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Introduction.

Disclaimer: for clarity purposes, we may sometimes omit spec-
ifying what function spaces or metrics are being considered.

Observe that for Z
d∼ N (0,1), and f ∈ C1(R) satisfying E

[
|f ′(Z)|

]
<∞,

E
[
f ′(Z)− Z f(Z)

]
= 0

as integration by parts
∞∫

−∞

f ′(x)
1
√

2π
e−x

2/2dx = −f(x)
1
√

2π
e−x

2/2
∣∣∣∞
−∞

+

∞∫
−∞

xf(x)
1
√

2π
e−x

2/2dx

yields E
[
f ′(Z)

]
= E

[
Z f(Z)

]
.

Observe that ∀ε > 0 ∃a > 0 s.t.
∞∫
a

|f ′(t)|e−t2/2dt < ε/2.

Thus, for x > 0 sufficiently large so that |f(a)|e−x2/2 < ε/2,∣∣f(x)e−x
2/2
∣∣ = e−x

2/2

∣∣∣∣∣∣f(a) +

x∫
a

f ′(t)dt

∣∣∣∣∣∣ ≤ |f(a)|e−x2/2+

∞∫
a

|f ′(t)|e−t2/2dt < ε.
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Introduction.

Observe that for Z
d∼ N (0,1), and f ∈ C1(R) satisfying E

[
|f ′(Z)|

]
<∞,

E
[
f ′(Z)− Z f(Z)

]
= 0.

Stein’s Lemma. Random variable X
d∼ N (0,1) if and only if

E
[
f ′(X)−X f(X)

]
= 0

for all f ∈ C1(R) satisfying E
[
|f ′(Z)|

]
<∞ for Z ∼ N (0,1).

Sketch Proof: X
d∼ N (0,1) iff E[g(X)] = E[g(Z)] for all g from

a class of functions such as
{

cos(αx)
}
α∈R

⋃{
sin(αx)

}
α∈R

.

For each such g, one finds f ∈ C1(R) by solving the first-order
linear ODE

f ′(x)− xf(x) = g(x)− E[g(Z)].

Hence, E[g(X)] = E[g(Z)] for all functions g in the class iff

E
[
f ′(X)−X f(X)

]
= 0 for all corresponding f .
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Introduction.

Let L = Lipschitz functions and DM =
{
f : ‖f‖∞, ‖f ′‖∞, ‖f ′′‖∞ < M

}
for a given M > 0. Then, ∃CM > 0 such that for any random
variable X such that the following expectations are finite,

sup
g∈L

∣∣E[g(X)]− E[g(Z)]
∣∣ ≤ CM sup

f∈DM

∣∣E[f ′(X)−X f(X)
]∣∣,

where Z
d∼ N (0,1).

Thus, a sequence of random variables Xn
d−→ N (0,1) if and only

if

E
[
f ′(Xn)−Xn f(Xn)

]
→ 0 ∀f ∈ DM .

Stein-Markov operator: Af(x) = f ′(x)− x f(x)

Stein operator: Af(x) = f ′′(x)− x f ′(x)

Summary: Xn
d−→ N (0,1) ⇔ E[Af(Xn)]→ 0 ∀f ∈ DM

⇔ E[Af(Xn)]→ 0 ∀f s.t. ‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞ < M .
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Multivariate normal.

Consider an m-dimensional normal Z
d∼ N (0,Σ) with m×m co-

variance matrix Σ.

Stein-Markov operator: for f : Rm → Rm,

Af(x) = ∇TΣf(x)− xT f(x), x ∈ Rm.

Stein operator: for f : Rm → R,

Af(x) = ∇TΣ∇f(x)− xT∇f(x), x ∈ Rm.

For Z
d∼ N (0,Σ) and f : Rm → Rm, integration by part yields

E[∇TΣf(Z)] = (2π)−d/2

∞∫
−∞

. . .

