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Abstract. In this paper we extend the results of the research started in [6]
and [7], in which Karlin-McGregor diagonalization of certain reversible Markov

chains over countably infinite general state spaces by orthogonal polynomials

was used to estimate the rate of convergence to a stationary distribution.
We use a method of Koornwinder [5] to generate a large and interesting

family of random walks which exhibits a lack of spectral gap, and a polynomial

rate of convergence to the stationary distribution. For the Chebyshev type
subfamily of Markov chains, we use asymptotic techniques to obtain an upper

bound of order O
(

log t√
t

)
and a lower bound of order O

(
1√
t

)
on the distance

to the stationary distribution regardless of the initial state. Due to the lack
of a spectral gap, these results lie outside the scope of geometric ergodicity

theory [8].

1. Introduction

Let P =
(
p(i, j)

)
i,j∈Ω

be a reversible Markov chain over a sample space Ω, that is,

it must satisfy the following detailed balance conditions:

πip(i, j) = πjp(j, i) ∀i, j ∈ Ω,

where π is a non-trivial non-negative function over Ω. If P admits a unique sta-
tionary distribution ν, then 1∑

i∈Ω

πi
π = ν.

It can be shown that the reversible P is a self-adjoint operator in `2(π), the space
generated by the following inner product induced by π

〈f, g〉π =
∑
i∈Ω

f(i)g(i)πi

If P is a tridiagonal operator (i.e. a nearest-neighbor random walk) on Ω = {0, 1, 2, . . . },
then it must have a simple spectrum, and is diagonalizable via orthogonal polyno-
mials as it was studied in the 50’s by Karlin and McGregor, see [3], [10], and [2].
There, the extended eigenfunctions Qj(λ) satisfying Q0 ≡ 1 and

P


Q0(λ)
Q1(λ)
Q2(λ)

...

 = λ


Q0(λ)
Q1(λ)
Q2(λ)

...


are orthogonal polynomials with respect to a probability measure ψ. If we let pt(i, j)
denote the entries of the operator P t that represent t step transition probabilities
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from state i to state j then

pt(i, j) = πj

∫ 1

−1

λtQi(λ)Qj(λ)dψ(λ) ∀i, j ∈ Ω,

where πj with π0 = 1 is the reversibility measure of P .

We will use the following distance to measure the deviation from the stationary
distribution on a scale from zero to one.

Definition 1. If µ and ν are two probability distributions over a sample space Ω,
then the total variation distance is

‖ν − µ‖TV =
1

2

∑
x∈Ω

|ν(x)− µ(x)| = sup
A⊂Ω
|ν(A)− µ(A)|

Let ρ =
∑∞
k=0 πk. Observe that ρ < ∞ if and only if the random walk P is

positive recurrent. Recall that ν = 1
ρπ is the stationary probability distribution.

If in addition to being positive recurrent, the aperiodic nearest neighbor Markov
chain originates at site j, then the total variation distance between the distribution
µt = µ0P

t and ν is given by

(1.1) ‖ν − µt‖TV =
1

2

∑
n∈Ω

πn

∣∣∣∣∣
∫

(−1,1)

λtQj(λ)Qn(λ)dψ(λ)

∣∣∣∣∣ ,
as measure ψ contains a point mass of weight 1

ρ at 1. See [6].

The rates of convergence are quantified via mixing times, which for an infinite state
space with a unique stationary distribution are defined as follows. Here the notion
of a mixing time depends on the state of origination j of the Markov chain. See [7].

Definition 2. Suppose P is a Markov chain with a stationary probability distri-
bution ν that commences at X0 = j. Given an ε > 0, the mixing time tmix(ε) is
defined as

tmix(ε) = min {t : ‖ν − µt‖TV ≤ ε}

In the case of a nearest-neighbor process on Ω = {0, 1, 2, . . . } commencing at j,
the corresponding mixing time has the following simple expression in orthogonal
polynomials

tmix(ε) = min

{
t :

∑
n

πn

∣∣∣∣∣
∫

(−1,1)

λtQj(λ)Qn(λ)dψ(λ)

∣∣∣∣∣ ≤ 2ε

}
,

Investigations into the use of orthogonal polynomial techniques (see [3], [10]) in
the estimation of mixing times and distance to the stationary distribution has been
carried out in [7] for certain classes of random walks. In this paper we consider
the problem from the other direction. Namely given a large class of orthogonal
polynomials we outline how to find the corresponding random walk and estimate
the rate for the distance to the stationary distribution.

