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Abstract

Consider a Markov process with countably many states. In order to find a one-state occu-
pation time distribution, we use a combination of Fourier and Laplace transforms in the way
that allows for the inversion of the Fourier transform. We derive a closed-form expression for
the occupation time distribution in the case of a simple continuous time random walk on Z
and represent the one state occupation density of a reversible process as a mixture of Bessel
densities.
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1 Introduction

The occupation time distributions for continuous-time Markov processes that live on
countable state space was a subject of intense research in the 60s, 70s and early 80s. We
would like to refer the reader to [5], [6], [13], [17], [19] and [3] for some of the results in the
field. With the exception of [3], the main instrument was the multidimensional Laplace
transform. More recently, a general expression in infinite sums of the occupation distri-
butions for finite-state Markov processes was produced in [18] and [2] using essentially
randomization and order statistics. The occupation times for one-dimensional nearest-
neighbor processes were studied by Karlin and McGregor with orthogonal polynomials
in [12] following the paper of Darling and Kac [4] . Both papers considered occupation
times for Markov processes when t is taken to ∞, while the present paper concerns with
closed-form expressions for a given fixed time interval [0, t].

The questions addressed in this paper originate in the research done by E.Nir et al
[16] in the field of single molecule Fluorescence Resonance Energy Transfer (FRET) spec-
troscopy, where a single molecule fluctuates between multiple states, and the experimental
observable depends on a state’s occupation time distribution. While working on [16] the
authors have noticed that the single state occupation time densities, when computed
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via randomization technique (i.e. multiple infinite sums) can often be represented via
modified Bessel functions of the kind

Iρ(z) =
∞∑
k=0

1

k!Γ(k + ρ+ 1)

(z
2

)2k+ρ

for ρ > −1

It was observed in Section II.7 of Feller [8] that for a continuous-time random walk
on Z, the first passage time Tr is distributed according to the Bessel density function
vr(t) = e−t r

t
Ir(t), where t > 0, r ∈ Z is a state, and I−r = Ir. As it was the case

with the first passage times, the Bessel density functions for occupation times of a two
state Markov process can be obtained as a Poisson randomization of Gamma densities.
In this paper, we use spectral theory in an attempt to find an analytic explanation for
the relationship between occupation times and Bessel density functions. We will show a
connection between a spectral measure of a generator and a Laplace transform of a single
state occupation time distribution taken with respect to a time variable t.

2 Approach and results

In this section we will state the results that relate occupation times to the spectral mea-
sure of a generator, we will present a closed-form solution for a one-dimensional symmetric
random walk in Theorem 2.2, and discuss the connection between occupation time distri-
butions and modified Bessel functions.

2.1 Spectral representation and occupation times

Consider an irreducible continuous-time Markov process with generatorQ over the discrete
countable state space Ω = {0, 1, . . . }. Let {λi,j}i,j∈Ω denote the rates. For a given time
interval [0, t], the random variable representing the time spent at the site 0 is called an
occupation time at 0. Let fk(t, x) denote the probability density for the occupation time
at state 0 if the continuous-time process commences at state k. We will use the standard
notation for the basis vectors e0 = (1, 0, . . . )T and ej = (0, . . . , 0, 1, 0, . . . )T .
Our first result characterizes the single-state occupation time density f0(t, x) as follows.

Theorem 2.1. The Laplace transform of f0(t, x) w.r.t. time variable t can be written as

 Lf0(s, x) =
1

sh(s)
exp

{
− x

h(s)

}
for s > 0,

where h(s) = − ((Q− sI)−1e0, e0).

The domain of h(s) is the resolvent set of Q. It was observed that if Q is a bounded
reversible Markov process then −h(s) is a Herglotz function, i.e. it maps C+ into C+. As
all such functions h can be represented uniquely as

h(s) = −
∫

(−∞,0]

dµ(x)

x− s
(Im(s) 6= 0), (1)
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where µ is a probability measure with compact support in (−∞, 0]. See [9], [10], [11], [7],
[15], and references therein.

Example: Two-state Markov processes. Consider a two-state Markov process with

the generator Q =

(
−λ λ
µ −µ

)
. There (Q − sI)−1 = −1

s2+(λ+µ)s

(
µ+ s λ
µ λ+ s

)
and

Theorem 2.1 implies

 Lf0(s, x) = e−x(s+λ)e
λµx
s+µ +

λ

s+ µ
e−x(s+λ)e

λµx
s+µ

Now, the equation (29.3.81) in Abramowitz and Stegun [1] contains the following Laplace
transforms∫ ∞

0

I0(2
√
at)e−ptdt =

1

p
e

a
p and

∫ ∞

0

1√
t
I1(2

√
at)e−ptdt =

1√
a

(e
a
p − 1),

which can be rewritten as e−px 1
p
e

a
p =

∫∞
x
I0(2

√
a(t− x))e−ptdt and

e−pxe
a
p = e−px +

√
a

∫ ∞

x

1√
t− x

I1(2
√
a(t− x))e−ptdt.

