Random Self-Similar Trees

Yevgeniy Kovchegov Oregon State University

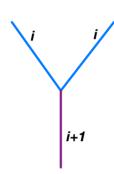
collaboration with

Ilya Zaliapin (University Nevada, Reno)
Efi Foufoula-Georgiou (U. California, Irvine)
Yehuda Ben-Zion (U. Southern California)
Guochen Xu (Oregon State University)

Tribute to Ilya Zaliapin.

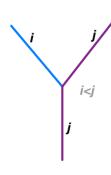
I was blessed to have Ilya Zaliapin as a close friend and collaborator with whom we jointly developed the theory of random self-similar trees. I am grateful to Ilya for all the things I learned from him and for his own beautiful scientific world he generously shared with me.

March 6, 1973 - May 2, 2023

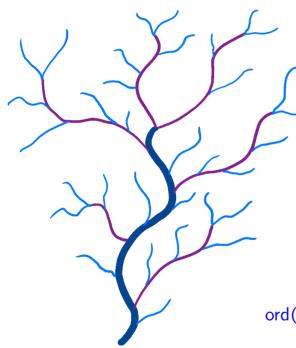


The Horton-Strahler hierarchical ordering scheme was developed by R. E. Horton (1945) and A. N. Strahler (1957) for the analysis of river streams. Each leaf is assigned order 1. At a junction of order i link with an order j link, the new order is determined according to

$$\operatorname{ord}(\ell) = \max(i, j) + \delta_{ij} = \lfloor \log_2(2^i + 2^j) \rfloor.$$



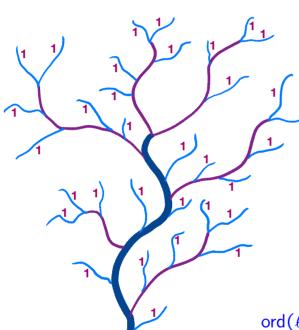
The Horton-Strahler orders are known in computer science as the register function or register number. They are the minimal number of memory registers required for evaluating a binary arithmetic expression [A. P. Ershov, Comm. ACM (1958)].



The Horton-Strahler hierarchical ordering scheme was developed by R. E. Horton (1945) and A. N. Strahler (1957) for the analysis of river streams.

Each leaf is assigned order 1. At a junction of order i link with an order j link, the new order is determined according to

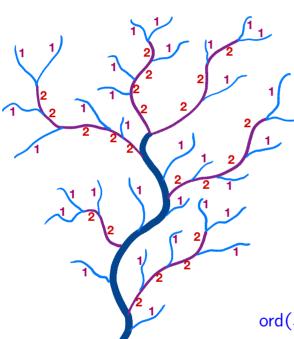
$$\operatorname{ord}(\ell) = \max(i, j) + \delta_{ij} = \lfloor \log_2(2^i + 2^j) \rfloor.$$



The Horton-Strahler hierarchical ordering scheme was developed by R. E. Horton (1945) and A. N. Strahler (1957) for the analysis of river streams.

Each leaf is assigned order 1. At a junction of order i link with an order j link, the new order is determined according to

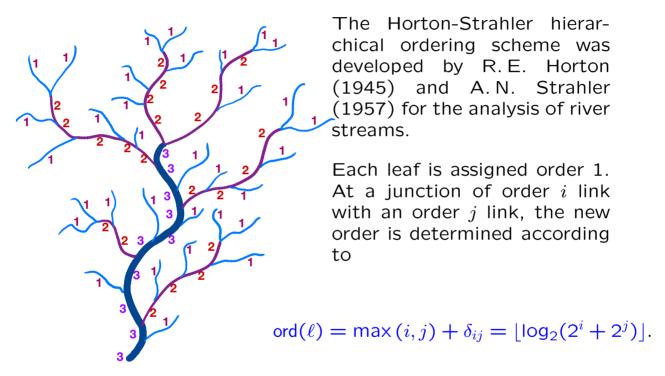
$$\operatorname{ord}(\ell) = \max(i, j) + \delta_{ij} = \lfloor \log_2(2^i + 2^j) \rfloor.$$



The Horton-Strahler hierarchical ordering scheme was developed by R. E. Horton (1945) and A. N. Strahler (1957) for the analysis of river streams.

Each leaf is assigned order 1. At a junction of order i link with an order j link, the new order is determined according to

$$\operatorname{ord}(\ell) = \max(i, j) + \delta_{ij} = \lfloor \log_2(2^i + 2^j) \rfloor.$$

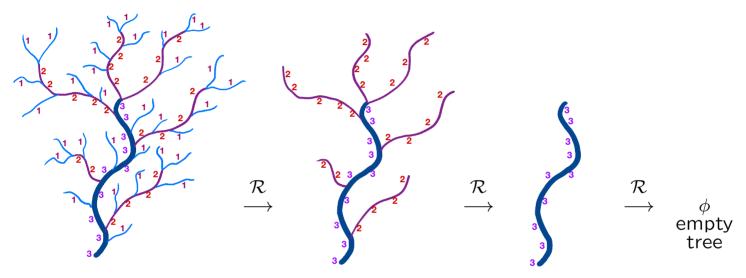


The highest Horton-Strahler order is the order of the entire tree.

