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Tribute to Ilya Zaliapin.

I was blessed to have Ilya Zaliapin as a close friend and collab-
orator with whom we jointly developed the theory of random
self-similar trees. I am grateful to Ilya for all the things I learned
from him and for his own beautiful scientific world he generously
shared with me.

March 6, 1973 - May 2, 2023
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The Horton-Strahler orders.

ij ii

i+1j

i<j

The Horton-Strahler hierarchical ordering scheme
was developed by R. E. Horton (1945) and
A. N. Strahler (1957) for the analysis of river
streams. Each leaf is assigned order 1. At a junc-
tion of order i link with an order j link, the new
order is determined according to

ord(`) = max (i, j) + δij = blog2(2i + 2j)c.

ij ii

i+1j

i<j

The Horton-Strahler orders are known in com-
puter science as the register function or regis-
ter number. They are the minimal number of
memory registers required for evaluating a binary
arithmetic expression [A. P. Ershov, Comm. ACM
(1958)].
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The Horton-Strahler orders.

The Horton-Strahler hierar-
chical ordering scheme was
developed by R. E. Horton
(1945) and A. N. Strahler
(1957) for the analysis of river
streams.

Each leaf is assigned order 1.
At a junction of order i link
with an order j link, the new
order is determined according
to

ord(`) = max (i, j) + δij = blog2(2i + 2j)c.
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The Horton-Strahler orders.
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The Horton-Strahler hierar-
chical ordering scheme was
developed by R. E. Horton
(1945) and A. N. Strahler
(1957) for the analysis of river
streams.

Each leaf is assigned order 1.
At a junction of order i link
with an order j link, the new
order is determined according
to

ord(`) = max (i, j) + δij = blog2(2i + 2j)c.
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The Horton-Strahler orders.
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The Horton-Strahler hierar-
chical ordering scheme was
developed by R. E. Horton
(1945) and A. N. Strahler
(1957) for the analysis of river
streams.

Each leaf is assigned order 1.
At a junction of order i link
with an order j link, the new
order is determined according
to

ord(`) = max (i, j) + δij = blog2(2i + 2j)c.
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The Horton-Strahler orders.
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The Horton-Strahler hierar-
chical ordering scheme was
developed by R. E. Horton
(1945) and A. N. Strahler
(1957) for the analysis of river
streams.

Each leaf is assigned order 1.
At a junction of order i link
with an order j link, the new
order is determined according
to

ord(`) = max (i, j) + δij = blog2(2i + 2j)c.

The highest Horton-Strahler order is the order of the entire tree.

The Amazon river has Horton-Strahler order 12.
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Horton pruning.

1
11

1
1

1

1

1

1
1

1

11

1

1

11

1

1

1
1

111
1

1

1
1

1

1 1

1

1

2
2

2

2

2

2

22

2

2
2

2

2
2

2
2

2
2

2 2
2

2

3

3
3

3
3

33

3

3

3

R
−→

2
2

2

2

2

2

22

2

2
2

2

2
2

2
2

2
2

2 2
2

2

3

3
3

3
3

33

3

3

3

¥ R
−→

3

3
3

3
3

33

3

3

3
t R

−→ φ
empty

tree

Let T be a reduced (no degree two vertices) rooted tree.

Horton pruning R is an operation of removing all leaf edges
followed by series reduction. Here, R(φ) = φ.

Iterating R induces the Horton-Strahler orders for binary trees
and in general: the connected segments in T that were removed
after k-th pruning will have the Horton-Strahler order k.

The Horton-Strahler order of T is ord(T ) = min
{
k ≥ 0 : Rk(T ) = φ

}
.
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The Horton Law.
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Let Nk = Nk[T ] denote the
number of branches of order
k in a random tree T .

The Horton Law is satisfied
if there exists a parameter
R ≥ 2, called the Horton ex-
ponent, such that

Nk

N1
∝ R1−k

interpreted broadly. For ex-
ample, it can be convergence
in probability or a.s. conver-
gence. The geometric de-
cay can be expressed by tak-
ing the limit of the k-th root
or the ratio of consecutive
terms.

In this example, N1 = 33, N2 = 6, and N3 = 1.

The Horton Law is preserved under Horton pruning: if it holds
for a random tree T , it should also hold for R(T ). Indeed,

Nk[R(T )] = Nk+1[T ].
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Kingman’s Coalescent Tree.