More specifically beginning with the Jacobi polynomials, whose weight function lies
in (−1, 1) we use Koornwinder’s techniques [5] to attach a point mass at 1. For
the class of Jacobi type polynomials Qn thus obtained, the three term recurrence
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relationship is understood [4]. The tridiagonal operator corresponding to these
polynomials is not a Markov chain, however the operator can be deformed to become
one. The corresponding changes in the polynomials are easy to trace. This gives
a four parameter family of nearest neighbor Markov chains whose distance to the
stationary distribution decays in a non-geometric way. In principle the asymptotic
analysis presented in this paper can be applied to the entire four parameter family.
We outline how this proceeds for Chebyshev-type subfamily consisting of taking
α = β = −1/2 in the Koornwinder class.

We would like to point out the important results of V. B. Uvarov [11] on transfor-
mation of orthogonal polynomial systems by attaching point masses to the orthog-
onality measure, predating the Koornwinder results by fifteen years. The results of
V. B. Uvarov can potentially be used in order to significantly extend the scope of
convergence rate problems covered in this current manuscript.

The paper is organized as follows. In Section 2 we discuss constructing positive
recurrent Markov chains from the Jacobi family of orthogonal polynomials adjusted
by using Koornwinder’s techniques to place a point mass at x = 1. Next, we
derive an asymptotic upper bound on the total variation distance to the stationary
distribution in the case of general α > −1 and β > −1 in Section 3. Our main
result, Theorem 2, is presented in Section 4. There, for the case of Chebyshev type
polynomials corresponding to α = β = −1/2, we produce both asymptotic lower
and upper bounds for the total variation distance. Finally, in Section 5 we compare
our main result to related results obtained by other techniques.

2. From Orthogonal Polynomials to Random Walks via Koornwinder

T. Koornwinder [5] provides a method for finding the orthogonal polynomials
whose weight distribution is obtained from the standard Jacobi weight functions
Cα,β(1− x)α(1 + x)β by attaching weighted point masses at −1 and 1. A spectral
measure corresponding to a Markov chain contains a point mass at −1 if and only
if the Markov chain is periodic. A spectral measure for an aperiodic Markov chain
contains a point mass at 1 if and only if it is positive recurrent. Thus in order to
create a class of positive recurrent aperiodic Markov chains with a Koornwinder
type orthogonal polynomial diagonalization we will only need to attach a point
mass at 1 and no point mass at −1.

Let N ≥ 0 and let α, β > −1. For n = 0, 1, 2, . . . define

(2.1) Pα,β,Nn (x) =
( (α+ β + 2)n−1

n!

)
An

[
−N(1 + x)

d

dx
+Bn

]
Pα,βn (x),

where

An =
(α+ 1)n
(β + 1)n

,

Bn =
(β + 1)nn!

(α+ 1)n(α+ β + 2)n−1
+
n(n+ α+ β + 1)N

(α+ 1)
,

Pα,βn is the standard Jacobi polynomials of degree n and order (α, β), (x)n =
x(x+1) · · · (x+n−1). These polynomials form a system of orthogonal polynomials

with respect to the probability measure dψ(x) =
Cα,β(1−x)α(1+x)βdx+Nδ1(x)

N+1 , where

Cα,β = 1
B(α+1,β+1) , B(·, ·) is the beta function, and δ1(x) denotes the a unit
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point mass measure at x = 1. See T. Koornwinder [5]. Direct calculation shows

that Pα,β,Nn (1) = (α+1)n
n! , and so we normalize Qn(x) = n!Pα,β,Nn (x)/(α+1)n which

is the orthogonal set of polynomials with respect to dψ satisfying Qn(1) = 1.

