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Abstract

We state and prove a version of an adiabatic theorem for Markov chains using well
known facts about mixing times. We extend the result to the case of continuous time
Markov chains with bounded generators.

1 Introduction

The adiabatic theorem was first stated by Max Born and Vladimir Fock in 1928. It
asserts that “a physical system remains in its instantaneous eigenstate if a given per-
turbation is acting on it slowly enough and if there is a gap between the eigenvalue and
the rest of the Hamiltonian’s spectrum” (see Wikipedia page on adiabatic theorem).

In this work, we state and prove the corresponding theorem for Markov chains using
some of the machinery of mixing times and relaxation times of Markov chains that was
developed so successfully in the last thirty years (see Aldous (1983), Aldous and Fill,
Burton and Kovchegov (2009), Levin et al (2008) and references therein). Stated in
terms of Markov chains, the adiabatic theorem is intuitively simple and accessible. It
is important to point out that despite clear similarities and relation between the two,
the quantum adiabatic theorem and the adiabatic theorem of this paper are different.

First we state a version of the adiabatic theorem. Given two Hamiltonians, Hinitial

and Hfinal, acting on a quantum system. Let H(s) = (1−s)Hinitial +sHfinal. Suppose
the system evolves according to H(t/T ) from time t = 0 to time T (the so called
adiabatic evolution). The adiabatic theorem of quantum mechanics states that for T
large enough, the final state of the system will be close to the ground state of Hfinal.
They are ε close in `2 norm whenever T ≥ C

εβ3 , where β is the least spectral gap of H(s)
over all s ∈ [0, 1], and C depends linearly on a square of the distance between Hinitial

and Hfinal. See Messiah (1958). There are many versions of the adiabatic theorem.

Now, let us list the main concepts involved in the theory of mixing and relaxation
times that we will need in the following sections. We refer the readers to Levin et al
(2008) and Aldous and Fill for details.
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Definition 1. If µ and ν are two probability distributions over Ω, then the total
variation distance is

‖µ− ν‖TV =
1
2

∑
x∈Ω

|µ(x)− ν(x)| = sup
A⊂Ω

|µ(A)− ν(A)|

Observe that the total variation distance measures the coincidence between the distri-
butions on a scale from zero to one.

Definition 2. Suppose P is an irreducible and aperiodic finite Markov chain with
stationary distribution π, i.e. πP = π. Given an ε > 0, the mixing time tmix(ε) is
defined as

tmix(ε) = inf
{
t : ‖νP t − π‖TV ≤ ε, for all probability distributions ν

}

Now, suppose P =
(
p(x, y)

)
x,y

is reversible, i.e. P satisfies the detailed balance

condition

π(x)p(x, y) = π(y)p(y, x) for all x, y in the sample space Ω

It is easy to check that if P is reversible, then P is self-adjoint with respect to an
inner product induced by π, and as such will have all real eigenvalues. The difference
β = 1 − |λ(2)| between the largest eigenvalue (i.e. λ1 = 1) and the second largest (in
absolute value) eigenvalue λ(2) is called the spectral gap of P . The relaxation time is
defined as

τrlx =
1
β

One can show the following relationship between mixing and relaxation times.

Theorem 1. Suppose P is a reversible, irreducible and aperiodic Markov chain with
state space Ω and stationary distribution π. Then

(τrlx − 1) log(2ε)−1 ≤ tmix(ε) ≤ τrlx log(εmin
x∈Ω

π(x))−1

2 Adiabatic theorem for Markov chains

Given two transition probability operators, Pinitial and Pfinal, with a finite state space
Ω. Suppose Pfinal is irreducible and aperiodic and πf is the unique stationary distri-
bution for Pfinal. Let

Ps = (1− s)Pinitial + sPfinal

Definition 3. Given ε > 0, a time Tε is called the adiabatic time if it is the least T
such that

max
ν

‖νP 1
T
P 2

T
· · ·PT−1

T
P1 − πf‖TV ≤ ε,

where the maximum is taken over all probability distributions ν over Ω.
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Theorem 2. Let tmix denote the mixing time for Pfinal. Then the adiabatic time

Tε = O

(
tmix(ε/2)2

ε

)
Proof. Observe that

νP 1
T
P 2

T
· · ·PT−1

T
P1 =

T !
N !T T−N

νNP
T−N
final + E ,

where νN = νP 1
T
P 2

T
· · ·PN

T
and E is the rest of the terms. Hence, by the triangle

inequality,

max
ν

‖νP 1
T
P 2

T
· · ·PT−1

T
P1 − πf‖TV ≤ max

ν
‖νP T−N

final − πf‖TV · T !
N !T T−N

+ SN ,

where 0 ≤ SN ≤ 1− T !
N !T T−N .

Let T = Ktmix(ε/2) and N = (K− 1)tmix(ε/2), so that maxν ‖νP T−N
final −πf‖TV ≤ ε/2.