0
n singletons

time

- * * * * *

\

v

Consider the Kingman’s coalescent process that
begins with n singletons, where pairs of particles
coalesce with rate 1

n
. Let Tn be the tree represent-

ing its merger history. It has N1[Tn] = n leaves.

In [YK and I. Zaliapin, Ann. I.H.P. Prob.&Stat. (2017)],
the following limit law

Nk[Tn]

N1[Tn]

p−→ Nk

is proved in probability for all k.

Determining the hydrodynamic limit yields

Nk =
1

2

∫ ∞

0

g2
k(x) dx,

where gk(x) solve

g′k+1(x)−
g2
k(x)

2
+ gk(x)gk+1(x) = 0 (x ≥ 0)

with g1(x) = 2
x+2

and gk(0) = 0 for k ≥ 2.
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Kingman’s Coalescent Tree.

0
n singletons

time

- * * * * *

\

v

Theorem. [YK and I. Zaliapin, Ann. I.H.P. Prob.&Stat.
(2017)]

lim
k→∞

(Nk)−
1
k = R with 2 ≤ R ≤ 4.

Thus, we proved a variant of Horton law:

Nk[Tn]

N1[Tn]

p−→ Nk ∝ R1−k

The numerical solutions of the ODEs suggest

lim
k→∞

Nk
Nk+1

= lim
k→∞

(Nk)−
1
k = R

and lim
k→∞

(NkRk) = Const. as seen on log-scale

with

R = 3.043827 . . ..
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Horton prune-invariance

Recall that the Horton Law
Nk

N1
∝ R1−k with the Horton exponent

R ≥ 2 is preserved under Horton pruning: if it holds for a random
tree T then it hold for R(T ).

Thus, the Horton Law is a weak form of invariance under Horton-
pruning. There is a stronger form of Horton prune-invariance.

For a measure µ on a space of reduced rooted trees such that
µ(φ) = 0 consider the pushforward measure ν = R∗(µ), i.e.,

ν(T ) = µ ◦ R−1(T ) = µ
(
R−1(T )

)
.

Measure µ is said to be Horton prune-invariant if

ν (T |T 6= φ) = µ(T ) ∀T 6= φ.

Objective: finding and classifying Horton prune-invariant tree
measures.
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Attractors

For a tree measure ρ0 let νk = Rk
∗(ρ0) denote the pushforward

probability measure induced by operator Rk, i.e.,

νk(T ) = ρ0 ◦ R−k(T ) = ρ0

(
R−k(T )

)
, and set ρk(T ) = νk (T |T 6= φ).

A Horton prune-invariant measure ρ∗ is an attractor under Hor-
ton pruning if

lim
k→∞

ρk = ρ∗.

For simplicity, we will use the following notation for this conver-

gence

ρ0
R∞∗−→ ρ∗.

Objective: identifying domains of attraction.
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Pruning Galton-Watson trees

Consider a Galton-Watson tree measure GW({qk}) with q1 = 0.

Theorem. [G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)]

• Assuming finite second moment
∞∑
k=0

k2qk <∞, measure GW({qk})

is Horton prune-invariant if and only if it is GW(q0 = q2 =1/2),
i.e., critical binary.

• Assume criticality
∞∑
k=0

kqk=1 and finite branching
∣∣{k : qk > 0}

∣∣<∞.

Then, GW({qk})
R∞∗−→ GW(q0 = q2 =1/2).

• Assume subcriticality
∞∑
k=0

kqk<1, then GW({qk})
R∞∗−→ GW(q0 =1).

Moreover, for the Horton prune-invariant measure GW(q0 = q2 =1/2),
they established the Horton law with Horton exponent R = 4.
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Invariant Galton-Watson measures

For a given q ∈ [1/2,1), a critical Galton-Watson measure GW({qk})

with the generating function Q(z) =
∞∑
k=0

qkz
k expressed as

Q(z) = z + q(1− z)1/q

is called the invariant Galton-Watson (IGW) tree measure with
parameter q, and denoted by IGW(q).

Branching probabilities: q0 = q, q1 = 0, q2 = (1− q)/2q, and

qk =
1− q
k! q

k−1∏
i=2

(i− 1/q) (k ≥ 3).

Here, if q = 1/2, then the distribution is critical binary, i.e.,
GW(q0 = q2 =1/2).

