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Abstract

We state and prove a generalized adiabatic theorem for Markov chains and pro-
vide examples and applications related to Glauber dynamics of the Ising model over
Zd/nZd. The theorems derived in this paper describe a type of adiabatic dynamics for
`1(Rn

+) norm preserving, time inhomogeneous Markov transformations, while quantum
adiabatic theorems deal with `2(Cn) norm preserving ones, i.e. gradually changing
unitary dynamics in Cn.
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1 Introduction

The long-term stability of time inhomogeneous Markov processes is an active area of
research in the field of stochastic processes and their applications. See [9] and [10],
and references therein. The adiabatic time, as introduced in [5], is a way to quantify
the stability for a certain class of time inhomogeneous Markov processes. In order for
us to introduce the reader to the type of adiabatic results that we will be working
with in this paper, let us first mention earlier results that were published in [5], thus
postponing a more elaborate discussion of the matter until subsection 1.2.

1.1 Preliminaries

The mixing time quantifies the time it takes for a Markov chain to reach a state that
is close enough to its stationary distribution. For the discrete-time finite state case
we will look at the evolution of the Markov chain through its probability transition
matrix. See [6] for a systematized account of mixing time theory and examples. Let
‖ · ‖TV denote the total variation distance.
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Definition 1. Suppose P is a discrete-time finite Markov chain with a unique station-
ary distribution π, i.e. πP = π. Given an ε > 0, the mixing time tmix(ε) is defined
as

tmix(ε) = inf
{
t : ‖νP t − π‖TV ≤ ε, for all probability distributions ν

}
.

To define the adiabatic time in its first and simplest form (that we will expand and
generalize a few pages down) we have to consider a time inhomogeneous Markov chain
whose probability transition matrix evolves linearly from an initial probability transi-
tion matrix Pinitial to a final probability transition matrix Pfinal. Namely, we consider
two transition probability operators, Pinitial and Pfinal, on a finite state space Ω, and
we suppose there is a unique stationary distribution πf of Pfinal. We let

Ps = (1− s)Pinitial + sPfinal (1)

We use (1) to define a time inhomogeneous Markov chain P t
T

over [0, T ] time interval.
The adiabatic time quantifies how gradual the transition from Pinitial to Pfinal should
be so that at time T , the distribution is ε close to the stationary distribution πf of
Pfinal.

Definition 2. Given ε > 0, a time Tε is called the adiabatic time if it is the least T
such that

maxν‖νP 1
T
P 2

T
· · ·PT−1

T
P1 − πf‖TV ≤ ε

where the maximum is taken over all probability distributions ν over Ω.

With these definitions one would naturally ask how adiabatic and mixing times
compare. This will be especially relevant given the emergence of quantum adiabatic
computation and some instances of using adiabatic algorithms to solve certain classical
computation problems. See [1] and [8]. It can be speculated that there may be scenarios
in which the adiabatic time is more convenient to compute than mixing times. If we
find the relationship between the two, it will give us an understanding of the adiabatic
transition (which is more prevalent in a context of physics) in terms of mixing times
and vice versa. The following adiabatic theorem was proved in [5].

Theorem (Kovchegov 2009). Let tmix denote the mixing time for Pfinal. Then the
adiabatic time

Tε = O
(

tmix(ε/2)2

ε

)
In subsection 1.4 we will give an example that shows the order of t2mix/ε is the best
bound for the adiabatic time in this setting. There Ω = {0, 1, 2, . . . , n} and

Pinitial =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 and Pfinal =



0 1 0 0 · · · 0
0 0 1 0 · · · 0

0 0 0 1
. . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 1
0 0 0 · · · 0 1


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Similar adiabatic results hold in the case of continuous-time Markov chains. There,
the concept of an adiabatic time is defined within the same setting and a relationship
with the mixing time is shown. Let us state a continuous adiabatic result from [5], and
then prove a more general statement of the theorem in the next section.

Once again we define the mixing time as a measurement of the time it takes for a
Markov chain to reach a state that is close enough to its stationary distribution. For
the continuous-time, finite-state case we look at the evolution of the Markov chain
through its probability transition matrix as a function over time.

Definition 3. Suppose P (t) is a finite continuous-time Markov chain with a unique
stationary distribution π. Given an ε > 0, the mixing time tmix(ε) is defined as

tmix(ε) = inf {t : ‖νP (t)− π‖TV ≤ ε, for all probability distributions ν} .