Observe that

e
R T

N log xdx−(T−N) log T ≤ T !
N !T T−N

= e
PT

j=N+1 log j−(T−N) log T ≤ 1

and therefore, expressing T and N via tmix(ε/2), and simplifying, we obtain
(
1 + 1

K−1

)K−1

e


tmix(ε/2)

= eN log T
N
−(T−N) ≤ T !

N !T T−N
≤ 1

So

0 ≤ SN ≤ 1− T !
N !T T−N

≤ 1−


(
1 + 1

K−1

)K−1

e


tmix(ε/2)

and we need to find the least K such that

1−


(
1 + 1

K−1

)K−1

e


tmix(ε/2)

≤ ε/2

Now, since log(1 + x) = x− x2

2 +O(x3), the least such K is approximated as follows

K ≈ tmix(ε/2)
−2 log (1− ε/2)

≈ tmix(ε/2)
ε

Thus for T = Ktmix(ε/2) ≈ tmix(ε/2)2

ε ,

max
ν

‖νP 1
T
P 2

T
· · ·PT−1

T
P1 − πf‖TV ≤ ε
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Observe that Theorem 2 is independent of the distance. We can use `2 norm in the
definitions of adiabatic and mixing times, and arrive to the same result.

A Markov chain Pfinal over finite sample space Ω, if it is reversible, will have a
spectral gap. Here we apply Theorem 1 to the result in Theorem 2.

Corollary. Suppose Pinitial and Pfinal are Markov chains with state space Ω. If Pfinal

is reversible, irreducible and aperiodic with its spectral gap β > 0, then

Tε = O

 log2
[

2
ε minx∈Ω πf (x)

]
εβ2


3 Continuous time Markov processes

In the case of continuous time Markov chains, an equivalent result is produced via
the method of uniformization and order statistics. Suppose Q is a bounded Markov
generator for a continuous time Markov chain P (t), and λ ≥ maxi∈Ω

∑
j:j 6=i q(i, j) is

the upper bound on the departure rates over all states. The method of uniformization
provides an expression for the transition probabilities P (t) as follows:

P (t) =
∞∑

n=0

(λt)n

n!
e−λtPn

λ , where Pλ = I +
1
λ
Q

The expression is obtained via conditioning on the number of arrivals in a Poisson
process with rate λ.

The definition of a Mixing time is similar in the case of continuous time processes.

Definition 4. Suppose P (t) is an irreducible and finite continuous time Markov chain
with stationary distribution π. Given an ε > 0, the mixing time tmix(ε) is defined as

tmix(ε) = inf {t : ‖νP (t)− π‖TV ≤ ε, for all probability distributions ν}

Suppose Qinitial and Qfinal are two bounded generators for continuous time Markov
processes over a finite state space Ω, and πf is the only stationary distribution for
Qfinal. Let

Q[s] = (1− s)Qinitial + sQfinal

be a time non-homogeneous generator. Given T > 0, let PT (t1, t2) (0 ≤ t1 ≤ t2 ≤ T )
denote a matrix of transition probabilities of a Markov process generated by Q

[
t
T

]
over [t1, t2] time interval.

Observe that the continuous time Markov adiabatic evolution is governed by

dνt

dt
= νtQ

[
t

T

]
, t ∈ [0, T ]

while the quantum adiabatic evolution is described via the corresponding Schrödinger’s
equation dvt

dt = −ivtH
(

t
T

)
.
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Definition 5. Given ε > 0, a time Tε is called the adiabatic time if it is the least T
such that

max
ν

‖νPT (0, T )− πf‖TV ≤ ε,

where the maximum is taken over all probability distributions ν over Ω.

We will state and prove the following adiabatic theorem.

Theorem 3. Let tmix denote the mixing time for Qfinal. Take λ such that

λ ≥ max
i∈Ω

∑
j:j 6=i

qinitial(i, j) and λ ≥ max
i∈Ω

∑
j:j 6=i

qfinal(i, j),

where qinitial(i, j) and qfinal(i, j) are the rates in Qinitial and Qfinal respectively. Then
the adiabatic time

Tε ≤
λtmix(ε/2)2

ε
+ θ,

where θ = tmix(ε/2) + ε/(4λ).

Proof. Observe that λ ≥ maxi∈Ω
∑

j:j 6=i qt(i, j), where qt(i, j) are the rates in Q
[

t
T

]
(0 ≤ t ≤ T ).

Take

T = K

(
1− 1

2K

)−1

tmix(ε/2), N = (K − 1)
(

1− 1
2K

)−1

tmix(ε/2),

and let Pfinal(t) = etQfinal denote the transition probability matrix associated with
the generator Qfinal.

Now, we let P0 = I + 1
λQinitial and P1 = I + 1

λQfinal. Then P0 and P1 are discrete
Markov chains and

νPT (0, T ) = νNPT (N,T ) = νN

( ∞∑
n=0

(λ(T −N))n

n!
e−λ(T−N)In

)
,

where νN = νPT (0, N) and

In =
n!

(T −N)n

∫
. . .