∞∫
−∞

e−x
TΣ−1x/2∇TΣf(x) dx1 . . . dxm

= (2π)−d/2Σf(x)e−x
TΣ−1x/2

∣∣∣∞
−∞
. . .

∣∣∣∞
−∞

+(2π)−d/2

∞∫
−∞

. . .

∞∫
−∞

e−x
TΣ−1x/2 xT f(x)dx1 . . . dxm
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Multivariate normal.

Consider an m-dimensional normal Z
d∼ N (0,Σ) with m×m pos-

itive definite covariance matrix Σ.

Stein-Markov operator: for f : Rm → Rm,

Af(x) = ∇TΣf(x)− xT f(x), x ∈ Rm.

Stein operator: for f : Rm → R,

Af(x) = ∇TΣ∇f(x)− xT∇f(x), x ∈ Rm.

For Z
d∼ N (0,Σ) and f : Rm → Rm, integration by part yields

E[Af(Z)] = E
[
∇TΣf(Z)− ZT f(Z)

]
= 0

and for f : Rm → R,

E[Af(Z)] = E
[
∇TΣ∇f(Z)− ZT∇f(Z)

]
= 0.



Stein’s method and Liggett’s theorem 6

Multivariate normal.

Consider an m-dimensional normal Z
d∼ N (0,Σ) with m×m co-

variance matrix Σ.

Stein operator: for f : Rm → R,

Af(x) = ∇TΣ∇f(x)− xT∇f(x), x ∈ Rm.

Multidimensional Stein’s Lemma. Random variable X
d∼ N (0,Σ)

if and only if E
[
Af(X)

]
= 0 for all f : Rm → R in C2(R) satisfying

E
[
|∇TΣ∇f(Z)|

]
<∞ for Z ∼ N (0,Σ).

Convergence criterion. Xn
d−→ N (0,Σ) ⇔ E[Af(Xn)] → 0

∀f with bounded first, second, and third partial derivatives.
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Brownian bridge.

Let B(t) be a standard Brownian motion. The process

W (t) = B(t)− tB(1), t ∈ [0,1],

is called a Brownian bridge.

Observe that for 0 ≤ s ≤ t ≤ 1, Cov
(
W (s),W (t)

)
= s(1− t).

Hence, for 0 ≤ t1, . . . , tm ≤ 1, random vector

w =
(
W (t1), . . . ,W (tm)

)T d∼ N (0,Σ)

with the covariance matrix

Σ =
(

(ti ∧ tj)(1− ti ∨ tj)
)
i,j

and the Stein operator for f : Rm → R given by

Af(w) = ∇TΣ∇f(w)−wT∇f(w)

= −〈∇f(w),w〉+
∑
i,j

(ti ∧ tj)(1− ti ∨ tj)
∂2

∂xi∂xj
f(w).
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Fréchet derivatives.

Consider Banach spaces V and W . For x ∈ U ⊆ V and f : U →W ,
a bounded linear operator D = Df(x)[·] : V → W is said to be
the Fréchet derivative if

lim
‖h‖→0

∥∥f(x+ h)− f(x)−Dh
∥∥

‖h‖
= 0.

A bounded bilinear operator D2 = D2f(x)[·, ·] : V × V → W is
said to be the second-order Fréchet derivative if

lim
‖k‖→0

∥∥Df(x+ k)[y]−Df(x)[y]−D2[y, k]
∥∥

‖k‖
= 0

uniformly for bounded y ∈ V .

Then,

f(x+ a) = f(x) +Df(x)[a] +D2f(x)[a, a] + ε[f ; a]‖a‖2,

where ‖ε[f ; a]‖ → 0 as ‖a‖ → 0.



Stein’s method and Liggett’s theorem 9

Fréchet derivatives.

Consider Banach spaces V and W . For x ∈ U ⊆ V and f : U →W ,
a bounded linear operator D = Df(x)[·] : V → W is said to be
the Fréchet derivative if

lim
‖h‖→0

∥∥f(x+ h)− f(x)−Dh
∥∥

‖h‖
= 0.

