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Tribute to Ilya Zaliapin.

I was blessed to have Ilya Zaliapin as a close friend and collab-
orator with whom we jointly developed the theory of random
self-similar trees. I am grateful to Ilya for all the things I learned
from him and for his own beautiful scientific world he generously
shared with me.

March 6, 1973 - May 2, 2023
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The Horton-Strahler orders.

The Horton-Strahler hierarchical ordering scheme
was developed by R.E. Horton (1945) and
A.N. Strahler (1957) for the analysis of river
streams. Each leaf is assigned order 1. At a junc-
tion of order ¢ link with an order j link, the new
order is determined according to

ord(¢) = max (i, ) + &; = [loga(2 4 27) |.

The Horton-Strahler orders are known in com-
puter science as the register function or regis-
ter number. They are the minimal number of
memory registers required for evaluating a binary
arithmetic expression [A. P. Ershov, Comm. ACM
(1958)].
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The Horton-Strahler orders.

The Horton-Strahler hierar-
chical ordering scheme was
developed by R.E. Horton
(1945) and A.N. Strahler
(1957) for the analysis of river
streams.

Each leaf is assigned order 1.
At a junction of order 7 link
with an order j link, the new
order is determined according
to

ord(¢) = max (i,5) + &;; = [10ga(2" + 27) .
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The Horton-Strahler orders.

The Horton-Strahler hierar-

L 1 chical ordering scheme was

developed by R.E. Horton

1 (1945) and A.N. Strahler

(1957) for the analysis of river
1 streams.

1 Each leaf is assigned order 1.
At a junction of order 7 link
V@ with an order j link, the new
order is determined according

1 to

ord(¢) = max (i,5) + &;; = [10ga(2" + 27) .
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The Horton-Strahler orders.

The Horton-Strahler hierar-

1 1 chical ordering scheme was

1] 2) ! 2 developed by R.E. Horton

2 2| 1 (1945) and A.N. Strahler

2 1 ! (1957) for the analysis of river
1 2 streams.

1 2 Each leaf is assigned order 1.

3 7 At a junction of order 7 link
V@ with an order j link, the new
o order is determined according
1 to

ord(£) = max (4, ) + &; = [loga(2" + 27) |.
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The Horton-Strahler orders.

The Horton-Strahler hierar-

1 1 chical ordering scheme was

1] 2) 1 2 developed by R.E. Horton

2 2| 1 (1945) and A.N. Strahler

2 1 ! (1957) for the analysis of river
1 2 streams.

3 1 2 Each leaf is assigned order 1.
3 2 7 At a junction of order 7 link
sV @ with an order j link, the new
5 3 order is determined according
’ to

3 ord(£) = max (4, ) + &; = [loga(2" + 27) |.

The highest Horton-Strahler order is the order of the entire tree.

The Amazon river has Horton-Strahler order 12.
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Horton pruning.
Let T be a reduced (no degree two vertices) rooted tree.

R
— ¢
empty
tree

Horton pruning R is an operation of removing all leaf edges
followed by series reduction. Here, R(¢) = ¢.

Iterating R induces the Horton-Strahler orders for binary trees
and in general: the connected segments in T" that were removed
after k-th pruning will have the Horton-Strahler order k.

The Horton-Strahler order of T'is ord(T) = min {k; >0:RMT) = ¢}.
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T he Horton Law.
1

1 1 2) 1 12
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2 2| 1
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31
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2 3 T2

Let N, = N.[T] denote the
number of branches of order
k in a random tree T'.

The Horton Law is satisfied
if there exists a parameter
R > 2, called the Horton ex-
ponent, such that

interpreted broadly. For ex-
ample, it can be convergence
in probability or a.s. conver-
gence. The geometric de-
cay can be expressed by tak-
ing the limit of the k-th root
or the ratio of consecutive
terms.

In this example, N1 = 33, N> =6, and N3 = 1.

The Horton Law is preserved under Horton pruning: if it holds
for a random tree T, it should also hold for R(T). Indeed,
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Kingman’'s Coalescent Tree.

n singletons

IRVA

time

Consider the Kingman's coalescent process that
begins with n singletons, where pairs of particles
coalesce with rate % Let T, be the tree represent-
ing its merger history. It has N;[T,] = n leaves.

