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Stochastic Dominance.

Consider random variables X and Y . If the cumulative

distribution functions FX and FY satisfy

FX(x) � FY (x) 8x 2 R,
then Y exhibits stochastic dominance over X.

Furthermore, if FX 6⌘ FY , then, Y exhibits strict
stochastic dominance over X.

Lemma. If Y exhibits stochastic dominance over X,

then, for any increasing function h : R ! R we have

E[h(Y )] � E[h(X)]. Moreover, if Y exhibits strict

stochastic dominance over X, and if h(x) is strictly

increasing, then E[h(Y )] > E[h(X)].

Consider random variables X and Y . If the cumulative
distribution functions FX and FY satisfy

FX(x) ≥ FY (x) ∀x ∈ R,

then Y exhibits stochastic dominance over X.

Name explained: Suppose for simplicity that both,
FX and FY are strictly increasing. Then, we can con-
struct a coupling by letting U ∼ Unif(0,1),

X = F−1
X (U) and Y = F−1

Y (U).

Indeed, Y dominates X: X ≤ Y .
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Consider random variables X and Y . If the cumulative
distribution functions FX and FY satisfy

FX(x) ≥ FY (x) ∀x ∈ R,
then Y exhibits stochastic dominance over X.

Furthermore, if FX 6≡ FY , then, Y exhibits strict
stochastic dominance over X.

Lemma. If Y exhibits stochastic dominance over X,
then, for any increasing function h : R → R we have
E[h(Y )] ≥ E[h(X)]. Moreover, if Y exhibits strict
stochastic dominance over X, and if h(x) is strictly
increasing, then E[h(Y )] > E[h(X)].



A new life of Pearson’s skewness 4

Stochastic Dominance.

A new life of Pearson’s skewness 2

Stochastic Dominance.

Consider random variables X and Y . If the cumulative

distribution functions FX and FY satisfy

FX(x) � FY (x) 8x 2 R,
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Lemma. If Y exhibits stochastic dominance over X,
then, for any increasing function h : R → R we have
E[h(Y )] ≥ E[h(X)]. Moreover, if Y exhibits strict
stochastic dominance over X, and if h(x) is strictly
increasing, then E[h(Y )] > E[h(X)].

The above lemma is usually proved via coupling argu-
ment. For continuous random variables, sometimes
can use integration by parts:

b∫

a

h(x)fY (x)dx=h(b)−
b∫

a

h′(x)FY (x)dx ≥h(b)−
b∫

a

h′(x)FX(x)dx =

b∫

a

h(x)fX(x)dx
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Skewness.

Let µ = E[X] and σ =
√
V ar(X) =

√
E[(X − µ)2].
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Pearson’s moment coefficient of skewness

γ = E

[(
X − µ
σ

)3
]

The sign of γ determines positive/negative skewness.

Positive skewness ⇒ mean-median-mode inequality:

mode < median < mean.
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Skewness.

Positive skewness ⇒ mean-median-mode inequality:

mode < median < mean.

Negative skewness ⇒ mean < median < mode.
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Skewness.

Pearson’s moment coefficient of skewness

γ = E

[(
X − µ
σ

)3
]

Positive skewness ⇒ mean-median-mode inequality:

mode < median < mean.

Pearson’s first skewness coefficient (mode skewness):

mean−mode

standard deviation

Pearson’s second skewness coefficient (median skewness):

3× mean−median

standard deviation
.
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Fréchet p-mean.

For p ∈ [1,∞) and a random variable X with the finite
(p − 1)-st moment, E[|X|p−1] <∞, the p-mean νp is
the unique solution of

E
[
(X − νp)p−1 1X>νp

]
= E

[
(νp −X)p−1 1X<νp

]
.

The above defined p-mean is extending the notion of
the Fréchet p-mean

νp = argmina∈RE
[
|X − a|p

]

which required finiteness of p-th moment, E[|X|p] <∞.

Notice that ν1 is the median:

P (X > ν1) = P (X < ν1).



A new life of Pearson’s skewness 9

Fréchet p-mean.

For p ∈ [1,∞) and a random variable X with the finite
(p − 1)-st moment, E[|X|p−1] <∞, the p-mean νp is
the unique solution of

E
[
(X − νp)p−1 1X>νp

]
= E

[
(νp −X)p−1 1X<νp

]
.