A bounded bilinear operator D2 = D2f(x)[·, ·] : V × V → W is
said to be the second-order Fréchet derivative if

lim
‖k‖→0

∥∥Df(x+ k)[y]−Df(x)[y]−D2[y, k]
∥∥

‖k‖
= 0

uniformly for bounded y ∈ V .

For V = D[0,1] and W = R, iterating the Riesz-Markov-Kakutani
Theorem yields

D2f(y)[h1, h2] =

1∫
0

1∫
0

h1(t1)h2(t2) dϕy(t1, t2),

where the Borel measure |ϕy(A1×A2)| ≤ ϕ(A1×A2) is uniformly
bounded for all y ∈ D[0,1].
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Functional Stein operators.

Let B(t) be a standard Brownian motion and W (t) be a Brow-
nian bridge.

In 1990, A. D. Barbour proposed the following functional Stein
operators. For a given s ∈ [0,1], let Js(t) = 1t≥s ∈ D[0,1].

Brownian motion: For f : D[0,1]→ R and u ∈ D[0,1], let

Af(u) = −Df(u)[u] +

1∫
0

D2f(u)[Js, Js] ds.

E[Af(Bn)]→ 0 for all f in a certain exotic metric space ⇒ Bn
d−→ BM

Brownian bridge: For f : D[0,1]→ R and u ∈ D[0,1], let

Af(u) = −Df(u)[u] +

1∫
0

D2f(u)[Js − I, Js − I] ds, where I(t) = t.

E[Af(Wn)]→ 0 for all f in a certain exotic metric space ⇒ Wn
d−→ BB
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Functional Stein operators.
Consider Brownian bridge W (t) = B(t)− tB(1) (t ∈ [0,1]). For
a given s ∈ [0,1], let Js(t) = 1t≥s ∈ D[0,1].

We show the intuition behind A. D. Barbour’s functional Stein
operator for W (t),

Af(u) = −Df(u)[u] +

1∫
0

D2f(u)[Js − I, Js − I] ds, where I(t) = t.

Here,
1∫

0

D2f(u)[Js − I, Js − I] ds =

1∫
0

1∫
0

1∫
0

(Js(t1)− t1)(Js(t2)− t2) ds dϕu(t1, t2)

with
1∫

0

(Js(t1)− t1)(Js(t2)− t2) ds = t1∧t2−t1t2 = (t1 ∧ t2)(1− t1 ∨ t2),

and therefore,

Af(u) = −Df(u)[u] +

1∫
0

1∫
0

(t1 ∧ t2)(1− t1 ∨ t2) dϕu(t1, t2).
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Functional Stein operators.

Consider Brownian bridge W (t) = B(t)− tB(1) (t ∈ [0,1]). For
a given s ∈ [0,1], let Js(t) = 1t≥s ∈ D[0,1].

We show the intuition behind A. D. Barbour’s functional Stein
operator for W (t). Here,

Af(u) = −Df(u)[u] +

1∫
0

1∫
0

(x1 ∧ x2)(1− x1 ∨ x2) dϕu(x1, x2).

Now, recall that for 0 ≤ t1, . . . , tm ≤ 1, random vector

w =
(
W (t1), . . . ,W (tm)

)T d∼ N (0,Σ)

with the covariance matrix

Σ =
(

(ti ∧ tj)(1− ti ∨ tj)
)
i,j

and the Stein operator for f : Rm → R given by

Af(w) = ∇TΣ∇f(w)−wT∇f(w)

= −〈∇f(w),w〉+
∑
i,j

(ti ∧ tj)(1− ti ∨ tj)
∂2

∂xi∂xj
f(w).
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Liggett’s limit theorem.

The following is a special case of the limit theorem from T. M.
Liggett’s Ph.D. thesis, which by coincidence, was reproved in
my own Ph.D. thesis (in the context of a percolation problem).