In [YK and 1. Zaliapin, Ann. ILH.P. Prob.&Stat. (2017)],

the following limit law
Nl[Tn]

is proved in probability for all k.

p
—)Nk

Determining the hydrodynamic limit yields

Nip== / g2 (x) da,
2 Jo
where gi(x) solve
, g5 ()
Ghy1(x) — 5 + gk(x)gr+1(x) =0 (x> 0)
2

with g1 (x) = —75 and g(0) =0 for k > 2.
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Kingman’s Coalescent Tree.

n singletons

IRVA

time

Theorem. [YK and 1. Zaliapin, Ann. I.H.P. Prob.&Stat.

(2017)]

lim (M) T =R with 2< R< 4.

k—o0
Thus, we proved a variant of Horton law:

Ni|T,
k[ ] i)./\/‘k; o Rl—kﬁ
Nl[Tn]

The numerical solutions of the ODEs suggest

. N, . _1
lim —" = lim (W) F =R
k—oo /Ng+1 k—o00

and lim (W,R*) = Const. as seen on log-scale
k—o0

with
R = 3.043827....
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Horton prune-invariance

Recall that the Horton Law %’; ~x R~k with the Horton exponent

R > 2 is preserved under Horton pruning: if it holds for a random
tree T then it hold for R(T).

Thus, the Horton Law is a weak form of invariance under Horton-
pruning. There is a stronger form of Horton prune-invariance.

Yy =117

For a measure p on a space of reduced rooted trees such that
1(¢p) = 0 consider the pushforward measure v = R.(n), i.e.,

v(T) = poR(T) = p(R(T)).
Measure p is said to be Horton prune-invariant if

v(T|T # ¢)=u(T) VT # ¢
Objective: finding and classifying Horton prune-invariant tree
measures.
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Attractors

For a tree measure pg let v, = R¥(pg) denote the pushforward
probability measure induced by operator RF, i.e.,

ve(T) = poo R (T) = po(R7¥(T)), and set pu(T) = vi (T |T # ¢).

Yy~

A Horton prune-invariant measure p* is an attractor under Hor-
ton pruning if

lim pp = p*.

k—o0
For simplicity, we will use the following notation for this conver-
gence R
po —>p .

Objective: identifying domains of attraction.



Random self-similar trees 13

Pruning Galton-Watson trees
Consider a Galton-Watson tree measure GW({qx}) with ¢1 = 0.

Theorem. [G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)]

o
e Assuming finite second moment >~ k2q; < oo, measure GW({q})
k=0
is Horton prune-invariant if and only if it is GW(qo= ¢2=1/2),
i.e., critical binary.

e Assume criticality Ek:qkzl and finite branching‘{k D qE > O}‘ < 00.
k=0

Then,  OW({a}) - OW(go= q2=1/2).

e Assume subcriticality Zk% <1, then GW({{qx}) LN GW(qg=1).
k=0

Moreover, for the Horton prune-invariant measure GW(qo= ¢2=1/2),
they established the Horton law with Horton exponent R = 4.



Random self-similar trees 14

Invariant Galton-Watson measures
For a given g € [1/2,1), a critical Galton-Watson measure GW({qx})

with the generating function Q(z) = Z qrz"® expressed as
k=0

Q(z) = z+q(1 — )"/
is called the invariant Galton-Watson (IGW) tree measure with
parameter ¢, and denoted by ZGW(q).

Branching probabilities: go = ¢, g1 =0, ¢2 = (1 — q)/2q, and
) k—1
— -4 .
aw=" [ [6-vo k=3
i=2

Here, if ¢ = 1/2, then the distribution is critical binary, i.e.,
GW(go= q2=1/2).
If g € (1/2,1), the distribution is of Zipf type with

QG = (1 - Q)r(k — 1/(]) ~ Ck?_(1+Q)/q, where (C = 1- g .
ar(2—1/g) k! ar(2-1/q)

This family of tree measures is also known as stable Galton-
Watson trees.
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Invariant Galton-Watson measures

Consider GW({qxr}) with g1 = 0 and generating function Q(z) = Z qrx®.

k=0
Assumption 1. Limit lim Qo) -z
1= (1—2) (1 - Q(2))
Theorem [YK and 1. Zaliapin, Bernoulli (2021)].

e If Assumption 1 is satisfied, then measure GW({qr}) is Horton
prune-invariant if and only if it is ZGW(qo).

exists.

e Assume criticality Zkzqkzl and suppose Assumption 1 is sat-
k=0

isfied. Then, GW({{qr}) — ZGW(q) with ¢ = x'l}T_ A—2)(1—Q'())

Corollary [YK and I. Zaliapin, Bernoulli (2021)].
Suppose the offspring distribution ¢, is of Zipf type:
g ~ Ck~ @t with a€(1,2] and C > 0.