Notice that ν1 is the median:

P (X > ν1) = P (X < ν1).

Similarly, ν2 is the mean:

E
[
(X−ν2) 1X>ν2

]
= E

[
(ν2−X) 1X<ν2

]
⇔ E[X] = ν2.
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Fréchet p-mean.

E
[
(X − νp)p−1 1X>νp

]
= E

[
(νp −X)p−1 1X<νp

]

Notice that ν1 is the median:

P (X > ν1) = P (X < ν1).

Similarly, ν2 is the mean:

E
[
(X−ν2) 1X>ν2

]
= E

[
(ν2−X) 1X<ν2

]
⇔ E[X] = ν2.

Proposition. Consider a random variable X with
E[|X|3] < ∞. The Pearson’s moment coefficient of
skewness γ > 0 if and only if ν4 > ν2.

Proof.

γ =

(
ν4 − ν2

σ

)3

+ 3

(
ν4 − ν2

σ

)
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Skewness.

Pearson’s moment coefficient of skewness

γ = E

[(
X − µ
σ

)3
]
> 0 ⇔ ν2 < ν4

In the unimodal case, let ν0 denote the mode.

Pearson’s first skewness coefficient (mode skewness)

ν2 − ν0

σ
> 0 ⇔ ν0 < ν2

Pearson’s second skewness coefficient (median skewness)

3(ν2 − ν1)

σ
> 0 ⇔ ν1 < ν2
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True positive skewness.

Let D =
{
p ∈ [1,∞) : E[|X|p−1] <∞

}
and D0 = {0} ∪ D.

Definition. A continuous random variable X (equiv-
alently, its distribution) is truly positively skewed if
and only if νp is an increasing function of p ∈ D.
Analogously, for true negative skewness.

It is truly mode positively skewed if and only if νp, is
an increasing function of p ∈ D0. Analogously, for
true mode negative skewness.

True positive skewness insures

ν1 < ν2 < ν4

while truly mode positively skewed insures

ν0 < ν1 < ν2< ν4

i.e., all Pearson’s skewness criteria and mean-median-mode inequality.
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Exponential distribution.

Exponential random variable X: f(x) = λe−λx1(0,∞)(x).
W.l.o.g. let λ = 1. Equation

νp∫

0

(νp − x)p−1e−x dx =

∞∫

νp

(x− νp)p−1e−x dx.

simplifies to

νp∫

0

xp−1ex dx = Γ(p) =

∞∫

0

xp−1e−x dx.

Differentiating d
dp

yields

νp−1
p eνp

dνp

dp
+

νp∫

0

xp−1ex logx dx =

∞∫

0

xp−1 e−x logx dx.
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Exponential distribution.

νp∫

0

xp−1ex dx = Γ(p) =

∞∫

0

xp−1e−x dx.

Since 1
Γ(p)

xp−1 e−x1(0,∞)(x) stochastically dominates 1
Γ(p)

xp−1 ex1(0,νp)(x),

νp−1
p eνp

dνp

dp
=

∞∫

0

xp−1 e−x logx dx−
νp∫

0

xp−1ex logx dx > 0

by

Lemma. If Y exhibits stochastic dominance over X,
then, for any increasing function h : R → R we have
E[h(Y )] ≥ E[h(X)]. Moreover, if Y exhibits strict
stochastic dominance over X, and if h(x) is strictly
increasing, then E[h(Y )] > E[h(X)].
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Skewness and stochastic dominance.

Let X be a continuous random variable with density
f(x) and supp(f) = (L,R). Then

Hp :=

νp−L∫

0

xp−1 f(νp − x) dx =

R−νp∫

0

xp−1 f(νp + x) dx.

Positive skewness: the left half is “spreading short”
and the right half is “spreading longer”.
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Skewness and stochastic dominance.

Let X be a continuous random variable with density
f(x) and supp(f) = (L, R). Then

Hp :=

⌫p�LZ

0

xp�1 f(⌫p � x) dx =

R�⌫pZ

0

xp�1 f(⌫p + x) dx.

Positive skewness: the left tail is “spreading short”
and the right tail is “spreading longer”.

