numerical Results

C.1. Rotations Walk Numerical Simulations

Below we present numerical simulations for 100 time steps for the alternating

Rotations quantum walk with initial condition |↑〉 ⊗ |0〉 for various values of θ,

θ ∈ [0, π]. Note that only the points for even positions are graphed as the

probabilities at odd positions are zero. The vertical dashed lines mark the

stationary points of order 2 which occur at ± cos(θ) t.
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