Then, OW({a}) — TGW(q) with q= 2.

For ZGW(q) tree, we established the Horton law with R = (1 — ¢) /9,
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The Critical Tokunaga tree.

—— order2

order 3
m— Order 4
s Order 5
mmmm order 6

(A) 356 streams (B) 80 streams (C) 15 streams (D) 4 streams (E) 1 stream

Combining the properties of a river tree model yields a continuous-
time multi-type branching process, we named the critical Toku-
naga process (model), whose branching structure depends on
parameter ¢ > 1 and edge-lengths distribution depends on v > 0.

For ¢ = 2, the critical Tokunaga model yields GW(qo= ¢2=1/2).

[YK, I. Zaliapin, E. Foufoula-Georgiou, Surv. Geophys. (2022)]
[YK, I. Zaliapin, E. Foufoula-Georgiou, Phys. Rev. E (2022)]
[YK and 1. Zaliapin, Probability Surveys (2020)]

[YK and 1. Zaliapin, Stoc. Proc. Appl. (2019)]

[YK and I. Zaliapin, Chaos (2018)]
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Critical Tokunaga Model closely fits observations.
(A) (B)
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Critical Tokunaga (¢ = 2.3) fit for hydrological quantities of Beaver Creek, KY.
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A random attachment model (RAM).
Consider the following random attachment process {TK}

N N
o

KeN’

|/
N

o
N\

/ \

; " ; K
e 11 is an I-shaped tree of length Y3 9 Exp(~v).
e Conditioned on Tk, tree T4 is obtained as follows:

(i) Attach new leaf edges to T at the points sampled with
a homogeneous Poisson point process of intensity v(c — 1)
along the carrier space .

(ii) Attach a pair of new leaf edges to each leaf of Y.

The lengths of all newly attached leaf edges are i.i.d. ex-
ponential random variables with parameter ch.
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Proving the Horton Law via Martingales.

Observe that each T is a binary tree of order K. We proved
that the critical Tokunaga tree of order K is equivalent to
CK_lfY‘K.

Let Xx = N1[T k] (number of leaves) and Yx = length(T k).
Lemma [YK and I. Zaliapin, Probability Surveys (2020)].
The sequence

Mg = R (Xx +v(c— )" 'Yk)  with K €N

iSs @ martingale with respect to the process {TK}KEN'

The above Lemma is used in the proof of the Horton Law.

Theorem [YK and 1. Zaliapin, Probability Surveys (2020)].

%y RYF  as K — oo, where R = 2c.
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Hydrological laws for the RAM.

For the limit Yoo = Iim Tx = |J Tk,

K—o0 K—1
we established N%/
e Fractal dimension: kk\/
log(2
log ¢ .
e Hack's law: for a link of order g, = - \'r
let A; denote the local contributing : >
area and /\; denote the link's length.
Then,
h lo
\; ~ Const. x (AZ) , Where h = d! = i.
log(2c¢)

See [YK, 1. Zaliapin, E. Foufoula-Georgiou, Phys. Rev. E (2022)]

%
\\

I
\\

and [YK, 1. Zaliapin, E. Foufoula-Georgiou, Surv. Geophys. (2022)].
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Metric Galton-Watson trees.

The following are common notations: for a metric tree T,

length(T) = the sum of the lengths of edges in T,
height(T) = the maximal distance to the root p,
shape(T) = combinatorial shape of T.

Continuous Galton-Watson measure: for p.m.f. {gx} and A > 0,

d . d
T =6W{a}, ») if shape(T) =GW({a})
and, conditioned on shape(T), the edges of T are i.i.d. Exp()).

Exponential invariant Galton-Watson (IGW) measure: for a given
g€ [1/2,1) and X > 0,

T L I6W(q,)) if shape(T) = Z6W(q)
and, conditioned on shape(T), the edges of T are i.i.d. Exp(}).
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Exponential Invariant Galton-Watson trees.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]
Consider g € [1/2,1), A> 0, and T = ZGW(q, \). Then,

o (D) r(n/e+1) nm
(a) P(length(T) < z) = n; Il F(nJq—n-+2) (A z".