As we have mentioned earlier, the tridiagonal operator H corresponding to the
recurrence relation of the orthogonal polynomials may not be a Markov chain op-
erator. Let pi, ri and qi denote the coefficients in the tridiagonal recursion

piQi+1(x) + riQi(x) + qiQi−1(x) = xQi(x),

for i = 0, 1, 2, . . . , where we let Q−1 ≡ 0 as always.

Notice because the polynomials are normalized so that Qi(1) = 1 it follows imme-
diately that pi + ri + qi = 1. However some of the coefficients pi, ri, or qi may turn
out to be negative, in which case the rows of the tridiagonal operator A would add
up to one, but will not necessarily consist of all nonnegative entries.

In the case when all the negative entries are located on the main diagonal, this
may be overcome by considering the operator 1

λ+1 (H + λI). For λ ≥ − inf
i
ri this

ensures all entries in the matrix 1
λ+1 (H + λI) are nonnegative and hence can be

thought of as transition probabilities. More generally, if a polynomial p(·) with
coefficients adding up to one is found to satisfy p(H) ≥ 0 coordinatewise, then such
p(H) would be a Markov chain.

3. An Asymptotic Upper Bound for Jacobi type Polynomials

In this section we derive asymptotic estimates for the distance to the stationary
distribution when our operator given by Pλ = 1

λ+1 (H + λI) is a Markov chain. In

this case the Karlin-McGregor orthogonal polynomials for Pλ are Qj

(
(1+λ)x−λ

)
and the orthogonality probability measure is 1

1+λdψ
(

(1 + λ)x− λ
)

over
(
λ−1
λ+1 , 1

]
,

where the Qj are the Jacobi type polynomials introduced by Koornwinder from the
previous section.

Of course the new operator Pλ is again tridiagonal. For the n-th row of Pλ, let us
denote the (n − 1)-st, n-th, and (n + 1)-st entries by qλn, rλn, and pλn respectively.
Here the entries of Pλ can be expressed via the entries of H as follows

pλn =
pn

1 + λ
, rλn =

rn + λ

1 + λ
, and qλn =

qn
1 + λ

Clearly we still have that pλn + rλn + qλn = 1.

With the probabilities in hand we now compute the corresponding reversibility
function πλn of Pλ which is equal to the corresponding function of H defined as

πn = p0···pn−1

q1···qn . Here πλ0 = 1 = π0 and πλn =
pλ0 ···p

λ
n−1

qλ1 ···qλn
= p0···pn−1

q1···qn = πn.

Changing variables in (1.1) yields

‖ν − µt‖TV =
1

2

∞∑
n=0

πn

∣∣∣∣ ∫
(−1,1)

( x

1 + λ
+

λ

1 + λ

)t
Qj(x)Qn(x) dψ(x)

∣∣∣∣
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Lemma 1. Consider the case when pn > 0 and qn > 0 for all n ≥ 0, and
∞ > λ ≥ − inf

i
ri. Then, for the Jacobi type polynomials Qj the distance to the

stationary distribution satisfies the following bound

(3.1) ‖ν − µt‖TV ≤
Cα,β,λ ‖Qj‖∞

(t+ 1)1+α

t+j∑
n=0

πn ‖Qn‖∞ +
1

2

∞∑
n=j+t+1

πn

for a certain constant Cα,β,λ.

Proof. For n > j + t, it follows from the orthogonality of the polynomials and our
normalization Qi(1) = 1 that∫

(−1,1)

( x

1 + λ
+

λ

1 + λ

)t
Qj(x)Qn(x) dψ(x) = 1

It is then easy to see that ‖ν − µ‖TV ≤ I + II + 1
2

∑∞
n=j+t+1 πn, where

I =
1

2

j+t∑
n=0

πn

∫
(−1,0)

∣∣∣∣(x+ λ

1 + λ

)t
Qj(x)Qn(x)

∣∣∣∣ (1− x)α(1 + x)β dx

and II =
1

2

j+t∑
n=0

πn

∫
(0,1)

(x+ λ

1 + λ

)t∣∣Qj(x)Qn(x)
∣∣(1− x)α(1 + x)β dx

To estimate I notice that
∣∣∣x+λ

1+λ

∣∣∣ ≤ max( λ
1+λ ,

∣∣∣ 1−λ1+λ

∣∣∣) < 1 for λ > 0. Hence

I ≤ Aj(|t|)e−ct for an appropriate polynomial Aj(·) such that

1

2
‖Qj‖∞

j+t∑
n=0

πn‖Qn‖∞
∫

(−1,0)