The Amazon river has Horton-Strahler order 12.

Horton pruning.

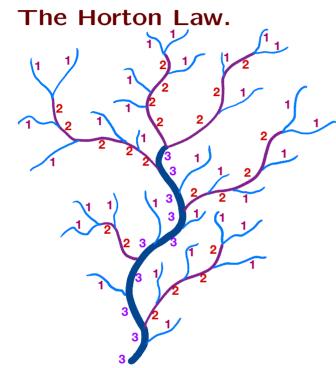
Let T be a reduced (no degree two vertices) rooted tree.



Horton pruning \mathcal{R} is an operation of removing all leaf edges followed by series reduction. Here, $\mathcal{R}(\phi) = \phi$.

Iterating \mathcal{R} induces the Horton-Strahler orders for binary trees and in general: the connected segments in T that were removed after k-th pruning will have the Horton-Strahler order k.

The Horton-Strahler order of T is $ord(T) = min \{k \ge 0 : \mathcal{R}^k(T) = \phi\}$.



Let $N_k = N_k[T]$ denote the number of branches of order k in a random tree T.

The Horton Law is satisfied if there exists a parameter $R \ge 2$, called the Horton exponent, such that

$$\frac{N_k}{N_1} \propto R^{1-k}$$

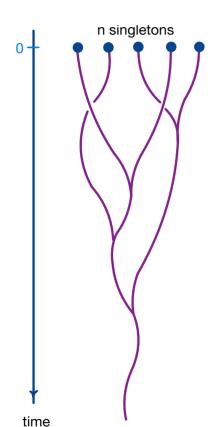
interpreted broadly. For example, it can be convergence in probability or a.s. convergence. The geometric decay can be expressed by taking the limit of the k-th root or the ratio of consecutive terms.

In this example, $N_1 = 33$, $N_2 = 6$, and $N_3 = 1$.

The Horton Law is preserved under Horton pruning: if it holds for a random tree T, it should also hold for $\mathcal{R}(T)$. Indeed,

$$N_k[\mathcal{R}(T)] = N_{k+1}[T].$$

Kingman's Coalescent Tree.



Consider the Kingman's coalescent process that begins with n singletons, where pairs of particles coalesce with rate $\frac{1}{n}$. Let T_n be the tree representing its merger history. It has $N_1[T_n] = n$ leaves.

In [YK and I. Zaliapin, Ann. I.H.P. Prob.&Stat. (2017)], the following limit law

$$\frac{N_k[T_n]}{N_1[T_n]} \stackrel{p}{\longrightarrow} \mathcal{N}_k$$

is proved in probability for all k.

Determining the hydrodynamic limit yields

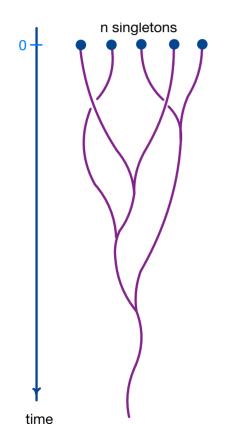
$$\mathcal{N}_k = \frac{1}{2} \int_0^\infty g_k^2(x) \, dx,$$

where $g_k(x)$ solve

$$g'_{k+1}(x) - \frac{g_k^2(x)}{2} + g_k(x)g_{k+1}(x) = 0 \quad (x \ge 0)$$

with $g_1(x) = \frac{2}{x+2}$ and $g_k(0) = 0$ for $k \ge 2$.

Kingman's Coalescent Tree.



Theorem. [YK and I. Zaliapin, Ann. I.H.P. Prob.&Stat. (2017)]

$$\lim_{k o \infty} \left(\mathcal{N}_k \right)^{-\frac{1}{k}} = R \quad ext{with} \quad 2 \leq R \leq 4.$$

Thus, we proved a variant of Horton law:

$$\frac{N_k[T_n]}{N_1[T_n]} \xrightarrow{p} \mathcal{N}_k \propto R^{1-k}$$

The numerical solutions of the ODEs suggest

$$\lim_{k \to \infty} \frac{\mathcal{N}_k}{\mathcal{N}_{k+1}} = \lim_{k \to \infty} (\mathcal{N}_k)^{-\frac{1}{k}} = R$$

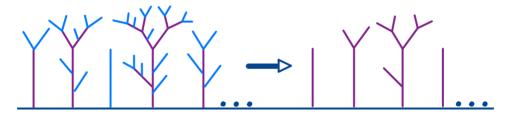
and $\lim_{k \to \infty} (\mathcal{N}_k R^k) = \text{Const.}$ as seen on log-scale with

$$R = 3.043827...$$

Horton prune-invariance

Recall that the Horton Law $\frac{N_k}{N_1} \propto R^{1-k}$ with the Horton exponent $R \geq 2$ is preserved under Horton pruning: if it holds for a random tree T then it hold for $\mathcal{R}(T)$.