If q ∈ (1/2,1), the distribution is of Zipf type with

qk =
(1− q)Γ(k − 1/q)

qΓ(2− 1/q) k!
∼ Ck−(1+q)/q, where C =

1− q
q Γ(2− 1/q)

.

This family of tree measures is also known as stable Galton-
Watson trees.
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Invariant Galton-Watson measures

Consider GW({qk}) with q1 = 0 and generating function Q(x) =
∞∑
k=0

qkx
k.

Assumption 1. Limit lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) exists.

Theorem [YK and I. Zaliapin, Bernoulli (2021)].

• If Assumption 1 is satisfied, then measure GW({qk}) is Horton
prune-invariant if and only if it is IGW(q0).

• Assume criticality
∞∑
k=0

kqk=1 and suppose Assumption 1 is sat-

isfied. Then, GW({qk})
R∞∗−→ IGW(q) with q = lim

x→1−
Q(x)−x

(1−x)(1−Q′(x))
.

Corollary [YK and I. Zaliapin, Bernoulli (2021)].

Suppose the offspring distribution qk is of Zipf type:

qk ∼ Ck−(α+1) with α ∈ (1,2] and C > 0.

Then, GW({qk})
R∞∗−→ IGW(q) with q = 1

α
.

For IGW(q) tree, we established the Horton law with R = (1− q)−1/q.
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The Critical Tokunaga tree.

order 2
order 3
order 4
order 5
order 6

(A) 356 streams (B) 80 streams (C) 15 streams (D) 4 streams (E) 1 stream

Combining the properties of a river tree model yields a continuous-
time multi-type branching process, we named the critical Toku-
naga process (model), whose branching structure depends on
parameter c > 1 and edge-lengths distribution depends on γ > 0.

For c = 2, the critical Tokunaga model yields GW(q0 = q2 =1/2).

• [YK, I. Zaliapin, E. Foufoula-Georgiou, Surv. Geophys. (2022)]
• [YK, I. Zaliapin, E. Foufoula-Georgiou, Phys. Rev. E (2022)]
• [YK and I. Zaliapin, Probability Surveys (2020)]
• [YK and I. Zaliapin, Stoc. Proc. Appl. (2019)]
• [YK and I. Zaliapin, Chaos (2018)]
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Critical Tokunaga Model closely fits observations.

(A) (B)

(C) (D)

Critical Tokunaga (c = 2.3) fit for hydrological quantities of Beaver Creek, KY.
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A random attachment model (RAM).
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Consider the following random attachment process
{

ΥK

}
K∈N

.

• Υ1 is an I-shaped tree of length Y1
d∼ Exp(γ).

• Conditioned on ΥK, tree ΥK+1 is obtained as follows:

(i) Attach new leaf edges to ΥK at the points sampled with
a homogeneous Poisson point process of intensity γ(c− 1)
along the carrier space ΥK.

(ii) Attach a pair of new leaf edges to each leaf of ΥK.

The lengths of all newly attached leaf edges are i.i.d. ex-
ponential random variables with parameter γcK.
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Proving the Horton Law via Martingales.

Observe that each ΥK is a binary tree of order K. We proved
that the critical Tokunaga tree of order K is equivalent to
cK−1ΥK.

Let XK = N1[ΥK] (number of leaves) and YK = length(ΥK).

Lemma [YK and I. Zaliapin, Probability Surveys (2020)].

The sequence

MK = R1−K
(
XK + γ(c− 1)cK−1YK

)
with K ∈ N

is a martingale with respect to the process
{

ΥK

}
K∈N

.

The above Lemma is used in the proof of the Horton Law.

Theorem [YK and I. Zaliapin, Probability Surveys (2020)].

Nk[ΥK]

N1[ΥK]

a.s.−→ R1−k as K →∞, where R = 2c.
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Hydrological laws for the RAM.
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For the limit Υ∞ = lim
K→∞

ΥK =
∞⋃

K=1

ΥK,

we established

• Fractal dimension:

d =
log(2c)

log c
.

• Hack’s law: for a link of order i,
let Ai denote the local contributing
area and Λi denote the link’s length.
Then,

Λi ∼ Const.×
(
Ai
)h
, where h = d−1 =

log c

log(2c)
.

See [YK, I. Zaliapin, E. Foufoula-Georgiou, Phys. Rev. E (2022)]
and [YK, I. Zaliapin, E. Foufoula-Georgiou, Surv. Geophys. (2022)].
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Metric Galton-Watson trees.