To define an adiabatic time we have to look at the linear evolution of a generator for the
initial probability transition matrix to a generator for the final probability transition
matrix. Suppose Qinitial and Qfinal are two bounded generators for continuous-time
Markov processes on a finite state space Ω, and πf is the unique stationary distribution
for Qfinal. Let us define a time inhomogeneous generator

Q[s] = (1− s)Qinitial + sQfinal (2)

Given T > 0 and 0 ≤ t1 ≤ t2 ≤ T , let PT (t1, t2) denote a matrix of transition
probabilities of a Markov process generated by Q[ t

T ] over the time interval [t1, t2].
With this new generator we define the adiabatic time to be the smallest transition
time T such that regardless of our starting distribution, the continuous-time Markov
chain generated by Q[ t

T ] arrives at a state close enough to our stationary distribution
πf .

Definition 4. Given ε > 0, a time Tε is called the adiabatic time if it is the least T
such that

max
ν

‖νPT (0, T )− πf‖TV ≤ ε

where the maximum is taken over all probability distributions ν over Ω.

The above definition for continuous-time Markov chains is similar to the one in the
discrete time setting. The corresponding adiabatic theorem for the continuous times
case was proved in [5].

Theorem (Kovchegov 2009). Let tmix denote the mixing time for Qfinal. Take λ such
that λ ≥ maxi∈Ω

∑
j:j 6=i q

initial
i,j and λ ≥ maxi∈Ω

∑
j:j 6=i q

final
i,j , where qinitial

i,j and qfinal
i,j

are the rates in Qinitial and Qfinal respectively. Then the adiabatic time

Tε ≤
λtmix(ε/2)2

ε
+ θ

where θ = tmix(ε/2) + ε/(4λ).

This is once again the best bound as can be shown through the corresponding example.

In the next section we will state the adiabatic results for Markov chains that generalize
the above mentioned theorems in [5] and provide examples of applications in statistical
mechanics. Section 2 is dedicated to proofs.
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1.2 Results and discussion

Here we extend the results from [5], and thus expand the range of problems that can
be analyzed with these types of adiabatic theorems. One such problem that we will
discuss in subsection 1.3 deals with adiabatic Glauber dynamics for the Ising model.
Now, in order to solve a larger class of problems, we redefine the adiabatic transition
for both the discrete and continuous cases.

We consider an adiabatic dynamics where transition probabilities change gradually
from Pinitial =

{
pinitial

i,j

}
to Pfinal =

{
pfinal

i,j

}
so that, for each pair of states i and j,

the corresponding mutation of pi,j from pinitial
i,j to pfinal

i,j is implemented differently and
not always linearly. In the case of discrete time steps, this means defining

pi,j [s] = (1− φi,j(s))pinitial
i,j + φi,j(s)p

final
i,j , (3)

where φi,j : [0, 1] → [0, 1] are continuous functions such that φi,j(0) = 0 and φi,j(1) = 1
for all locations (i,j). We require functions φi,j to be such that the new operators
Ps = {pi,j [s]} are Markov chains for all s ∈ [0, 1], e.g. φi,j ≡ φi,k ∀j, k ∈ Ω.

The above definition generalizes (1). If we suppose there is a unique stationary distri-
bution πf for Pfinal, then the Definition 2 of adiabatic time Tε given in the previous
section will hold for the adiabatic dynamics defined in (3). The new Tε is related to
mixing time via the following adiabatic theorem, that we will prove in section 2.

Theorem 1 (Discrete Adiabatic Theorem). Let P t
T

=
{
pi,j

[
t
T

]}
be an inhomogeneous

discrete-time Markov chain over [0, T ]. Let φ(s) = mini,j φi,j(s) be the pointwise min-
imum function of all of the φi,j functions. If m ≥ 1 is an integer such that φ is m + 1
times continuously differentiable in a neighborhood of 1,

φ(k)(1) = 0 for all integers k such that 1 ≤ k < m

and φ(m)(1) 6= 0, then

Tε = O

 t
m+1

m
mix (ε/2)

ε
1
m



The above is, in fact, the best bound in the new setting as shown through the example
given later. See subsection 1.4.