Thus, the Horton Law is a weak form of invariance under Horton-pruning. There is a stronger form of Horton prune-invariance.



For a measure μ on a space of reduced rooted trees such that $\mu(\phi)=0$ consider the pushforward measure $\nu=\mathcal{R}_*(\mu)$, i.e.,

$$\nu(T) = \mu \circ \mathcal{R}^{-1}(T) = \mu \left(\mathcal{R}^{-1}(T) \right).$$

Measure μ is said to be Horton prune-invariant if

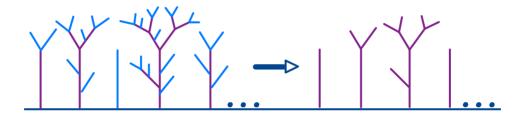
$$\nu (T | T \neq \phi) = \mu(T) \quad \forall T \neq \phi.$$

Objective: finding and classifying Horton prune-invariant tree measures.

Attractors

For a tree measure ρ_0 let $\nu_k = \mathcal{R}_*^k(\rho_0)$ denote the pushforward probability measure induced by operator \mathcal{R}^k , i.e.,

$$\nu_k(T) = \rho_0 \circ \mathcal{R}^{-k}(T) = \rho_0 \left(\mathcal{R}^{-k}(T) \right), \text{ and set } \rho_k(T) = \nu_k \left(T \mid T \neq \phi \right).$$



A Horton prune-invariant measure ρ^* is an attractor under Horton pruning if $\lim_{k\to\infty}\rho_k=\rho^*.$

For simplicity, we will use the following notation for this convergence

 $ho_0 \xrightarrow{\mathcal{R}_*^{\infty}}
ho^*.$

Objective: identifying domains of attraction.

Pruning Galton-Watson trees

Consider a Galton-Watson tree measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$.

Theorem. [G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)]

- Assuming finite second moment $\sum_{k=0}^{\infty} k^2 q_k < \infty$, measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is $\mathcal{GW}(q_0 = q_2 = 1/2)$, i.e., critical binary.
- Assume criticality $\sum_{k=0}^{\infty} kq_k = 1$ and finite branching $\left| \{k: q_k > 0\} \right| < \infty$.

Then,
$$\mathcal{GW}(\{q_k\}) \xrightarrow{\mathcal{R}_*^{\infty}} \mathcal{GW}(q_0 = q_2 = 1/2).$$

• Assume subcriticality $\sum_{k=0}^{\infty} kq_k < 1$, then $\mathcal{GW}(\{q_k\}) \xrightarrow{\mathcal{R}_*^{\infty}} \mathcal{GW}(q_0 = 1)$.

Moreover, for the Horton prune-invariant measure $\mathcal{GW}(q_0 = q_2 = 1/2)$, they established the Horton law with Horton exponent R = 4.

Invariant Galton-Watson measures

For a given $q \in [1/2, 1)$, a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$

with the generating function $Q(z) = \sum\limits_{k=0}^{\infty} q_k z^k$ expressed as

$$Q(z) = z + q(1-z)^{1/q}$$

is called the invariant Galton-Watson (IGW) tree measure with parameter q, and denoted by $\mathcal{IGW}(q)$.

Branching probabilities: $q_0 = q$, $q_1 = 0$, $q_2 = (1 - q)/2q$, and

$$q_k = \frac{1-q}{k! q} \prod_{i=2}^{k-1} (i-1/q) \quad (k \ge 3).$$

Here, if q=1/2, then the distribution is critical binary, i.e., $\mathcal{GW}(q_0=q_2=1/2)$.

If $q \in (1/2,1)$, the distribution is of Zipf type with

$$q_k = \frac{(1-q)\Gamma(k-1/q)}{q\Gamma(2-1/q)\,k!} \sim Ck^{-(1+q)/q}, \quad \text{where} \quad C = \frac{1-q}{q\,\Gamma(2-1/q)}.$$

This family of tree measures is also known as stable Galton-Watson trees.

Invariant Galton-Watson measures

Consider $\mathcal{GW}(\{q_k\})$ with $q_1=0$ and generating function $Q(x)=\sum_{k=0}^{\infty}q_kx^k$.

Assumption 1. Limit
$$\lim_{x\to 1-} \frac{Q(x)-x}{(1-x)\left(1-Q'(x)\right)}$$
 exists.

Theorem [YK and I. Zaliapin, Bernoulli (2021)].