Here, for ¢ = 1, P(Iength(T) < m) =1—e (Io()\x) + Il()\x)).

1 —q
Y OQira—g T

(b) P(length(T) > z)

(c) P(height(T) <z) =1- (A1 -q)z+ 1)_”(1_@.

(d) P(# of edges in T'= n) = kz_:]_(_l)k_l (Z:i) k! rl_((://gj_kl—?—Q) qk

form=1,2,....
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Applications in seismology.

In [YK, I. Zaliapin, Y. Ben-Zion, Geophys. J. Intl. (2022)],
we analyzed the observed seismicity in southern California and
demonstrated that the IGW model provides a close fit to the
observed earthquake clusters.

ﬁ—Observations (M>2)
—IGW fit (q = 0.9, r=0.15)
[199% confidence limits

. LW erw  nsw 0w 0
a'N 10
120'W 119°W 18" W 17°w 116" W 15" W Tree (cluster) size, n

Left: [Hauksson et al. (2012)] Southern California seismicity
catalog for 1981-2019 (magnitude > 2);

Right: IGVW fit to the empirical cluster sizes.
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Generalized dynamical pruning.

Consider a monotone non-decreasing function
o(T) on trees: ¢(T1) < ¢(T2) whenever Ty < 15,
i.e., Ty can be inscribed into 75 via an isometry.

Generalized dynamical pruning: for any t > 0, let
Si(p, T) = {root p}uU {ZB eT: @(Az’T) > t}

It cuts all descendant trees A, ¢ for which cp(Ax,T)
is below threshold ¢t. Here,
T Ss(p, T) < S(p, T) whenever s >t.

Example (Tree height). Let o(T) = height(T), then
Si(p, T) represents the tree erasure as studied in
[J. Neveu, Adv. Appl. Prob. (1986)].

oX Example (Tree length). Let ¢(T) = length(T"), then
Si(p, T) represents the potential dynamics of 1D continuum
ballistic annihilation studied in [YK and 1. Zaliapin, JSP (2020)].
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Generalized dynamical pruning.

Consider a monotone non-decreasing function
o(T) on trees: o(T1) < o(T2) whenever T1 < T5,
i.e., T1 can be inscribed into 7> via an isometry.

Generalized dynamical pruning: for any ¢t > 0, let
Si(p, T) = {root p}uU {a: eT: (p(Am’T) > t}

It cuts all descendant trees A, ¢ for which (,O(ij)
is below threshold t. Here,
Ss(p, T) <X Si(p, T) whenever s >t.

Example (Tree height). Let o(T) = height(T), then
Si(p,T) represents the tree erasure as studied in
[J. Neveu, Adv. Appl. Prob. (1986)].

Example (Tree length). Let o(T) = length(T), then
Si(p, T) represents the potential dynamics of 1D continuum
ballistic annihilation studied in [YK and I. Zaliapin, JSP (2020)].
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A related tree reduction.

[T. Duquesne and M. Winkel, SPA (2019)] introduced a very
general kind of tree reduction, called hereditary reduction, in
the context of complete locally compact rooted (CLCR) real
trees. The notion of hereditary reduction is a generalization
of tree erasure in [J. Neveu, Adv. Appl. Prob. (1986)] and
trimming in [S. N. Evans, Saint-Flour Lect. (2006)] .

[T. Dugquesne and M. Winkel, SPA (2019)]: tree measures
TGW(q,\) are invariant with respect to hereditary reduction.

Prune-invariance. We established an analogous result.
Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]
Consider a monotone non-decreasing function o(7T") > 0. Then,
d d 1—
T=TIGW(3,)) = {Sile.1)|Si(p,T) # ¢} =ZGW(q, xp" V'),
where p, = P(o(T) > t) is assumed to be positive for all ¢ > 0.