Now we extend the notion of adiabatic dynamics for the continuous-time Markov gen-
erators as follows. We let

qi,j [s] = (1− φi,j(s))qinitial
i,j + φi,j(s)q

final
i,j for all pairs i 6= j, (4)

where once again φi,j : [0, 1] → [0, 1] are continuous functions such that φi,j(0) = 0 and
φi,j(1) = 1 for all locations (i,j). Also, we let Q[s] denote the corresponding Markov
operator.
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If there is a unique stationary distribution πf for Qfinal, then the Definition 4 of
adiabatic time will apply for the extended adiabatic dynamics in (4), and the new
Tε can be again related to mixing time.

Theorem 2 (Continuous Adiabatic Theorem). Let Q
[

t
T

]
(t ∈ [0, T ]) generate the

inhomogeneous discrete-time Markov chain. Let φ(s) = mini,j φi,j(s) be the pointwise
minimum function of all of the φi,j functions. Suppose m ≥ 1 is an integer such that
φ is m + 1 times continuously differentiable in a neighborhood of 1,

φ(k)(1) = 0 for all integers k such that 1 ≤ k < m

and φ(m)(1) 6= 0. If we take λ such that

λ ≥ max
i∈Ω

∑
j:j 6=i

qinitial
i,j and λ ≥ max

i∈Ω

∑
j:j 6=i

qfinal
i,j ,

where qinitial
i,j and qfinal

i,j are the rates in Qinitial and Qfinal respectively. Then

Tε = O

([
λ

ε

] 1
m

t
m+1

m
mix (ε/2)

)

The reader can reference the proof of this theorem in section 2. Again this is the best
bound in the new setting as can be shown through the same example. See subsection
1.4. Observe that we could take φ : [0, 1] → [0, 1] such that φ(s) ≤ mini,j φi,j(s) in
both adiabatic theorems thus guaranteeing the function is nice enough.

Now we check that the above continuous adiabatic theorem is scale invariant. For
a positive M , we scale the initial and final generators to be 1

M Qinitial and 1
M Qfinal

respectively. Then the adiabatic evolution is slowed down M times, and the new

adiabatic time should be of order M
[

λ
ε

] 1
m t

m+1
m

mix (ε/2) with the old tmix and λ taken
before scaling. On the other hand the new mixing time will be Mtmix, and the new λ
is λ

M as the rates are M times lower. Plugging the new parameters into the expression
in the theorem, we obtain[

λ

Mε

] 1
m

(Mtmix)
m+1

m = M

[
λ

ε

] 1
m

t
m+1

m
mix

confirming the theorem is invariant under time scaling.

Let us revisit adiabatic theorems in physics and quantum mechanics. The reader can
find a version of the quantum adiabatic theorem in [7] and multiple other sources.

The adiabatic results in physics consider a system that transitions from one state
to another, while the energy function changes from an initial Hinitial to Hfinal. If the
change in the energy function happens slowly enough, for the system that is initially at
one of the equilibrium states (i.e. an eigenstate of the initial energy function Hinitial),
the resulting state will end up ε-close to the corresponding eigenvector of the final
energy function Hfinal. That is, provided the change in the external conditions is
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gradual enough, the jth eigenstate of Hinitial is carried to an ε-proximity of the jth
eigenstate of Hfinal.

Often the adiabatic results concern with one eigenstate, the ground state. Thinking
of Schrödinger equation as an `2(Cn) norm preserving linear dynamics, and a finite
Markov process as a natural description of an `1(Rn

+) norm preserving linear dynamics,
the ground state of one would correspond to the stationary state of the other. It is
important to mention that in addition to all of the above properties, the quantum
adiabatic theorems often require the transition to be gradual enough for the state to
be within an ε-proximity of the corresponding ground state at each time during the
transition. Taking this into account, the complete analogue of the quantum adiabatic
theorem for `1(Rn

+) would be the one in which the initial distribution is µ0 = πinitial

and
‖µt − πt‖ < ε ∀t ∈ [0, T ],

where µt = µ0P 1
T
P 2

T
· · ·P t

T
is the distribution of the time inhomogeneous Markov

chain at time t ∈ [0, T ], πinitial is the stationary distribution of Pinitial, and πt is the
stationary distribution P t

T
. See [8] for a related result. While we are currently working

on proving the above mentioned complete analogue in both discrete and continuous
cases, the adiabatic results of this section are sufficiently strong for answering our
questions concerning adiabatic Glauber dynamics as stated in the following subsec-
tion. Observe that the results of the next subsection could not be obtained using the
adiabatic theorems of [5].

Finally, we would like to point out that the models of the adiabatic Markov evolution
considered in this paper are similar to simulated annealing. See [3], [4], and [2]. We
expect some of the adiabatic Markov chain results to be used for a class of optimization
problems by introducing Monte Carlo Markov Chains with the self-adjusting rates.