- If Assumption 1 is satisfied, then measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is $\mathcal{IGW}(q_0)$.
- Assume criticality $\sum_{k=0}^{\infty} kq_k = 1$ and suppose Assumption 1 is sat-

isfied. Then,
$$\mathcal{GW}(\{q_k\}) \xrightarrow{\mathcal{R}_*^{\infty}} \mathcal{IGW}(q)$$
 with $q = \lim_{x \to 1-} \frac{Q(x) - x}{(1-x)(1-Q'(x))}$.

Corollary [YK and I. Zaliapin, Bernoulli (2021)].

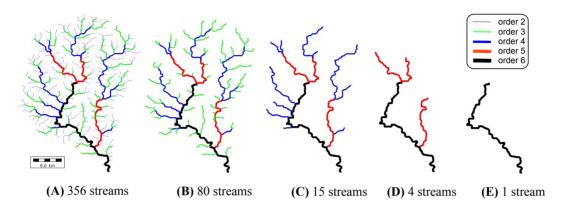
Suppose the offspring distribution q_k is of Zipf type:

$$q_k \sim Ck^{-(\alpha+1)}$$
 with $\alpha \in (1,2]$ and $C > 0$.

Then,
$$\mathcal{GW}(\{q_k\}) \xrightarrow{\mathcal{R}_*^{\infty}} \mathcal{IGW}(q)$$
 with $q = \frac{1}{\alpha}$.

For $\mathcal{IGW}(q)$ tree, we established the Horton law with $R = (1-q)^{-1/q}$.

The Critical Tokunaga tree.

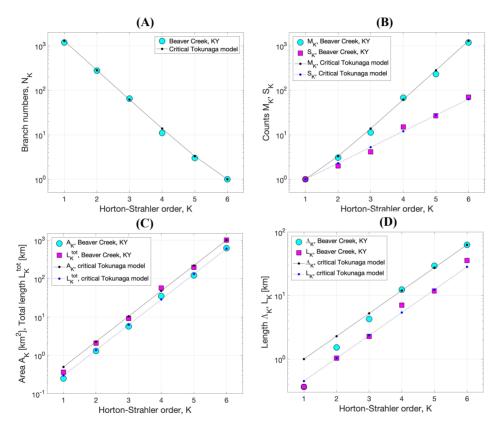


Combining the properties of a river tree model yields a continuoustime multi-type branching process, we named the critical Tokunaga process (model), whose branching structure depends on parameter c > 1 and edge-lengths distribution depends on $\gamma > 0$.

For c=2, the critical Tokunaga model yields $\mathcal{GW}(q_0=q_2=1/2)$.

- [YK, I. Zaliapin, E. Foufoula-Georgiou, Surv. Geophys. (2022)]
- [YK, I. Zaliapin, E. Foufoula-Georgiou, Phys. Rev. E (2022)]
- [YK and I. Zaliapin, Probability Surveys (2020)]
- [YK and I. Zaliapin, Stoc. Proc. Appl. (2019)]
- [YK and I. Zaliapin, Chaos (2018)]

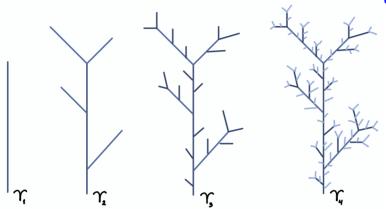
Critical Tokunaga Model closely fits observations.



Critical Tokunaga (c = 2.3) fit for hydrological quantities of Beaver Creek, KY.

A random attachment model (RAM).

Consider the following random attachment process $\{\Upsilon_K\}_{K\in\mathbb{N}}$.



- Υ_1 is an I-shaped tree of length $Y_1 \stackrel{d}{\sim} \mathsf{Exp}(\gamma)$.
- Conditioned on Υ_K , tree Υ_{K+1} is obtained as follows:
 - (i) Attach new leaf edges to Υ_K at the points sampled with a homogeneous Poisson point process of intensity $\gamma(c-1)$ along the carrier space Υ_K .
- (ii) Attach a pair of new leaf edges to each leaf of Υ_K . The lengths of all newly attached leaf edges are i.i.d. exponential random variables with parameter γc^K .

Proving the Horton Law via Martingales.

Observe that each Υ_K is a binary tree of order K. We proved that the critical Tokunaga tree of order K is equivalent to $c^{K-1}\Upsilon_K$.

Let $X_K = N_1[\Upsilon_K]$ (number of leaves) and $Y_K = \text{length}(\Upsilon_K)$.

Lemma [YK and I. Zaliapin, Probability Surveys (2020)].

The sequence

$$M_K = R^{1-K} \left(X_K + \gamma(c-1)c^{K-1}Y_K \right)$$
 with $K \in \mathbb{N}$

is a martingale with respect to the process $\left\{\Upsilon_K\right\}_{K\in\mathbb{N}}$.

The above Lemma is used in the proof of the Horton Law.