Plugging in a = λµx and p = s+ µ, we obtain

1

s+ µ
e−(s+µ)xe

λ2x
s+µ =

∫ ∞

x

I0(2
√
λµx(t− x))e−(s+µ)tdt

and

e−x(s+µ)e
λµx
s+µ = e−(s+µ)x +

√
λµx

∫ ∞

x

I1(2
√
λµx(t− x))√
t− x

e−(s+µ)tdt

Thus

f0(t, x) = e−λtδt(x)+λe−λxe−µ(t−x)I0(2
√
λµx(t− x))+

√
λµx

t− x
I1(2

√
λµx(t− x))e−λxe−µ(t−x)

for 0 ≤ x ≤ t.
The above equation was originally derived in [17] via two-dimensional Laplace trans-

forms. One can also derive it via randomization, where the infinite sums are easily rec-
ognized to be the corresponding modified Bessel functions.

2.2 Occupation times for simple random walks and other re-
versible processes

Surprisingly the one state occupation time density for a one-dimensional simple nearest-
neighbor random walk has a closed-form expression in Bessel density functions. For our
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next result, we consider

Q =


−r r 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .

0 0 1 −2
. . .

...
...

...
. . . . . .

 , where r > 0.

Theorem 2.2. The zero-state occupation time density for a simple nearest-neighbor ran-
dom walk with the above infinitesimal generator can be expressed via modified Bessel func-
tions as follows:

f0(t, x) = e−rtδt(x) + re(2−r)x−2tI0

(
2
√

(t− x)(t+ (r − 1)x)
)

+
rt√

(t− x)(t+ (r − 1)x)
e(2−r)x−2tI1

(
2
√

(t− x)(t+ (r − 1)x)
)

for x ∈ [0, t].

Observe that r = 1 represents the case of a simple continuous-time random walk on
Z+, while the zero-state occupation time for r = 2 corresponds to the case of a simple
random walk on Z.

Now, suppose Q is a bounded reversible Markov process such as the above random
walk. Then h can be represented uniquely as in (1). The (spectral) probability measure
µ has bounded support, say supp(µ) ⊂ [−K, 0]. Let m0,m1, . . . denote the moments of
the spectral measure µ, i.e.

mj =

∫
(−∞,0]

(−x)jdµ(x)

Then, for any z ∈ C \ (−∞, 0] such that |z| > 2K,

1

h(z)
=

z

1−m1z−1 +m2z−2 − . . .
= z +m1 − (m2 −m2

1)z
−1 + φ(z−1)z−2

Recall Theorem 2.1. We will consider the inverse Laplace transform of a function F0(t, x),

whose Laplace transform  LF0(s, x) = 1
s

exp
{
− x
h(s)

}
. There f0(t, x) = − ∂

∂x
F0(t, x). Take

a > 2K and 0 ≤ x ≤ t, then the inverse Laplace transform

F0(t, x) =
1

2πi

∫ a+i∞

a−i∞

1

z
exp

{
z(t− x)−m1x+ (m2 −m2

1)xz
−1 − xφ(z−1)z−2

}
dz

Expanding e−xφ(z−1)z−2
= 1 +

∑∞
k=2 vk(x)z−k, we obtain

F0(t, x) = e−m1xI0

(
2
√

(m2 −m2
1)(t− x)x

)
+ e−m1x

∞∑
k=2

vk(x)

(
t− x

(m2 −m2
1)x

) k
2

Ik

(
2
√

(m2 −m2
1)(t− x)x

)
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by (29.3.81) in Abramowitz and Stegun [1]. However, even in the case of a simple random
walk, it is not obvious that the above expansion in Bessel functions using the moments
of µ can be simplified to that of Theorem 2.2. In general, the following question is
still to be fully explored: what properties of µ would allow for a closed-form expression
of the occupation time via Bessel density functions? It seems possible to exploit the
connection between spectral probability measure µ and the occupation time densities for
a wider class of time reversible stochastic processes. Another interesting direction is to
learn more about reinforced processes (see [14] and references therein) as they can be
interpreted as occupation time driven processes.

