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EXxclusion Processes

S - general countable set,
p(x,y) - transition probabilities for a Markov
chain on S

ne - continuous time Feller process with values
in {0,1}°

Transition rates:

n— nzy atrate p(x,y) if n(z)=1,7(y)=0

(n(u) when u & {z,y},
where nz y(u) =< n(y) when u =z

|n(x) when u =y.
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Symmetric Exclusion Processes

p(z,y) = p(y, )
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each time with rate p(z,vy).

But also, we let
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with rate p(x,vy), if no particle is tagged.



For each transposition 7,y (z,y € S, * # y) we
assign rate

q(1z,y) = p(y,z) = p(z,y)
at which the transposition occurs:

Natural generalization of symmetric exclu-
sion suggested by T.Liggett: We can as-
sign the rates not to the particles inhabiting
the space S, but to various permutations of
finitely many points of S.

For each n € {0,1}°, let o(n) be the new con-
figuration of particles after the permutation o
was applied to n, i.e.

o(n)(z) ;=n(c"(z)) forall ze€sS.

We construct a continuous time Feller process,
where rates ¢(o) are assigned so that

n—o(n) atrate q(o).



Sufficient conditions for the process to be
well defined Feller process?

e Exclusion processes: | sup,cg> ,p(z,y) < oo

¢ ‘“‘Permutation processes:”

My := SuPges Za:xERange(o) g(o) < o0

where Range(oc) ={x € S : o(x) # x}.

= the semigroup €2; of the permutation pro-
cess 1, generated by

Qf(n) == a(a)f(e(m) — f(n)]

(for cylinder functions f), is well defined.



Why was symmetric exclusion so successfully
studied?

Duality: P'[n; =1 on Al = PA[np =1 on A{]

has the same probability as




What are the conditions for permutation pro-
cesses to be self-dual?

For n € {0,1}° and a set A C S,

H(n,A) = ][] n(=).

rcA

QH(-,A)(n) = > q(o)[H(c(n),A) — H(n, A)]
N (o) [H(n, 071 (A)) — H(n, A)]

= Y q(o)[H(n,0(A)) — H(n, A)],
where the last line is true whenever
g(o) = q(o™1)

- Permutation process is said to be symmetric
whenever the above condition is satisfied.

Then QH(-,A)(n) = QH(n,-)(A), and

Pl =1 on Al = PAln=1 on Af]|




7 = {class of stationary distributions},

Ze = {set of all the extreme points of 7},

S = {class of shift invariant prob. measures}
v, - homogeneous product measure on {0,1}°
with marginal probability p, e.g.

vo{n :m:i=1on A}Zp‘A| forany AC S|

We want to generalize two theorems: Let
S = 74 with shift-invariant random walk rates

p(z,y) = p(0,y — x).

Theorem. (F.Spitzer - recurrent case,
T.Liggett - transient case) For the symmetric
exclusion process, |Ze ={r,: 0 < p <1}

Theorem(R.Holley - special case,
T.Liggett - general case) For the general ex-
clusion process, (ZNS)e={r,:0<p <1}



Possible conditions: We know two.

e Condition I (Existence):

My i=SuUpzegs Za:xERange(a) q(o) < o0

where Range(oc) ={x € S : o(x) # x}.

e Condition II (Symmetry):

q(o) = q(o™1)




Consider three more.

e Condition III (Irreducibility): Vz,y € S,
d permutations oq,...,0 with positive rates

s.t. 0p0..o01(x) =1yl

e Condition IV (Finiteness):

My = SUP(5:¢(5)>0} ‘Range(a)‘ < 00

where Range(oc) ={x €S : o(x) # x} and
| - | denotes cardinality.

e Condition V (Ellipticity):
If Range(o1) = Range(os) and q(o1) > 0, then
q(op) > 0. Also

q(o1)
q(02)

< o0

My, :=su Po1,00:Range(o1)=Range(o>)

)

sup taken over g(o1),q(o2) > 0.



Main Results:

Consider irreducible permutation processes on
S = 7% with translation invariant rates. Sup-
pose conditions

I (Existence), III (Irreducibility), IV (Finiteness)

and |V (Ellipticity) | are satisfied.

Theorem 1. (K. 2004) For the symmetric
permutation processes, |Ze = {v,: 0 < p < 1}

i.e. |II (Symmetry)| = |Ze={r,:0<p <1}

Theorem 2. (K. 2004) For the general per-
mutation process (conditions LIII, IV and V
only), [((ZNS8)e={r,:0<p <1}




Definition. A bounded function f : S — R is
harmonic if

f(n) = ZCE{O,l}S Pllne = ¢1f(Q)|.

We will need the following

Proposition 1. If f is a bounded harmonic
function for the well defined finite permutation
process Ay, then f is constant on {A: |A| =n}
for each given integer n > 1.

Now, Proposition 1| = | Theorem 1

Reason: self-duality.

Definition. A probability measure p on {0, 1}5
is called exchangeable if for any finite A C S,
pw{n :m=1on A} is a function of |A|.