Interpretation: 1
Hp

xp�1 f(⌫p + x)1(0,R�⌫p)(x) to exhibit

strict stochastic dominance over 1
Hp

xp�1 f(⌫p�x)1(0,⌫p�L)(x).
Interpretation: 1

Hp
xp−1 f(νp + x)1(0,R−νp)(x) to exhibit

strict stochastic dominance over 1
Hp
xp−1 f(νp−x)1(0,νp−L)(x).
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Skewness and stochastic dominance.

Hp :=

νp−L∫

0

xp−1 f(νp − x) dx =

R−νp∫

0

xp−1 f(νp + x) dx.

Positive skewness: the left half is “spreading short”
and the right half is “spreading longer”.

Interpretation: 1
Hp
xp−1 f(νp + x)1(0,R−νp)(x) to exhibit

strict stochastic dominance over 1
Hp
xp−1 f(νp−x)1(0,νp−L)(x).

Theorem. If 1
Hp
xp−1 f(νp+x)1(0,R−νp)(x) exhibits strict

stochastic dominance over 1
Hp
xp−1 f(νp−x)1(0,νp−L)(x),

then function νp is increasing at p.

Consequently, if the above stochastic dominance holds
for all p in the interior of D, the distribution is truly
positively skewed
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True positive skewness: examples.

• Gamma random variable: f(x) = 1
Γ(α)

λαxα−1e−λx

with parameters α > 0 and λ > 0 is truly mode pos-
itively skewed.

• Beta random variable: f(x) = 1
B(α,β)

xα−1(1−x)β−1

with parameters β > α > 1 (and mode ν0 = α−1
α+β−2

< 1
2
)

is truly mode positively skewed.

• Pareto random variable: f(x) =
α

xα+1
, x ∈ [1,∞),

with parameter α > 0 is truly mode positively skewed.

Notice that for α ∈ (0,1), the quantities ν2 = E[X],
σ, and γ do not exist.
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• Log-normal random variable:

f(x) =
1

x
√

2πσ2
exp

{
−(logx− µ)2

2σ2

}

over (L,R) = (0,∞), with parameters µ and σ2.

ν0 = exp
{
µ− σ2

}

Theorem.

νp = exp

{
µ+

p− 1

2
σ2

}
for all p ∈ (0,∞)
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Lévy distribution.

For scale parameter c > 0,

f(x) =

√
c

2π

1

x3/2
e−c/(2x), x > 0

Mean: ∞

Skewness: undefined

My students,
Alex Negrón, Clarice Pertel, and Christopher Wang

have shown that

• Lévy distribution is truly positively skewed:

νp ↑ for p ∈ D = [1,3/2).
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Skew-normal distribution.

For the parameter α ∈ R,

f(x) = 2ϕ(x)Φ(αx), x ∈ R

where ϕ(x) and Φ(x) are
the standard normal p.d.f.
and c.d.f.

My students,
Alex Negrón, Clarice Pertel, and Christopher Wang

have shown that

• Skew-normal distribution is truly positively skewed
if and only if the shape parameter

α > 0.
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Multivariate setting.

The definition of p-mean extends naturally to multi-
variate distributions as follows.

For a continuously distributed random vector X =

(X1, . . . , Xk), let νp =
(
ν(1)
p , . . . , ν(k)

p

)
with ν(j)

p solving

E
[
(Xj − ν(j)

p )+ ‖X− νp‖p−2
]

= E
[
(ν(j)

p −Xj)+ ‖X− νp‖p−2
]
,

where x+ = max{0, x} and ‖ · ‖ denotes the usual
Euclidean norm.

Analogously to 1D,

νp = argmina∈RkE
[
‖X− a‖p

]
,

whenever p-th moment of X is finite, i.e., νp is the
Fréchet p-mean.

Potential applications of multidimensional p-mean in
nonlinear regression analysis are being considered.
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Multivariate setting.Extensions of True Skewness 25

(a) � = (5, 0)> (b) � = (0, 5)> (c) � = (5, 5)>

Figure 4.1: Contour plots of 2-variate skew-normal distributions. Red arrow is ⌧ p, which is the
same for all p, and blue arrow is �.
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Consider the multivariate skew normal p.d.f.

f(y) = 2ϕk(y;µ,Σ)Φ1(λ>Σ−1/2(y − µ)), y ∈ Rk,

where ϕk(· ;µ,Σ) is k-variate normal p.d.f. with mean
µ and covariance matrix Σ, and Φ1(·) is the univariate
standard normal distribution.

Vector λ is sometimes called the skewness vector.
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