Theorem [YK and I. Zaliapin, Probability Surveys (2020)].

$$\frac{N_k[\Upsilon_K]}{N_1[\Upsilon_K]} \xrightarrow{a.s.} R^{1-k}$$
 as $K \to \infty$, where $R = 2c$.

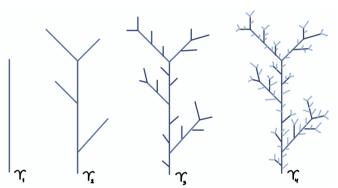
Hydrological laws for the RAM.

For the limit $\Upsilon_{\infty}=\lim_{K\to\infty}\Upsilon_K=\bigcup_{K=1}^{\infty}\Upsilon_K$, we established

• Fractal dimension:

$$d = \frac{\log(2c)}{\log c}.$$

• Hack's law: for a link of order i, let A_i denote the local contributing area and Λ_i denote the link's length. Then,



$$\Lambda_i \sim \text{Const.} \times \left(A_i\right)^{\mathbf{h}}, \text{ where } \mathbf{h} = \mathbf{d}^{-1} = \frac{\log c}{\log(2c)}.$$

See [YK, I. Zaliapin, E. Foufoula-Georgiou, *Phys. Rev. E* (2022)] and [YK, I. Zaliapin, E. Foufoula-Georgiou, *Surv. Geophys.* (2022)].

Metric Galton-Watson trees.

The following are common notations: for a metric tree T,

length(T) = the sum of the lengths of edges in T,

height(T) = the maximal distance to the root ρ , shape(T) = combinatorial shape of T.

Continuous Galton-Watson measure: for p.m.f. $\{q_k\}$ and $\lambda > 0$,

$$T \stackrel{d}{=} \mathcal{GW}(\{q_k\}, \lambda)$$
 if $\operatorname{shape}(T) \stackrel{d}{=} \mathcal{GW}(\{q_k\})$

and, conditioned on shape(T), the edges of T are i.i.d. $Exp(\lambda)$.

Exponential invariant Galton-Watson (IGW) measure: for a given $q \in [1/2, 1)$ and $\lambda > 0$,

$$T \stackrel{d}{=} \mathcal{I}\mathcal{G}\mathcal{W}(q,\lambda)$$
 if $\operatorname{shape}(T) \stackrel{d}{=} \mathcal{I}\mathcal{G}\mathcal{W}(q)$

and, conditioned on shape(T), the edges of T are i.i.d. $Exp(\lambda)$.

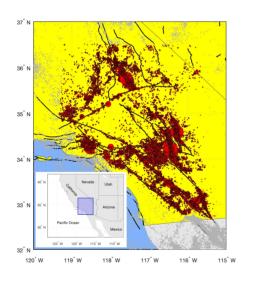
Exponential Invariant Galton-Watson trees.

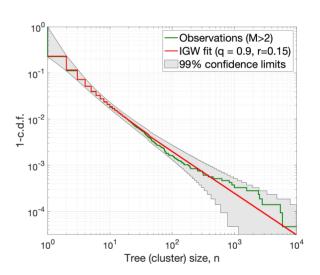
Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)] Consider $q \in [1/2, 1)$, $\lambda > 0$, and $T \stackrel{d}{=} \mathcal{IGW}(q, \lambda)$. Then,

- (a) $P\left(\operatorname{length}(T) \le x\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \Gamma(n/q+1)}{n! n! \Gamma(n/q-n+2)} (\lambda q)^n x^n.$ Here, for $q = \frac{1}{2}$, $P\left(\operatorname{length}(T) \le x\right) = 1 - e^{-\lambda x} \left(I_0(\lambda x) + I_1(\lambda x)\right).$
- **(b)** $P(\operatorname{length}(T) > x) \sim \frac{1}{(\lambda q)^q \Gamma(1-q)} x^{-q}$.
- (c) $P(height(T) \le x) = 1 (\lambda(1-q)x + 1)^{-q/(1-q)}$.
- (d) $P(\# \text{ of edges in } T = n) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n-1}{k-1} \frac{\Gamma(k/q+1)}{k! \Gamma(k/q-k+2)} q^k$ for n = 1, 2, ...

Applications in seismology.

In [YK, I. Zaliapin, Y. Ben-Zion, *Geophys. J. Intl.* (2022)], we analyzed the observed seismicity in southern California and demonstrated that the IGW model provides a close fit to the observed earthquake clusters.

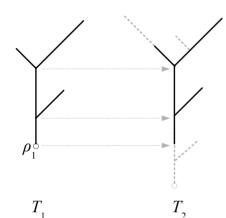




Left: [Hauksson et al. (2012)] Southern California seismicity catalog for 1981-2019 (magnitude > 2);

Right: IGW fit to the empirical cluster sizes.

Generalized dynamical pruning.



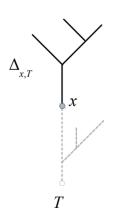
Consider a monotone non-decreasing function $\varphi(T)$ on trees: $\varphi(T_1) \leq \varphi(T_2)$ whenever $T_1 \leq T_2$, i.e., T_1 can be inscribed into T_2 via an isometry.