00 (_1)n—1|—(n/q_|_1)
Recall that pi = 1= o 1iF(n/q—n+2)

)q/(lq)

(Ag)"t"™ for o(T) = length(T),

and p; = (A(l —qt+1 for o(T) = height(T).
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Attraction property of critical Galton-Watson trees

Consider GW({qxr}, A) with g1 = 0 and generating function Q(x) = Z qrxk.
k=0

Assumption 1. Limit [im Qz) — =
e=1- (1 —2) (1 - Q'(2))

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a monotone non-decreasing function o(T) > 0.

exists.

o
e Assume criticality quk = 1 and suppose Assumption 1 is
k=0

satisfied. Then, for 7 < gW({q}, ),

lim P(shape(S(T)) = [ SUT) # ¢) =TGW(q) with g = lim (1— f)(zjl):g’(x))'

e Assume subcriticality quk<1, then for T < GW{{qr}, \),
k=0

lim P(shape(Si(T)) = - | Si(T) # ¢) = GW(@0=1).

t—o0
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Attraction property of critical Galton-Watson trees
Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a critical Galton-Watson measure GW({qr}, A) with
q1 = 0, with offspring distribution q; of Zipf type:

gr ~ Ck~@TD  with o€ (1,2] and C > 0.

Then, for T < GW(Har}, N),

lim P(shape(S(T)) = - | S((T) # ¢) = ZGW(q) with q = i

t—o0

Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]
Consider a critical Galton-Watson measure GW({qr}, A) with

g1 = 0 such that ) k2g; < oo.
k=2

Then, for 7 < GW{Har}, M),
lim ]P’(shape(St(T)) = }St(T) 7 qb) = ZGWwW(1/2) (critical binary).

t—o0
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Level Set Trees.

>

Consider a continuous excursion X;. Its level set tree level(Xy)
tracks the branching/termination history of the connected com-
ponents in the level sets £, = {t : X; > a} as « increases from
O up.

Consider excursion Xt(l) obtained by a linear interpolation of the
boundary values and the local minima of X;. We observed:

Proposition. [YK and 1. Zaliapin, Probability Surveys (2020)].
level (X)) =R (level(X))).

This can be iterated: level (Xt(m)> = Rm(leveI(Xt)), m=1,2,...
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Level Set Trees.

>

Consider a continuous excursion X;. Its level set tree level(Xy)
tracks the branching/termination history of the connected com-
ponents in the level sets £, = {t : X; > a} as « increases from
O up.

Consider excursion Xt(l) obtained by a linear interpolation of the
boundary values and the local minima of X;. We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].
level (X)) =R (level(X))).
This can be iterated: level (Xt(m)) = Rm(leveI(Xt)), m=1,2,...
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Level Set Trees.

>

Consider a continuous excursion X;. Its level set tree level(Xy)
tracks the branching/termination history of the connected com-
ponents in the level sets £, = {t : X; > a} as « increases from
O up.

Consider excursion Xt(l) obtained by a linear interpolation of the
boundary values and the local minima of X;. We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].
level (X)) =R (level(X))).
This can be iterated: level (Xt(m)> = Rm(leveI(Xt)), m=1,2,...
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Level Set Trees.

>

Consider a continuous excursion X;. Its level set tree level(Xy)
tracks the branching/termination history of the connected com-
ponents in the level sets £, = {t : X; > a} as « increases from
O up.

Consider excursion Xt(l) obtained by a linear interpolation of the
boundary values and the local minima of X;. We observed:

Proposition. [YK and 1. Zaliapin, Probability Surveys (2020)].
level (X)) = R(level(Xy)).
This can be iterated: level (Xt(m)> = Rm(leveI(Xt)), m=1,2,...
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Level Set Trees.

Consider a continuous excursion X;. Its level set tree level(Xy)
tracks the branching/termination history of the connected com-
ponents in the level sets £, = {t : X; > a} as a increases from
O up.

Consider excursion Xt(l) obtained by a linear interpolation of the
boundary values and the local minima of X;. We observed:

Proposition. [YK and 1. Zaliapin, Probability Surveys (2020)].
level <Xt(1)) = R(IeveI(Xt)).

This can be iterated: level (Xt(m)> = Rm(leveI(Xt)), m=1,2,...
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Level Set Trees.

S

fa)+ a
ST X\/ﬁ v b
fablt -z
a’ a c b b’ x

There is a general framework for defining level set trees.

We generalized a well-known result about excursions with Laplace
kernels. See [J. Neveu and J. Pitman, Lect. Notes Math. (1989)].

Theorem. [YK and I. Zaliapin, Probability Surveys (2020)].
Consider a positive excursion X; induced by a homogeneous ran-
dom walk on R with a symmetric atomless transition kernel. Let

T = level(X;), then shape(T) 9 GW(qpo= q2=1/2).

Moreover, conditioned on shape(T), the edge lengths are i.i.d.
if and only if the transition kernel has Laplace distribution.

In particular, this framework yields some of the results in
[G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)].
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