(1− x)α(1 + x)β dx ≤ Aj(|t|),

and c = − log
{

max( λ
1+λ ,

∣∣∣ 1−λ1+λ

∣∣∣)}. Such polynomial Aj exists since ‖Qn‖∞ grows

polynomially in n and πn is bounded. See formula 22.14.1 in Abramowitz and
Stegun [1].

Thus I is clearly bounded by the right hand side of (3.1).

For the second term, II ≤ 1
2

∑j+t
n=0 πn ‖QnQj‖∞

∫ 1

0

(
x+λ
1+λ

)t(
1 − x)α(1 + x)β dx.

There we make the change of variables s = − log(x+λ
1+λ ), and for simplicity let

x(s) = (1 + λ)e−s − λ. Then the integral reduces to

(1 + λ)1+α

∫ log( 1+λ
λ )

0

e−s(t+1)
(
1− λ+ (1 + λ)e−s)β

(
1− e−s

)α
ds

Using the fact that (1−e−s)α = sα
(

1+O(s)
)

and
(
1−λ+(1+λ)e−s)β = 2β+O(s),

the above integral becomes

(1 + λ)1+α

∫ log( 1+λ
λ )

0

e−s(t+1)
(

2βsα +O(sα+1)
)
ds,
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where the upper bounds O(s) can be made specific. Next, applying the standard
asymptotic methods of Laplace to this yields the following asymptotics

∫ log( 1+λ
λ )

0

e−s(t+1)sα ds � Γ(α+ 1)

(t+ 1)1+α

Thus one can obtain a large enough constant C̃α,β,λ such that

II ≤
C̃α,β,λ ‖Qj‖∞

(t+ 1)1+α

t+j∑
n=0

πn ‖Qn‖∞

�

In order to derived effective bounds on ‖ν − µt‖TV it is necessary to gain a more
detailed understanding of πn and ‖Qn‖∞. When min(α, β) ≥ − 1

2 , the ‖Qn‖∞ can
be estimated using the known maximum for the Jacobi polynomials found in Lemma
4.2.1 on page 85 of [2] together with Koornwinder’s definition of these polynomials.

One way to derive estimates for πn is to use the expression πn in terms of pn, rn,
and qn. For Koorwinder’s class of polynomials these expressions are derived for all
α, β,M,N in [4]. It can be verified directly that in the case when M = 0, then

p0 = 2(α+1)
(1+N)(α+β+2) > 0. After taking into account the normilization Qn(1) = 1,

and taking into account a small typo, it can be verified from equations (41)–(45)
in [4] that pn and qn are positive for n ≥ 1. Thus the conditions for Lemma 1 are
satisfied for all α, β > −1. Furthermore, from (18), (19) and (32) in [4] it can be
easily seen that pn → 1

2 and qn → 1
2 as n→∞, and hence rn = 1− pn− qn → 0 as

n→∞. Thus for λ large enough the operator Pλ corresponds to a Markov chain.

As the expressions for these quantities laborious to write down, instead we focus our
attention on a specific case in which our calculations are easy to follow. Specifically
we focus on the Chebyshev polynomials.

4. Chebyshev Polynomials: Upper and Lower Bounds

By applying Koorwinder’s results to the Chebyshev polynomials of the first kind
which correspond to the case of α = β = − 1

2 , we arrive at a family of orthogonal

polynomials with respect to the measure 1
1+N

(
1

π
√

1−x2
dx + Nδ1(x)

)
. Using (2.1)

we find that here,

Qn(x) := −N(x+ 1)Un−1(x) + (1 + 2nN)Tn(x),

where Tn and Un denote the Chebyshev polynomials of the first and second kind
respectively. Notice that Un(1) = n+1 and Tn(1) = 1, which immediately to verify
that Qn(1) = 1.
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Once again we consider the operator

H =



r0 p0 0 0 0 · · ·

q1 r1 p1 0 0
...