∫
N<x1<x2<···<xn<T

[(
1− x1

T

)
P0 +

x1

T
P1

]
. . .
[(

1− xn

T

)
P0 +

xn

T
P1

]
dx1 . . . dxn

i.e. the order statistics of n arrivals within the [N,T ] time interval. We used the fact
that, when conditioned on the number of arrivals, the arrival times of a Poisson process
are distributed as an order statistics of uniform random variables. Hence

νPT (0, T ) = νN

( ∞∑
n=0

(λ(T −N))n · e−λ(T−N)

(T −N)nTnn!
Pn

1

∫ T

N
. . .

∫ T

N
x1 . . . xndx1 . . . dxn

)
+ E

= e−λ(1− 1
2K )−1

tmix(ε/2)νN

( ∞∑
n=0

λn(tmix(ε/2))n

n!
Pn

1

)
+ E

= e−
λtmix(ε/2)

2K−1 νNPfinal (tmix(ε/2)) + E ,
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where E is the rest of the terms. Thus, the total variation distance,

max
ν

‖νPT (0, T )− πf‖TV ≤ e−
λtmix(ε/2)

2K−1 ε/2 + SN

Taking K ≥ λtmix(ε/2)
ε + 1/2, we bound the error term

SN = ‖E−πf‖TV ≤ 1−e−λ(1− 1
2K )−1

tmix(ε/2)
∞∑

n=0

λn(tmix(ε/2))n

n!
= 1−e−

λtmix(ε/2)

2K−1 ≤ ε/2

as ε < −2 log
(
1− ε

2

)
. Therefore Tε ≤

(
λtmix(ε/2)

ε + 1/2
)

(tmix(ε/2) + ε/(2λ)).

In the end, we would like to mention a possible application. The Glauber dynamics
of a finite Ising model is a continuous time Markov process. Its mixing time can be
estimated using path coupling. The adiabatic transformation of the Markov generator
corresponds to an adiabatic transformation of the Hamiltonian. The above result can
be applied to obtain the adiabatic time for the transformation. The result can be
adjusted when the adiabatic evolution of the generator is nonlinear.

3.1 Application: adiabatic Glauber dynamics of a one di-
mensional Ising model

In the original, non-adiabatic case, the Glauber dynamics is used to generate distribu-
tion

π(x) =
1

Z(β)
e−H(x)

over all spin configurations x ∈ {−1,+1}S , where S denotes all the sites of a graph,
H(x) = −β

∑
u∼v x(u)x(v), β is the reciprocal of the temperature, and Z(β) is the

normalization constant.

Consider a non-linear adiabatic Glauber dynamics of an Ising model on S = Z/nZ.
There, for time s ∈ [0, 1], the Hamiltonian

Hs = (1− ψ(s))Hinitial + ϕ(s)Hfinal,

where ψ(s) and ϕ(s) are continuous functions on [0, 1] such that ψ(0) = ϕ(0) = 0 and
ψ(1) = ϕ(1) = 1. Each site j ∈ Z/nZ has an independent exponential clock with
parameter one associated with it. When it rings, the spin x(j) is reselected using the
following probability

P (x(j) = +1) =
e−Hs(x+)

e−Hs(x−) + e−Hs(x+)
,

where x+(i) = x−(i) = x(i) for i 6= j, x+(j) = +1 and x−(j) = −1. Here Hs is the
Hamitonian at the transition time s. The time non-homogeneous generator associated
with the above dynamics is denoted by Q[s].
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We will compare the above adiabatic Glauber dynamics with the ordinary Glauber
dynamics used for generating Ising models, where at each site j ∈ S, its spin is reset
after waiting for an exponential interarrival time with parameter one, and the proba-
bilities are determined by the local Hamiltonians. Let Qinitial and Qfinal be the time
homogenious generators of ordinary Glauber dynamics associated with the respective
Hamiltonians, Hinitial and Hfinal.

Let us consider the case when Hinitial(x) = 0, Hfinal(x) = −β
∑

j∈Z/nZ x(j)x(j+1)
and

ϕ(s) =
1
4β

log
p(s)

1− p(s)
,

where p(s) = (1− s)1
2 + s e2β

e−2β+e2β . Then e2βϕ(s)

e−2βϕ(s)+e2βϕ(s) = p(s), and therefore

Q[s] = (1− s)Qinitial + sQfinal

So the question of how slow the nonlinear adiabatic transition

Ht/T = (1− ψ(t/T ))Hinitial + ϕ(t/T )Hfinal

has to happen in order to obtain the distribution that is ε close to that of Ising model
with Hamiltonian Hfinal at the end of the adiabatic evolution is addressed in Theorem
3. In particular, for β < 1

2 , the adiabatic time

Tε ≤ O

(
n

ε
·
[
log n+ log(2/ε)
1− tanh(2β)

]2
)

as tmix(ε/2) ≤ log n+log(2/ε)
1−tanh(2β) by Theorem 15.1 in Levin et al (2008).

The above example connects an adiabatic evolution of a physical system to that of
Markov operators, and invites to further study the latter.
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