Generalized dynamical pruning: for any $t \ge 0$, let $\mathcal{S}_t(\varphi, T) = \{ \text{root } \rho \} \cup \{ x \in T : \varphi(\Delta_{x,T}) \ge t \}$

It cuts all descendant trees $\Delta_{x,T}$ for which $\varphi(\Delta_{x,T})$ is below threshold t. Here,

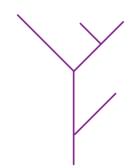
$$S_s(\varphi, T) \leq S_t(\varphi, T)$$
 whenever $s \geq t$.

Example (Tree height). Let $\varphi(T) = \text{height}(T)$, then $S_t(\varphi, T)$ represents the tree erasure as studied in [J. Neveu, Adv. Appl. Prob. (1986)].



Example (Tree length). Let $\varphi(T) = \text{length}(T)$, then $S_t(\varphi, T)$ represents the potential dynamics of 1D continuum ballistic annihilation studied in [YK and I. Zaliapin, JSP (2020)].

Generalized dynamical pruning.



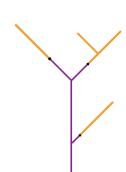
Consider a monotone non-decreasing function $\varphi(T)$ on trees: $\varphi(T_1) \leq \varphi(T_2)$ whenever $T_1 \leq T_2$, i.e., T_1 can be inscribed into T_2 via an isometry.

Generalized dynamical pruning: for any $t \geq 0$, let

$$S_t(\varphi, T) = \{ \text{root } \rho \} \cup \{ x \in T : \varphi(\Delta_{x,T}) \ge t \}$$

It cuts all descendant trees $\Delta_{x,T}$ for which $\varphi \left(\Delta_{x,T} \right)$ is below threshold t. Here,

$$S_s(\varphi,T) \leq S_t(\varphi,T)$$
 whenever $s \geq t$.



Example (Tree height). Let $\varphi(T) = \text{height}(T)$, then $S_t(\varphi, T)$ represents the tree erasure as studied in [J. Neveu, Adv. Appl. Prob. (1986)].

Example (Tree length). Let $\varphi(T) = \text{length}(T)$, then $S_t(\varphi, T)$ represents the potential dynamics of 1D continuum ballistic annihilation studied in [YK and I. Zaliapin, JSP (2020)].

A related tree reduction.

[T. Duquesne and M. Winkel, *SPA* (2019)] introduced a very general kind of tree reduction, called hereditary reduction, in the context of complete locally compact rooted (CLCR) real trees. The notion of hereditary reduction is a generalization of tree erasure in [J. Neveu, *Adv. Appl. Prob.* (1986)] and trimming in [S. N. Evans, *Saint-Flour Lect.* (2006)].

[T. Duquesne and M. Winkel, SPA (2019)]: tree measures $\mathcal{IGW}(q,\lambda)$ are invariant with respect to hereditary reduction.

Prune-invariance. We established an analogous result.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a monotone non-decreasing function $\varphi(T) \geq 0$. Then,

$$T \stackrel{d}{=} \mathcal{I}\mathcal{G}\mathcal{W}(q,\lambda) \ \Rightarrow \ \left\{ \mathcal{S}_t(\varphi,T) \middle| \mathcal{S}_t(\varphi,T) \neq \phi \right\} \stackrel{d}{=} \mathcal{I}\mathcal{G}\mathcal{W}\left(q,\lambda p_t^{(1-q)/q}\right),$$

where $p_t = P(\varphi(T) > t)$ is assumed to be positive for all $t \ge 0$.

Recall that
$$p_t = 1 - \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \Gamma(n/q+1)}{n! n! \Gamma(n/q-n+2)} (\lambda q)^n t^n$$
 for $\varphi(T) = \text{length}(T)$, and $p_t = \left(\lambda (1-q)t + 1\right)^{-q/(1-q)}$ for $\varphi(T) = \text{height}(T)$.

Attraction property of critical Galton-Watson trees

Consider $\mathcal{GW}(\{q_k\},\lambda)$ with $q_1=0$ and generating function $Q(x)=\sum_{k=0}^{\infty}q_kx^k$.

Assumption 1. Limit
$$\lim_{x\to 1^-} \frac{Q(x)-x}{(1-x)(1-Q'(x))}$$
 exists.

Theorem. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)] Consider a monotone non-decreasing function $\varphi(T) \geq 0$.