1.3 Applications to Ising models with adiabatic Glauber
dynamics

Let us first state a version of the quantum adiabatic theorem. Given two Hamiltonians,
Hinitial and Hfinal, acting on a quantum system. Let

H(s) = (1− s)Hinitial + sHfinal (5)

Suppose the system evolves according to H(t/T ) from time t = 0 to time T . Then if T
is large enough, the final state of the system will be close to the ground state of Hfinal.
They are ε close in the `2 norm whenever T ≥ C

ε∆3 , where ∆ is the least spectral gap
of H(s) over all s ∈ [0, 1], and C depends linearly on a square of the distance between
Hinitial and Hfinal.

Now, switching to canonical ensembles of statistical mechanics will land us in a Gibbs
measure space with familiar probabilistic properties, i.e. the Markov property of sta-
tistical independence. We consider a nearest-neighbor Ising model. There the spins
can be of two types, -1 and +1. The spins interact only with nearest neighbors. A
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Hamiltonian determines the energy-value of the interactions of the configuration of
spins.

Here, for a microstate, we multiply its energy by the thermodynamic beta and call
it the Hamiltonian of the microstate. In other words, letting x be a configuration of
spins, the Hamiltonian we use in this paper will be defined as

H(x) = −β

2

∑
i6=j

Mi,jx(i)x(j)

where β is the thermodynamic beta, i.e. its inverse is the temperature times Boltz-
mann’s constant, M = {Mi,j} is a symmetric matrix and for locations i and j, Mi,j = 0
if i is not a nearest neighbor to j and Mi,j = 1 if i is a nearest neighbor to j.

The Markov property of statistical independence is reflected through the local Hamil-
tonian defined at every location j as follows

Hloc(x(j)) = −β
∑
i:i∼j

x(i)x(j),

where i ∼ j means i and j are nearest neighbors on the graph.

In the original, non-adiabatic case, the Glauber dynamics is used to generate the
following Gibbs distribution

π(x) =
1

Z(β)
e−H(x)

over all spin configurations x ∈ {−1,+1}S , where S denotes all the sites of a graph,
and Z(β) is the normalization constant. Let us describe how the Glauber dynamics
works in the case when each vertex of the connected graph is of the same degree.
There, for each location j, we have an independent exponential clock with parameter
one associated with it. When the clock rings, the spin x(j) of configuration x at the
site j on the graph is reselected using the following probability

P (x(j) = +1) =
e−H

loc(x+(j))

e−Hloc(x−(j)) + e−Hloc(x+(j))
= 2− 2 tanh

{
Hloc(x+(j))

}
where x+(i) = x−(i) = x(i) for i 6= j, x+(j) = +1 and x−(j) = −1. Here

P (x(j) = −1) = 1− P (x(j) = +1)

Also Hloc(x−(j)) = −Hloc(x+(j)). Now we have a continuous-time Markov process,
where the state space is the collection of the configurations of spins.

Now, consider an adiabatic evolution of Hamiltonians as in (5). There at each time t,

H(s) = (1− s)Hinitial + sHfinal,

where s = t
T . The local Hamiltonians must therefore evolve accordingly,

Hloc
s = (1− s)Hloc

initial + sHloc
final
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and the adiabatic Glauber dynamics is the one where when the clock rings, the spin
x(j) is reselected with probabilities

Ps(x(j) = +1) =
e−H

loc
s (x+(j))

e−Hloc
s (x−(j)) + e−Hloc

s (x+(j))

Here too, Hloc
s (x−(j)) = −Hloc

s (x+(j)).

The stationary distribution of the Qfinal-generated Markov process, i.e. Glauber dy-
namics with Hinitial energy, is, for a configuration x,

π(x) =
e−Hfinal(x)∑

all config. x′ e
−Hfinal(x′)

Let β0 and β1 denote the values of thermodynamic beta for Hinitial and Hfinal respec-
tively.

1.3.1 Adiabatic Glauber dynamics on Z2/nZ2

Consider nonlinear adiabatic Glauber dynamics of an Ising model on a two-dimensional
torus Z2/nZ2. There any two neighboring spin configurations x and y in {−1,+1}n2

differ at only one site on the graph, say v ∈ Z2/nZ2. That is y(u) =

{
x(u) if u 6= v

−x(u) if u = v
.