0 q2 r2 p2 0
. . .

0 0 q3 r3
. . .

. . .
... · · ·

. . .
. . .

. . . . . .


,

on `2(π), so that vector (Q0(x), Q1(x), Q2(x), . . .)T is an eigenvector with eigen-
value x.

Specifically the numbers pn, rn, and qn satisfy p0P1(x) + r0P0(x) = x for n = 0,
and

(4.1) pnQn+1(x) + rnQn(x) + qnQn−1(x) = xQn(x) for n ≥ 1.

Keisel and Wimp [4] give expressions for pn, rn and qn for n ≥ 0. To find the expres-
sions directly in this case one could use (4.1) to derive three linearly independent
equations, and solve for pn, rn, and qn.

For the case n = 0 the equation immediately gives us that p0 = 1
N+1 and r0 =

N
N+1 . Evaluating at convenient choices of x, such as −1, 0, 1, do not yield linearly
independent equations for all n. One solution to this is to evaluate at x = 1,−1 and
differentiate (4.1) and then evaluate at x = 0. This gives three linearly independent
equations and a direct calculation then shows that

(4.2)

pn =
1

2
· 1 + (2n− 1)N

1 + (2n+ 1)N
, qn =

1

2
· 1 + (2n+ 1)N

1 + (2n− 1)N
, and

rn =
−2N2

(1 + (2n− 1)N)(1 + (2n+ 1)N)

As rn ≤ 0 the operator H fails to correspond to a Markov chain. However this is
the case we addressed at the end of Section 2 of the current paper. Thus consider
Pλ = 1

1+λ (H+λI). Now, since |rn| is a decreasing sequence for n ≥ 1. So provided

that λ ≥ |r1| = 2N2

(1+N)(1+3N) , we then have pλn, r
λ
n, q

λ
n ≥ 0. Thus we can consider

these coefficients pλn, rλn, and qλn as the transition probabilities in a nearest neighbor
random walk.

Recall that πλn = πn = p0···pn−1

q1···qn . Thus for Pλ we can directly calculate πn from (4.2).

We have that p0 · · · pn−1 = 1
2n−1

N
1+(2n−1)N and similarly q1 · · · qn = 1

2n
1+(2n+1)N

1+N .

Thus πn = 2(1+N)N
(1+(2n−1)N)(1+(2n+1)N) .
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Theorem 2. Given N > 0 and λ ≥ 2N2

(1+N)(1+3N) . Consider the case of the

Chebyshev-type random walks over Ω = {0, 1, 2, . . . } with probability operator

Pλ =



rλ0 pλ0 0 0 0 · · ·

qλ1 rλ1 pλ1 0 0
...

0 qλ2 rλ2 pλ2 0
. . .

0 0 qλ3 rλ3
. . .

. . .
... · · ·

. . .
. . .

. . . . . .


,

where pλn = 1
2(1+λ) ·

1+(2n−1)N
1+(2n+1)N , qλn = 1

2(1+λ) ·
1+(2n+1)N
1+(2n−1)N and rλn = 1− pλn − qλn

for n ≥ 1, with pλ0 = 1
(1+λ)(N+1) = 1− rλ0 .

Then for the random walk originating at some site j ∈ Ω, there are positive con-
stants c and C that depend on j, N and λ such that

c√
t
≤ ‖ν − µt‖TV ≤ C

log t√
t

for t sufficiently large.

Proof. For the upper bound we simply need to estimate the sums appearing in
Lemma 1. Since πn = O

(
1

(n+1)2

)
, it is easy to see that the second sum

∑∞
n=j+t+1 πn

is bounded by CN/(t+ j + 1). The main term turns out to be the first sum.

In the case of the Chebyshev type polynomials we have the bound ‖Qn‖∞ ≤ 4Nn+ 1.