The following are common notations: for a metric tree T ,

length(T ) = the sum of the lengths of edges in T,

height(T ) = the maximal distance to the root ρ,

shape(T ) = combinatorial shape of T.

Continuous Galton-Watson measure: for p.m.f. {qk} and λ > 0,

T
d

= GW({qk}, λ) if shape(T )
d

= GW({qk})

and, conditioned on shape(T ), the edges of T are i.i.d. Exp(λ).

Exponential invariant Galton-Watson (IGW) measure: for a given
q ∈ [1/2,1) and λ > 0,

T
d

= IGW(q, λ) if shape(T )
d

= IGW(q)

and, conditioned on shape(T ), the edges of T are i.i.d. Exp(λ).
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Exponential Invariant Galton-Watson trees.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider q ∈ [1/2,1), λ > 0, and T
d

= IGW(q, λ). Then,

(a) P
(

length(T ) ≤ x
)

=
∞∑
n=1

(−1)n−1Γ(n/q+1)
n!n!Γ(n/q−n+2)

(λq)nxn.

Here, for q = 1
2
, P
(

length(T ) ≤ x
)

= 1− e−λx
(
I0(λx) + I1(λx)

)
.

(b) P
(

length(T ) > x
)
∼ 1

(λq)q Γ(1−q) x
−q.

(c) P
(

height(T ) ≤ x
)

= 1−
(
λ(1− q)x+ 1

)−q/(1−q)
.

(d) P
(

# of edges in T = n
)

=
n∑

k=1
(−1)k−1

(
n−1
k−1

)
Γ(k/q+1)

k! Γ(k/q−k+2)
qk

for n = 1,2, . . ..
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Applications in seismology.

In [YK, I. Zaliapin, Y. Ben-Zion, Geophys. J. Intl. (2022)],
we analyzed the observed seismicity in southern California and
demonstrated that the IGW model provides a close fit to the
observed earthquake clusters.

Left: [Hauksson et al. (2012)] Southern California seismicity
catalog for 1981-2019 (magnitude ≥ 2);

Right: IGW fit to the empirical cluster sizes.
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Generalized dynamical pruning.

ρ
1

T
1

T
2

Δ
x,T

x

T

(b) Isometry(a) Descendant tree

Consider a monotone non-decreasing function
ϕ(T ) on trees: ϕ(T1) ≤ ϕ(T2) whenever T1 � T2,
i.e., T1 can be inscribed into T2 via an isometry.

Generalized dynamical pruning: for any t ≥ 0, let

St(ϕ, T ) = {root ρ} ∪
{
x ∈ T : ϕ

(
∆x,T

)
≥ t
}

It cuts all descendant trees ∆x,T for which ϕ
(

∆x,T

)
is below threshold t. Here,

Ss(ϕ, T ) � St(ϕ, T ) whenever s ≥ t.

Example (Tree height). Let ϕ(T ) = height(T ), then
St(ϕ, T ) represents the tree erasure as studied in
[J. Neveu, Adv. Appl. Prob. (1986)].

Example (Tree length). Let ϕ(T ) = length(T ), then
St(ϕ, T ) represents the potential dynamics of 1D continuum
ballistic annihilation studied in [YK and I. Zaliapin, JSP (2020)].ρ

1

T
1

T
2

Δ
x,T

x

T

(b) Isometry(a) Descendant tree
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Generalized dynamical pruning.

I
Consider a monotone non-decreasing function
ϕ(T ) on trees: ϕ(T1) ≤ ϕ(T2) whenever T1 � T2,
i.e., T1 can be inscribed into T2 via an isometry.

Generalized dynamical pruning: for any t ≥ 0, let

St(ϕ, T ) = {root ρ} ∪
{
x ∈ T : ϕ

(
∆x,T

)
≥ t
}

It cuts all descendant trees ∆x,T for which ϕ
(

∆x,T

)
is below threshold t. Here,

Ss(ϕ, T ) � St(ϕ, T ) whenever s ≥ t.

Example (Tree height). Let ϕ(T ) = height(T ), then

St(ϕ, T ) represents the tree erasure as studied in

[J. Neveu, Adv. Appl. Prob. (1986)].

Example (Tree length). Let ϕ(T ) = length(T ), then

St(ϕ, T ) represents the potential dynamics of 1D continuum

ballistic annihilation studied in [YK and I. Zaliapin, JSP (2020)].