The transition rates evolve according to the adiabatic Glauber dynamics rules, and the
transition rates can be represented as

qx,y[s] = (1− φx,y(s))qinitial
x,y + φx,y(s)qfinal

x,y

as in (4). Here the functions φx,y(s) for two neighbors x and y depend entirely on the
spins around the discrepancy site v. Namely if all four neighbors of v are of the same
spin (+1 or −1), then

φx,y(s) =
cosh(−4β1) · sinh(s(4β0 − 4β1))

sinh(4β0 − 4β1) · cosh(−4β0 + s(4β0 − 4β1))

If it is three of one kind, and one of the other (i.e three +1 and one −1, or three −1
and one +1) as illustrated below

−1
|

+1 − v − +1
|

+1

then
φx,y(s) =

cosh(−2β1) · sinh(s(2β0 − 2β1))
sinh(2β0 − 2β1) · cosh(−2β0 + s(2β0 − 2β1))

If there are two of each kind, any function works, as both, the initial and the final,
local Hamiltonians produce the same transition rates qinitial

x,y = qfinal
x,y = 1/2.
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Suppose tanh(2β1) < 1
2 . Observe that

cosh(−4β1) · sinh(s(4β0 − 4β1))
sinh(4β0 − 4β1) · cosh(−4β0 + s(4β0 − 4β1))

≥ cosh(−2β1) · sinh(s(2β0 − 2β1))
sinh(2β0 − 2β1) · cosh(−2β0 + s(2β0 − 2β1))

for s ∈ [0, 1]. Therefore by Theorem 15.1 in [6] and Theorem 2 of this paper, the
adiabatic time

Tε = O

(
C

n2

ε

[
log(n) + log

(
2
ε

)]2
)

,

where C = (2β0−2β1)[coth(2β0−2β1)−tanh(−2β1)]
[1−tanh(2β1)]2

. Here, at every vertex on the torus we
attached a Poisson clock with rate one, and therefore we can take λ = n2. Also m = 1
in the theorem, and one can find the expression for tmix in [6].

1.3.2 Adiabatic Glauber dynamics on Zd/nZd

The adiabatic Glauber dynamics of an Ising model on a d-dimensional torus Zd/nZd

solves similarly. There the minimum function φ(s) of the Theorem 2 is same as in the
case of d = 2

φ(s) =
cosh(−2β1) · sinh(s(2β0 − 2β1))

sinh(2β0 − 2β1) · cosh(−2β0 + s(2β0 − 2β1))

and the adiabatic time

Tε = O

(
C

nd

ε

[
log(n) + log

(
2
ε

)]2
)

if tanh(2β1) <
1
d
,

where again C = (2β0−2β1)[coth(2β0−2β1)−tanh(−2β1)]
[1−tanh(2β1)]2

.

Notice that the time scaling argument that followed the statement of Theorem 2 works
here as well. That is, if we use one Poisson clock of rate one for all vertices, or equiv-
alently place Poisson clocks of rate n−d at every individual vertex, the new adiabatic
time will be

T ′ε = O

(
C

n2d

ε

[
log(n) + log

(
2
ε

)]2
)

as λ′ = 1 here.

1.4 Optimality of the bound

In this subsection we give examples that show that the t2mix order of adiabatic time

given in Kovchegov [5], and t
m+1

m
mix order for more general settings of this current paper

are in fact optimal. We consider discrete probability transition matrices

Pinitial =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 and Pfinal =



0 1 0 0 · · · 0
0 0 1 0 · · · 0

0 0 0 1
. . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 1
0 0 0 · · · 0 1


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over n + 1 states, {0, 1, 2, . . . , n}, and let the discrete-time adiabatic probability tran-
sition matrix to be

Ps = (1− s)Pinitial + sPfinal

as in [5]. Let πf again denote the stationary distribution for Pfinal. Here πf =
(0, . . . , 0, 1) and the mixing time tmix(ε) = n for any ε ∈ (0, 1).

Now, since µPinitial = ρ for any probability distribution µ, we have the following
inequality

‖νP 1
T
· · ·PT

T
− πf‖TV ≥

∥∥∥∥∥∥ρ
 T∑

j=0

(
1− j

T

)
T !

j! · T T−j

(P T−j
fin − πf

)∥∥∥∥∥∥
TV

Observe that ρP T−j
fin = πf for any 0 ≤ j ≤ T − n. Therefore

‖νP 1
T
· · ·PT

T
− πf‖TV ≥

T∑
j=T−n+1

(
1− j

T

)
T !

j!T T−j

=
T∑

j=T−n+1

(
T !

j! · T T−j
− T !