Thus the first sum in Lemma 1 is bounded by Ĉα,β,λ,N
j log(t+j+2)√

t
for an appropriate

constant Ĉα,β,λ,N . And so, for an appropriate C and large t,

‖ν − µn‖TV ≤ C
log t√
t

On the other hand, recalling that Q0(x) = π0 = 1, we have that:

‖ν − µn‖TV ≥

∣∣∣∣∣
∫

(−1,1)

(x+ λ

1 + λ

)t
Qj(x)(1 + xβ)(1− x)α dx

∣∣∣∣∣
However we have already shown that for large enough t, the above right-hand side

is asymptotic to C̃√
1+t

. �

We finish with some concluding remarks. At first the bound ‖Qn‖∞ ≤ 4Nn+ 1
may appear somewhat imprecise since near x = 1, we have that Qn(1) = 1. It
is tempting to suggest that the correct asymptotic for the total variation norm is
C/
√
t. However on closer examination in the neighborhood of x = 1, Q′n(x) ≈ n3.

This n3 causes the errors to be at least of the order of the main term. Over-
all it seems unlikely to the authors that C/

√
t is the correct asymptotic for the

Chebyshev-type polynomials.
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5. Comparison to other methods

An ergodic Markov chain P =
(
p(i, j)

)
i,j∈Ω

with stationary distribution ν is said

to be geometrically ergodic if and only if there exists 0 < R < 1 and a function
M : Ω → R+ such that for each initial state i ∈ Ω, the total variation distance
decreases exponentially as follows

‖pt(i, ·)− ν(·)‖TV =
1

2

∑
j∈Ω

|pt(i, j)− ν(j)| ≤M(i)Rt

In other words, an ergodic Markov chain is geometric when the rate of convergence
to stationary distribution is exponential. See [8] and references therein.

If the state space Ω is finite, |Ω| = d < ∞, and Markov chain is irreducible and
aperiodic, then P will have eigenvalues that can be ordered as follows

λ1 = 1 > |λ2| ≥ · · · ≥ |λd|
In which case, the Perron-Frobenious Theorem will imply geometric ergodicity with

‖pt(i, ·)− ν(·)‖TV = O(tm2−1|λ2|t),
where m2 is the algebraic multiplicity of λ2. Here the existence of a positive spectral
gap, 1−|λ2| > 0, implies geometric ergodicity with the exponent − log |λ2| ≈ 1−|λ2|
whenever the spectral gap is small enough.

When dealing with Markov chains over general countably infinite state space Ω,
the existence of a positive spectral gap of the operator P is essentially equivalent to
the chain being geometrically ergodic. For instance, the orthogonal polynomial ap-

proach in [7] resulted in establishing the geometric rate R = max
{
r + 2

√
pq, q

q+r

}
for the Markov chain

P =



0 1 0 0 . . .
q r p 0 . . .

0 q r p
. . .

0 0 q r
. . .

...
...

. . .
. . .

. . .


q > p, r > 0

over Ω = Z+, together with establishing the value of the spectral gap, 1− r > 0.

As for the Markov chain Pλ considered in Theorem 2 of this paper, its spectral

measure 1
1+λdψ

(
(1 + λ)x − λ

)
over

(
λ−1
λ+1 , 1

]
admits no spectral gap between the

point mass at 1 and the rest of the spectrum implying sub-geometric ergodicity. The
sub-exponential rate in total variation norm is then estimated to be of polynomial
order between 1√

t
and log t√

t
.

In the field of probability and stochastic processes, there is a great interest in finding
methods for analyzing Markov chains over general state space that have polynomial
rates of convergence to stationary distribution. In Menshikov and Popov [9] a one
dimensional version of Lamperti’s problem is considered. There, a class of ergodic
Markov chains on countably infinite state space with sub-exponential convergence
to the stationary probabilities is studied via probabilistic techniques. One of their
results relates to our main result, Theorem 2. Namely, Theorem 3.1 of [9] when
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applied to our case, implies for any ε > 0 the existence of positive real constants
C1 and C2 such that

C1t
− 1

2−ε ≤ |ν(0)− µt(0)| ≤ C2t
− 1

2 +ε

Thus for the Markov chain considered in Theorem 2, the orthogonal polynomials
approach provides a closed form expression for the difference ν − µt, and a signif-
icantly sharper estimate on convergence of µt to the stationary distribution ν, for
both the single state distance |ν(0) − µt(0)| and a much stronger total variation
norm, ‖ν − µt‖TV .
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