• Assume criticality $\sum_{k=0}^{\infty} kq_k = 1$ and suppose Assumption 1 is satisfied. Then, for $T \stackrel{d}{\sim} \mathcal{GW}(\{q_k\}, \lambda)$,

$$\lim_{t\to\infty} \mathbb{P}\big(\mathsf{shape}(\mathcal{S}_t(T)) = \cdot \, \Big| \, \mathcal{S}_t(T) \neq \phi\big) = \mathcal{I}\mathcal{G}\mathcal{W}(q) \quad \mathsf{with} \quad q = \lim_{x\to 1-} \frac{Q(x)-x}{(1-x)(1-Q'(x))}.$$

ullet Assume subcriticality $\sum\limits_{k=0}^{\infty}kq_k\!<\!1$, then for $T\stackrel{d}{\sim}\mathcal{GW}(\{q_k\},\lambda)$,

$$\lim_{t\to\infty} \mathbb{P} \big(\operatorname{shape}(\mathcal{S}_t(T)) = \cdot \, \Big| \, \mathcal{S}_t(T)
eq \phi \big) = \mathcal{GW}(q_0 = 1).$$

Attraction property of critical Galton-Watson trees

Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\}, \lambda)$ with $q_1 = 0$, with offspring distribution q_k of Zipf type:

$$q_k \sim Ck^{-(\alpha+1)}$$
 with $\alpha \in (1,2]$ and $C > 0$.

Then, for $T \stackrel{d}{\sim} \mathcal{GW}(\{q_k\}, \lambda)$,

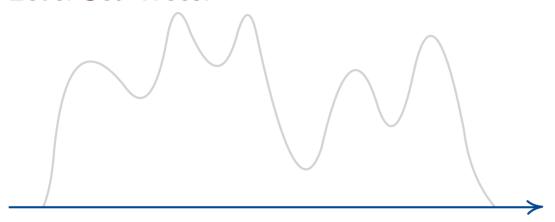
$$\lim_{t\to\infty} \mathbb{P}\big(\mathsf{shape}(\mathcal{S}_t(T)) = \cdot \, \Big| \, \mathcal{S}_t(T) \neq \phi\big) = \mathcal{I}\mathcal{G}\mathcal{W}(q) \quad \text{with } q = \frac{1}{\alpha}.$$

Corollary. [YK, G. Xu, I. Zaliapin, Adv. Appl. Prob. (2023)]

Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\},\lambda)$ with $q_1=0$ such that $\sum_{k=2}^{\infty}k^2q_k<\infty.$

Then, for $T \stackrel{d}{\sim} \mathcal{GW}(\{q_k\}, \lambda)$,

$$\lim_{t\to\infty}\mathbb{P}\big(\mathsf{shape}(\mathcal{S}_t(T))=\cdot\,\Big|\,\mathcal{S}_t(T)\neq\phi\big)=\mathcal{I}\mathcal{G}\mathcal{W}(1/2)\quad\text{(critical binary)}.$$



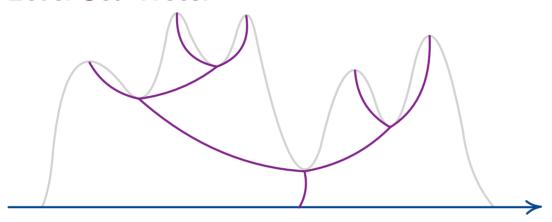
Consider a continuous excursion X_t . Its level set tree level (X_t) tracks the branching/termination history of the connected components in the level sets $\mathcal{L}_{\alpha} = \{t : X_t \geq \alpha\}$ as α increases from 0 up.

Consider excursion $X_t^{(1)}$ obtained by a linear interpolation of the boundary values and the local minima of X_t . We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

$$|\operatorname{evel}(X_t^{(1)}) = \mathcal{R}(|\operatorname{evel}(X_t)).$$

This can be iterated: level $(X_t^{(m)}) = \mathcal{R}^m(\text{level}(X_t)), \ m = 1, 2, \dots$



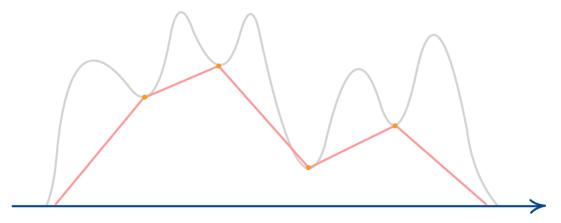
Consider a continuous excursion X_t . Its level set tree level (X_t) tracks the branching/termination history of the connected components in the level sets $\mathcal{L}_{\alpha} = \{t : X_t \geq \alpha\}$ as α increases from 0 up.

Consider excursion $X_t^{(1)}$ obtained by a linear interpolation of the boundary values and the local minima of X_t . We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

$$|\operatorname{evel}(X_t^{(1)}) = \mathcal{R}(|\operatorname{evel}(X_t)).$$

This can be iterated: level $(X_t^{(m)}) = \mathcal{R}^m(\text{level}(X_t)), \ m = 1, 2, \dots$



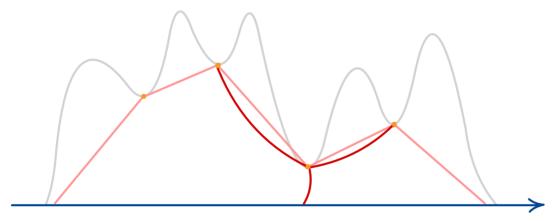
Consider a continuous excursion X_t . Its level set tree level (X_t) tracks the branching/termination history of the connected components in the level sets $\mathcal{L}_{\alpha} = \{t : X_t \geq \alpha\}$ as α increases from 0 up.