(j − 1)! · T T−(j−1)

)
= 1− T !

(T − n)! · Tn

= 1− T − n + 1
T

· · · T − 1
T

.

Now, because T−n+1
T · · · T−1

T ≤
(

T−n
2

T

)n
2 for n ≥ 2, we see that

‖νP 1
T
· · ·PT

T
− πf‖TV ≥ 1−

(
T − n

2

T

)n
2

≥ 1− e
−

“
n2

4T

”

Thus ε ≥ ‖νP 1
T
· · ·PT

T
− πf‖TV ≥ 1 − e

−
“

n2

4T

”
implies T ≥ −n2

4 log(1−ε) ≈
n2

4ε = t2mix
4ε ,

proving that the order of adiabatic time Tε = O
(

tmix(ε/2)2

ε

)
in [5] is optimal.

1.4.1 Optimal bound for general settings

The same example works in the more general setting considered in this paper. For the
same Pinitial and Pfinal, let

pi,j [s] = (1− φi,j(s))pinitial
i,j + φi,j(s)p

final
i,j

as in (4). Suppose φi,j(s) = φ(s) for all pairs of states (i, j), and suppose m ≥ 1 is an
integer such that φ is m + 1 times continuously differentiable in a neighborhood of 1,

φ(k)(1) = 0 for all integers k such that 1 ≤ k < m
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and φ(m)(1) 6= 0. Then

‖νP 1
T
· · ·PT

T
− πf‖TV ≥

∥∥∥∥∥∥ρ
T−1∑

l=0

(1− φ(l/T ))
T∏

j=l+1

φ(j/T )

(P T−l
final − πf

)∥∥∥∥∥∥
TV

and therefore

‖νP 1
T
· · ·PT

T
− πf‖TV ≥

T−1∑
l=T−n+1

(1− φ(l/T ))
T∏

j=l+1

φ(j/T )

=
T−1∑

l=T−n+1

 T∏
j=l+1

φ(j/T )−
T∏

j=l

φ(j/T )


= 1−

T∏
j=T−n+1

φ(j/T ).

The minimum function φ(x) = 1 + φ(m)(1)(x−1)m

m! + O
(
|x− 1|m+1

)
and

‖νP 1
T
· · ·PT

T
− πf‖TV ≥ 1−

T∏
j=T−n+1

(
1 +

(−1)mφ(m)(1) · (T − j)m

Tm ·m!
+ O

(
(1− j/T )m+1

))

= 1− e

PT
j=T−n+1 log

„
1+

(−1)mφ(m)(1)·(T−j)m

Tm·m!
+O((1−j/T )m+1)

«

≥ 1− e
(−1)mφ(m)(1)

Tm ·
Pn−1

j=1 jm+O((n/T )m+1)

as log(1 + x) ≤ x.

It is a well known fact that

n−1∑
j=1

jk =
k∑

j=0

Bj

(k + 1)− j

(
k

j

)
n(k+1)−j , (6)

where Bj is the jth Bernoulli number.

Suppose ε ≥ ‖νP 1
T
· · ·PT

T
− πf‖TV , then

ε ≈ − log(1− ε) ≥ (−1)m+1φ(m)(1)
Tm

·
m∑

j=0

Bj

(m + 1)− j

(
m

j

)
n(m+1)−j + O((n/T )m+1)

Thus confirming that the order of adiabatic time Tε = O

(
t

m+1
m

mix

ε
1
m

)
in Theorem 1 is

optimal.
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Naturally, there is a similar example in the continuous case. There

Qinitial =


0 0 0 · · · 0
1 −1 0 · · · 0

1 0 −1
. . .

...
...

...
. . . . . . 0

1 0 · · · 0 −1

 and Qfinal =



−1 1 0 0 · · · 0
0 −1 1 0 · · · 0

0 0 −1 1
. . .

...
...

...
. . . . . . . . . 0

0 0 0 · · · −1 1
0 0 0 · · · 0 0


2 Proofs

In this section we give formal proofs to both adiabatic theorems, Theorem 1 and
Theorem 2.