Proof (Proposition 1 = Theorem 1).
€2+ - semigroup of the permutation process.

Self-duality = for a prob. measure u on {0, 1}5,
ue{n :n=1on A} = /P”[nt =1 on Aldu
— /PA[n =1 on A]dy

= > p PA[A; = Blu{n :n =1 on B}

Consider f(A) =u{n:n=1 on A}.

weT, ie uQ=up, t>0|<|f(A) is harmonic

(RHS= f(A)) 1 (Proposition 1) |

f(A) is a function of |A|, i.e. u is exchangeable

) § (de Finetti's thm.) { )

p is mixture of homogeneous product measures v,




Proof of Proposition 1 in recurrent case.

Proposition 1. If f is a bounded harmonic func-
tion for the well defined finite permutation pro-
cess Aq, then f is constant on {A : |A| = n} for
each given integer n > 1.

Enough: show f(Apg) = f(Bg) VAg,BgCS

s.t. [Ag| = [Bo| = [Ao N Bo| + 1

Need: construct a successful coupling of two
copies A; and B; of the process with initial
states Ag and Bg.

Successful coupling:
P[A; = By for all t beyond some time | = 1.

Then
|f(Ag) — f(Bo)| = |Ef(Ar) — Ef(By)|
< E|f(Ay) — f(B)] < || fIIP[A+ # B] — O

as t — oo.



Reconstructing Spitzer’s coupling.

d,j" denotes <(1)> discrepancy

d, denotes <(1)> discrepancy

Ati
By -

=

o O
— O
=
o O
=
— = O
o O

&~
+

S

-

Challenge: canceling the original two discrep-
ancies, not creating new discrepancies and still
constructing a successful coupling.

Recurrence

{d* and d; € Range(c),q(c) > 0}
will happen infinitely often




Coupling. When d;" and d, € Range(og) = R
where q(og) > 0, we pick a cycle op

S.t. q(aR) > 0 and O'R(At) = By

Rates: Let m(R) = mMin,.ponge(s)=r19(0)}

Then <g> transforms into
t

(024D _ (or(BY)
(ag(Bt)) = (UR(Bt)> with rate m(R),

aRggg) (%EzEZg) with rate m(R),
O'R OR

|7l 712
( | (At>) = ( r, )> with rate m(R),
R

®=2B)) (Bt)

(Bt) Ay

|?|%(At) ) = (Bt) with rate m(R),



Rates(Continued):
(At> transforms into
By

) with rate gq(or) — m(R),

) with rate q(agﬂ_l) — m(R),

if Range(oc) = R
and o # J}{, all 2.

(05(275)) with rate q(a]%) —m(R),

) with rate q(o)



T he coupling is successful.

At the holding time, the discrepancies will can-
cel with probability

m(R)
2 ER:d;,d;LER 2q(t)

> T n Z(R) — 1
— “~Rud; ,d;  eRP(Mpy)Myzq(t) — P(Mpy)My

where
Z(R) = > q(o),
o:Range(c)=R
zq(t) = > Z(R) < Mj
range sets R :
d-,df € R
and P(n) = >7_, <Z’> (=1)*(n — k)! denotes

the number of permutations of n distinct ob-
jects such that each object is displaced.



Example. Let S = 7Z. Each permutation in
Uer{UfL’ = (z,zc+ 1,z +2),02 = ng} has
positive rate ¢, i.e.

q(oz) = q(oz;1) =¢> 0|

Range sets: Ry = {x,z+ 1,z + 2} for x € Z.
Then M; = 6q, MIV = 3 and MV = 1.

There m(Rz) = q and Z(Ry) = 2q since
Ry = Range(oz) = Range(o;1).

Suppose
Ay 1 1 1 0 0 1 0
By 1 1 0 1 0 1 0
T 7T 1T
y—1 y y+1
R:Ry_1:>O'R:O'y__11,

and R= Ry = op = oy|.




(
(
(
(

ay_l(Aa) _T

Uy__ll(Bt)

aya(At)) _

Oy—1 (Bt)

)

Uy(Bt)

oy t(Bt)

O'y(At)>_.“

with rate ¢

each time.



Example(Continued). Here

24(t) = Z(Ry) + Z(Ry—1) = 4q.

Discrepancies cancel with probability

2¢ 1 1

T 2 POMp)My




Proof of Proposition 1: transient case.

f(A) bounded harmonic (i.e. ©:f = f) and
o A[Fte (0,00) 0 A;(t) #= A;(t—) and
() = P 2 A ) fome 1

where Ay = (A1(t),...,An(t)) is the n-point
permutation process.

We prove

|F(A) = C] = |24 f(A) — C] < C2gn(A), AeTy

for some constants C and ¢, where

Tn ={z = (x1,...,2n) € S" . x; F x; for all i £ j}.

We show (by transience)

for all A e T,.



Question: How far can we extend these meth-
ods? Can we prove some of the same results
under weaker conditions?