Consider excursion $X_t^{(1)}$ obtained by a linear interpolation of the boundary values and the local minima of X_t . We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

$$|\operatorname{evel}(X_t^{(1)}) = \mathcal{R}(|\operatorname{level}(X_t)).$$

This can be iterated: level $(X_t^{(m)}) = \mathcal{R}^m(\text{level}(X_t)), \ m = 1, 2, \dots$



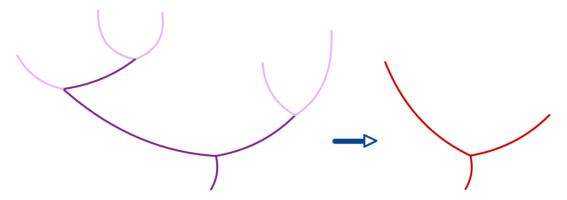
Consider a continuous excursion X_t . Its level set tree level (X_t) tracks the branching/termination history of the connected components in the level sets $\mathcal{L}_{\alpha} = \{t : X_t \geq \alpha\}$ as α increases from 0 up.

Consider excursion $X_t^{(1)}$ obtained by a linear interpolation of the boundary values and the local minima of X_t . We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

$$|\operatorname{evel}(X_t^{(1)}) = \mathcal{R}(|\operatorname{level}(X_t)).$$

This can be iterated: level $(X_t^{(m)}) = \mathcal{R}^m(\text{level}(X_t))$, m = 1, 2, ...



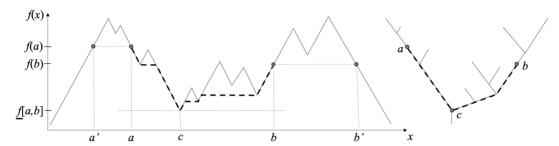
Consider a continuous excursion X_t . Its level set tree level (X_t) tracks the branching/termination history of the connected components in the level sets $\mathcal{L}_{\alpha} = \{t : X_t \geq \alpha\}$ as α increases from 0 up.

Consider excursion $X_t^{(1)}$ obtained by a linear interpolation of the boundary values and the local minima of X_t . We observed:

Proposition. [YK and I. Zaliapin, Probability Surveys (2020)].

$$|\operatorname{evel}(X_t^{(1)}) = \mathcal{R}(|\operatorname{level}(X_t)).$$

This can be iterated: level $(X_t^{(m)}) = \mathcal{R}^m(\text{level}(X_t))$, m = 1, 2, ...



There is a general framework for defining level set trees.

We generalized a well-known result about excursions with Laplace kernels. See [J. Neveu and J. Pitman, *Lect. Notes Math.* (1989)].

Theorem. [YK and I. Zaliapin, *Probability Surveys* (2020)]. Consider a positive excursion X_t induced by a homogeneous random walk on \mathbb{R} with a symmetric atomless transition kernel. Let $T = \text{level}(X_t)$, then $\text{shape}(T) \stackrel{d}{\sim} \mathcal{GW}(q_0 = q_2 = 1/2)$.

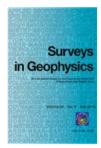
Moreover, conditioned on shape(T), the edge lengths are i.i.d. if and only if the transition kernel has Laplace distribution.

In particular, this framework yields some of the results in [G. A. Burd, E. C. Waymire, R. D. Winn, *Bernoulli* (2000)].

Recent references.

Yevgeniy Kovchegov and Ilya Zaliapin, Random Self-Similar Trees: A mathematical theory of Horton laws, Probability Surveys, Vol. **17** (2020), 1-213

Yevgeniy Kovchegov, Ilya Zaliapin, and Efi Foufoula-Georgiou, Random Self-Similar Trees with Applications to Geophysics, Surveys in Geophysics, Vol. 43, (2022) 353-421



Yevgeniy Kovchegov, Ilya Zaliapin, and Yehuda Ben-Zion, Invariant Galton-Watson branching process for earthquake occurrence, Geophysical Journal International, Vol. **231**, Issue 1, (2022) 567-583

Yevgeniy Kovchegov, Ilya Zaliapin, and Efi Foufoula-Georgiou, Critical Tokunaga model for river networks, Physical Review E, Vol. **105**, 014301 (2022)

Yevgeniy Kovchegov, Guochen Xu, and Ilya Zaliapin, Invariant Galton-Watson trees: metric properties and attraction with respect to generalized dynamical pruning, Advances in Applied Probability, Vol. **55**, Issue 2, (2023) 643-671