2.1 Proof of Theorem 1

Proof. We write

pi,j [s] = (1− φi,j(s))p
(initial)
i,j + (φi,j(s)− φ(s))p(final)

i,j + φ(s)p(final)
i,j

and define transition probability matrix P̂ = {p̂i,j} to be such that

(1− φ(s))p̂i,j = (1− φi,j(s))p
(initial)
i,j + (φi,j(s)− φ(s))p(final)

i,j

We will thus have that
Ps = (1− φ(s))P̂ + φ(s)Pfinal

Observe that

νP 1
T
P 2

T
· · ·PT−1

T
P1 =

 T∏
j=N+1

φ(j/T )

 νNP T−N
final + E

where νN = νP 1
T
P 2

T
· · ·PN

T
, and E is the rest of the terms, and both T and N are

natural numbers with N < T .
By the triangle inequality, we have

max
ν

‖νP 1
T
P 2

T
· · ·PT−1

T
P1 − πf‖TV ≤ max

ν
‖νP T−N

final − πf‖TV ·

 T∏
j=N+1

φ(j/T )

+ SN

where 0 ≤ SN ≤ 1−
[∏T

j=N+1 φ( j
T )
]
.

Let set T −N = tmix(ε/2), where ε > 0 is small. Then we have that

max
ν

‖νP T−N
final − πf‖TV ·

 T∏
j=N+1

φ(j/T )

 ≤ ε/2
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Setting 1−
[∏T

j=N+1 φ( j
T )
]
≤ ε/2 we obtain

log (1− ε/2) ≤
T∑

j=N+1

log φ(j/T )

We plug in the approximation of the minimum function φ around x = 1

φ(x) = 1 +
φ(m)(1)(x− 1)m

m!
+ O

(
|x− 1|m+1

)
obtaining

− log (1− ε/2) ≥ −
T∑

j=N+1

log

(
1 +

(−1)mφ(m)(1)(T − j)m

Tm ·m!
+ O

(
(1− j/T )m+1

))

Therefore

− log (1− ε/2) ≥ (−1)m+1φ(m)(1)
Tm ·m!

T−N−1∑
j=1

jm + O

(
(T −N)m+2

Tm+1

)

Observe that (−1)m+1φ(m)(1) ≥ 0 as φ : [0, 1] → [0, 1] and φ(1) = 1.
By (6),

∑tmix(ε/2)−1
j=1 jm =

∑m
k=0

Bk
(m+1)−k

(
m
k

)
tmix(ε/2)(m+1)−k, where Bk is the kth

Bernoulli number, and therefore

ε > − log (1− ε/2) ≥ (−1)m+1φ(m)(1)
Tm ·m!

m∑
k=0

Bk

(m + 1)− k

(
m

k

)
tmix(ε/2)(m+1)−k+O

(
(T −N)m+2

Tm+1

)
In order for the right hand side of the above equation to be − log (1− ε/2) close to

zero, it is sufficient for T to be of order of O

(
t

m+1
m

mix (ε/2)

ε
1
m

)
.

2.2 Proof of Theorem 2

Proof. Define Q̂ to be a Markov generate with off-diagonal entries

q̂i,j =
1− φi,j(s)
1− φ(s)

q
(initial)
i,j +

φi,j(s)− φ(s)
1− φ(s)

q
(final)
i,j

Then writing

qi,j [s] = (1− φi,j(s))q
(initial)
i,j + (φi,j(s)− φ(s))q(final)

i,j + φ(s)q(final)
i,j

would imply
Q[s] = (1− φ(s))Q̂ + φ(s)Qfinal

Observe that

λ ≥ max
i∈Ω

∑
j:j 6=i

q̂i,j and λ ≥ max
i∈Ω

∑
j:j 6=i

qi,j

[
t

T

]
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as
λ ≥ max

i∈Ω

∑
j:j 6=i

q
(initial)
i,j and λ ≥ max

i∈Ω

∑
j:j 6=i

q
(final)
i,j

Let Pfinal(t) = etQfinal denote the transition probability matrix associated with the
generator Qfinal, and let P0 = I + 1

λQ̂ and P1 = I + 1
λQfinal.

The P0 and P1 are discrete Markov chains. Conditioning on the number of arrivals
within the [N,T ] time interval

νPT (0, T ) = νNPT (N,T ) = νN

( ∞∑
n=0

(λ(T −N))n

n!
e−λ(T−N)In

)

where νN = νPT (0, N) and

In =
n!