Theorem. Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables such that, for some p ∈ (0,1),

P (Xi = 1) = p and P (Xi = −1) = 1− p.

Then, for S(t) =
∑
k:k≤t

Xk,

Yn(t) =
(

1
√

2n
S(2nt)

∣∣∣ S(2n) = 0
)
t∈[0,1]

d−→ BB.

In my student’s (W. Jantai’s) Ph.D. thesis, we showed that
E[Af(Yn)]→ 0 for twice Fréchet differentiable f : D[0,1] → R
with bounded D2f , i.e., ∃Kf > 0 s.t. ‖D2f(u)‖ < Kf(1 + ‖u‖).

Our contribution: we extended the Stein’s method for the sums
of exchangeable random variables.
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Fixing the functional Stein operator approach.

Consider 0 ≤ t1, . . . , tm ≤ 1 and g : Rm → R in C2[0,1]m, and
define f : D[0,1]→ R as follows:

f(u) = g
(
u(t1), . . . ,u(tm)

)
for u ∈ D[0,1].

Such f(u) is twice Fréchet differentiable f : D[0,1] → R with
bounded D2f , and

Af(u) = −Df(u)[u] +

1∫
0

D2f(u)[Js − I, Js − I] ds

= −〈∇g(u),u〉+
∑
i,j

(ti ∧ tj)(1− ti ∨ tj)
∂2

∂xi∂xj
g(u).

Hence, showing Af(Yn)→ 0 as n→ 0 implies(
Yn(t1), . . . , Yn(tm)

)T d−→ N (0,Σ), where Σ =
(

(ti ∧ tj)(1− ti ∨ tj)
)
i,j

.

Thus, showing the convergence of multidimensional distribution.
Together with tightness, this yields

Yn
d−→ BB.
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What future holds for the Stein’s method.
I believe that the future of the Stein’s method is in extending
the Stein’s method in multivariate setting. The 1-D Gaussian
Free Fields (GFF) is either standard Brownian motion or the
Brownian Bridge. By the analogy to this work, next step is
showing convergence of random fields to the GFF with Stein’s
method.

Another aspect is of interest to me is that the eigenfunctions
of Stein operators are orthogonal polynomials. They are the
solutions of Sturm-Liouville differential or difference equations
AQj = λjQj for the corresponding eigenvalues λj.

• For N (0,1) distribution, Qj are the Hermite polynomials.

• For multivariate N (0,Σ) distribution, it is multivariate Hermite-
like polynomials: for j = (j1, . . . , jm) ∈ Zm+,

Qj(x) = (−1)j1+···+jme
xTΣ−1x

2
∂j1+···+jm

∂jxj1

1 . . . ∂x
jm
m

e−
xTΣ−1x

2 .

• For Gamma(α, λ) distribution, the Stein-Markov operator
Af(x) = xf ′(x) + (α− λx)f(x),

the Stein operator Af = Af ′, and Qj are the Laguerre polyno-
mials.
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What future holds for the Stein’s method.

• For Beta(a, b) distribution, the Stein-Markov operator

Af(x) = x(1− x)f ′(x) + (a− (a+ b)x)f(x),

the Stein operator Af = Af ′, and Qj are the Jacobi polynomials.

• For Poi(λ) distribution, the Stein-Markov operator

Af(x) = f(x)−
x

λ
f(x− 1),

the Stein operator Af = A∆f , where ∆f(x) = f(x + 1) − f(x)
denotes the forward difference, and Qj are the Charlier polyno-
mials.

• For Bin(n, p) distribution, the Stein-Markov operator

Af(x) = (1− p)x∇f(x) +
(
np− x

)
f(x),

where ∇f(x) = f(x) − f(x − 1) is the backward difference, the
Stein operator Af = A∆f , and Qj are the Krawtchouk polyno-
mials.

Finally, it will be beneficial to consider functional Stein operators
for Gamma, Poisson, Meixner, and other Lévy processes.
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