I
'
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A related tree reduction.

[T. Duquesne and M. Winkel, SPA (2019)] introduced a very
general kind of tree reduction, called hereditary reduction, in
the context of complete locally compact rooted (CLCR) real
trees. The notion of hereditary reduction is a generalization
of tree erasure in [J. Neveu, Adv. Appl. Prob. (1986)] and
trimming in [S. N. Evans, Saint-Flour Lect. (2006)] .

[T. Duquesne and M. Winkel, SPA (2019)]: tree measures
IGW(q, λ) are invariant with respect to hereditary reduction.

Prune-invariance. We established an analogous result.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a monotone non-decreasing function ϕ(T ) ≥ 0. Then,

T
d

= IGW(q, λ) ⇒
{
St(ϕ, T )

∣∣St(ϕ, T ) 6= φ
} d

= IGW
(
q, λp

(1−q)/q
t

)
,

where pt = P(ϕ(T ) > t) is assumed to be positive for all t ≥ 0.

Recall that pt = 1−
∞∑
n=1

(−1)n−1Γ(n/q+1)
n!n!Γ(n/q−n+2)

(λq)ntn for ϕ(T ) = length(T ),

and pt =
(
λ(1− q)t+ 1

)−q/(1−q)
for ϕ(T ) = height(T ).
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Attraction property of critical Galton-Watson trees

Consider GW({qk}, λ) with q1 = 0 and generating function Q(x) =
∞∑
k=0

qkx
k.

Assumption 1. Limit lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) exists.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a monotone non-decreasing function ϕ(T ) ≥ 0.

• Assume criticality
∞∑
k=0

kqk = 1 and suppose Assumption 1 is

satisfied. Then, for T
d∼ GW({qk}, λ),

lim
t→∞

P
(

shape(St(T )) = ·
∣∣St(T ) 6= φ

)
= IGW(q) with q = lim

x→1−

Q(x)− x
(1− x)(1−Q′(x))

.

• Assume subcriticality
∞∑
k=0

kqk<1, then for T
d∼ GW({qk}, λ),

lim
t→∞

P
(

shape(St(T )) = ·
∣∣St(T ) 6= φ

)
= GW(q0 =1).
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Attraction property of critical Galton-Watson trees

Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a critical Galton-Watson measure GW({qk}, λ) with
q1 = 0, with offspring distribution qk of Zipf type:

qk ∼ Ck−(α+1) with α ∈ (1,2] and C > 0.

Then, for T
d∼ GW({qk}, λ),

lim
t→∞

P
(

shape(St(T )) = ·
∣∣St(T ) 6= φ

)
= IGW(q) with q =

1

α
.

Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a critical Galton-Watson measure GW({qk}, λ) with

q1 = 0 such that
∞∑
k=2

k2qk <∞.

Then, for T
d∼ GW({qk}, λ),

lim
t→∞

P
(

shape(St(T )) = ·
∣∣St(T ) 6= φ

)
= IGW(1/2) (critical binary).



Random self-similar trees 29

Level Set Trees.

Consider a continuous excursion Xt. Its level set tree level(Xt)
tracks the branching/termination history of the connected com-
ponents in the level sets Lα = {t : Xt ≥ α} as α increases from
0 up.

Consider excursion X(1)
t obtained by a linear interpolation of the

boundary values and the local minima of Xt. We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

level
(
X(1)
t

)
= R

(
level(Xt)

)
.

This can be iterated: level
(
X(m)
t

)
= Rm

(
level(Xt)

)
, m = 1,2, . . ..
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Level Set Trees.

Consider a continuous excursion Xt. Its level set tree level(Xt)
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Level Set Trees.
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Level Set Trees.

.
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Level Set Trees.

There is a general framework for defining level set trees.

We generalized a well-known result about excursions with Laplace
kernels. See [J. Neveu and J. Pitman, Lect. Notes Math. (1989)].

Theorem. [YK and I. Zaliapin, Probability Surveys (2020)].
Consider a positive excursion Xt induced by a homogeneous ran-
dom walk on R with a symmetric atomless transition kernel. Let

T = level(Xt), then shape(T )
d∼ GW(q0 = q2 =1/2).

Moreover, conditioned on shape(T ), the edge lengths are i.i.d.
if and only if the transition kernel has Laplace distribution.

In particular, this framework yields some of the results in
[G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)].
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