(T −N)n

∫
· · ·
∫

N<s1<···<sn<T

[(
1− φ

(s1

T

))
P0 + φ

(s1

T

)
P1

]
· · ·
[(

1− φ
(sn

T

))
P0 + φ

(sn

T

)
P1

]
ds1 · · · dsn

i.e. the order statistics of the n.
Therefore, combining the terms with Pfinal, we obtain

νPT (0, T ) = νN

( ∞∑
n=0

λnPn
final

n!
e−λ(T−N)

∫ T

N
· · ·
∫ T

N
φ
(s1

T

)
· · ·φ

(sn

T

)
ds1 · · · dsn

)
+ E

= e−λ(T−N)νN

( ∞∑
n=0

λnTn

n!
Pn

final

(∫ 1

N
T

φ(x)dx

)n)
+ E ,

where E denotes the rest of the terms.

Take K > 0 and define

T =

(∫ 1

K−1
K

φ(x)dx

)−1

tmix(ε/2)

and

N =
(K − 1)

K

(∫ 1

K−1
K

φ(x)dx

)−1

tmix(ε/2)

Recall the approximation of the minimum function φ around x = 1

φ(x) = 1 +
φ(m)(1)(x− 1)m

m!
+ O

(
|x− 1|m+1

)
and therefore ∫ 1

K−1
K

φ(x)dx =
1
K

(
1 +

γ(K)
Km

)
,
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where γ(K) = (−1)m φ(m)(1)
(m+1)! + O(K−1). Thus we can write

νPT (0, T ) = e−λ(T−N)νN

( ∞∑
n=0

λn(T −N)n

n!
Pn

final

[
1 + γ(K)

(
T −N

T

)m]n
)

+ E

We see, using standard uniformization argument, that

νPT (0, T ) = e
−λ

“
1+

γ(K)
Km

”−1
tmix(ε/2)

νN

( ∞∑
n=0

λntmix(ε/2)n

n!
Pn

final

)
+ E

= e
λ

“
γ(K)

Km+γ(K)

”
tmix(ε/2)

νN exp {Qfinal · tmix(ε/2)}+ E

Now, since (−1)mφ(m)(1) ≤ 0, we have that, for any probability distribution ν,

‖νPT (0, T )− πf‖TV = ‖ν exp {Qfinal · tmix(ε/2)} − πf‖TV · e
λ

“
γ(K)

Km+γ(K)

”
tmix(ε/2) + SN ,

where, by the triangle inequality,

0 ≤ SN ≤ 1− e
λ

“
1+

γ(K)
Km

”−1
·tmix(ε/2)

( ∞∑
n=0

λn(tmix(ε/2))n

n!

)

and, by definition of tmix,

‖ν exp {Qfinal · tmix(ε/2)} − πf‖TV · eλ
“

γ(K)
Km+γ(K)

”
tmix(ε/2)

< ε/2

Taking K = c (λ/ε)
1
m tmix(ε/2)

1
m with constant c >> (−1)m+1 φ(m)(1)

(m+1)! , we obtain

ε > − log(1− ε/2) ≥ λ

(
−γ(K)

Km + γ(K)

)
tmix(ε/2)

and therefore
0 ≤ SN ≤ 1− e

λ
“

γ(K)
Km+γ(K)

”
tmix(ε/2)

< ε/2

Thus

T =
Ktmix(ε/2)

1 + γ(K)
Km

= O

([
λ

ε

] 1
m

t
m+1

m
mix (ε/2)

)

References

[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd and O. Regev, Adi-
abatic Quantum Computation Is Equivalent to Standard Quantum Computation
SIAM Review, Vol.50, No. 4., (2008), 755-787

[2] V. Cerny, A thermodynamical approach to the travelling salesman problem: an
efficient simulation algorithm Journal of Optimization Theory and Applications,
45, (1985), 41-51



Adiabatic times and applications 16

[3] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing
Science, Vol. 220, Number 4598, (1983), 671680

[4] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies Journal
of Statistical Physics, Vol. 34, Numbers 5-6, (1984), 975-986

[5] Y. Kovchegov, A note on adiabatic theorem for Markov chains Statistics & Prob-
ability Letters, 80, (2010), 186-190

[6] D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times Amer.
Math. Soc., Providance, RI, (2008)

[7] A. Messiah, Quantum maechanics John Wiley and Sons, NY, (1958)

[8] S. Rajagopalan, D. Shah and J. Shin, Network Adiabatic Theorem: An efficient
randomized protocol for contention resolution Proc. of the eleventh intl. joint con-
ference on measurement and modeling of computer systems, (2009), 133-144
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