Next we would like to discuss the limit behavior of f0(t, x) as t→∞. Given t > 0, let
Z(t) denote the occupation time variable governed by the distribution f0(t, x) as derived
in Theorem 2.2. As we will see in the proof of the theorem (equation (4)),

h(s) =
2

(2− r)s+ r
√
s2 + 4s

= s−αL

(
1

s

)
,

where α = 1/2 and L(1/s) is a “slowly varying” function (see [12] and [4]) that converges
to 1/r as s → 0+. Hence, as it was the case in Karlin and McGregor [12], this h(s)
satisfies the main assumption for the following limit theorem in Darling and Kac [4]:

lim
t→∞

P

(
Z(t)

h(1/t)
≤ u

)
= Gα(u),

where Gα(u) denotes the Mittag-Liffler distribution,

Gα(u) =
1

πα

∫ u

0

∞∑
n=1

(−1)n−1

n!
Γ(αn+ 1)yn−1 sin(nπα)dy

Now, since we have obtained the closed form solution in Theorem 2.2, we observe that
here, the Darling-Kac limit theorem can be derived as follows. Given u > 0,

P

(
Z(t)

h(1/t)
≤ u

)
=

∫ u

0

f0(t, h(1/t)y)h(1/t)dy

Since h(1/t) =
√
t
r

(1 + o(1)),

f0(t, h(1/t)y)h(1/t) =
√
te(2−r)h(1/t)y−2t[I0(2tϕ)(1 + o(1)) + I1(2tϕ)(1 + o(1))],

where

ϕ =
√

(1− h(1/t)y/t)(1 + (r − 1)h(1/t)y/t) = 1−2− r

2
h(1/t)y/t−r

2

8
[h(1/t)]2y2/t2+o(t−1)

We use Iν(z) = ez
√

2πz
(1 + o(1)) as in the equation 9.7.1 of [1] to obtain the limit

lim
t→∞

P

(
Z(t)

h(1/t)
≤ u

)
=

1√
π

∫ u

0

e−
y2

4 dy = G1/2(u)

via the dominated convergence theorem.
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3 Proofs

Proof. (Theorem 2.1) Observe that the integral equations relating {fk(t, x)}k=0,1,... can
be produced via conditioning as follows:

f0(t, x) = e−(
P

m: m6=1 λ0,m)tδt(x) +
∑
k: k 6=0

∫ t

0

fk(t− y, x− y)λ0,ke
−(

P
m: m6=0 λ0,m)ydy,

fj(t, x) = e−(
P

m: m6=j λj,m)tδ0(x) +
∑
k: k 6=j

∫ t

0

fk(t− y, x)λj,ke
−(

P
m: m6=j λj,m)ydy

for j = 1, 2, . . .

We plug in ψ = t − y into the above equations, take the Fourier transform with respect
to x, and simplify to get

e(
P

m: m6=0 λ0,m−is2)tf̂0(t, s2) = 1 +
∑
k: k 6=0

∫ t

0

f̂k(ψ, s2)λ0,ke
(
P

m: m6=0 λ0,m−is2)ψdψ,

e(
P

m: m6=j λj,m)tf̂j(t, s2) = 1 +
∑
k: k 6=j

∫ t

0

f̂k(ψ, s2)λj,ke
(
P

m: m6=j λj,m)ψdψ

for j = 1, 2, . . .

We differentiate w.r.t. variable t, and obtain( ∑
m: m6=0

λ0,m − is2

)
f̂0(t, s2) +

∂

∂t
f̂0(t, s2) =

∑
k: k 6=0

λ0,kf̂k(t, s2),( ∑
m: m6=j

λj,m

)
f̂j(t, s2) +

∂

∂t
f̂j(t, s2) =

∑
k: k 6=j

λj,kf̂k(t, s2) (j = 1, 2, . . . )

We observe that f̂j(0, s2) = 1 for all j. Our next step is to take the Laplace transform
w.r.t. variable t:( ∑

m: m6=0

λ0,m + s1 − is2

)
 Lf̂0(s1, s2) = 1 +

∑
k: k 6=0

λ0,k  Lf̂k
(s1, s2),( ∑

m: m6=j

λj,m + s1

)
 Lf̂j

(s1, s2) = 1 +
∑
k: k 6=j

λj,k  Lf̂k
(s1, s2) (j = 1, 2, . . . )

The above system of equations can be rewritten via the spectral decomposition of the

generator operator Q as follows. Let  Lf̂ (s1, s2) =

  Lf̂0(s1, s2)

 Lf̂1(s1, s2)
...

 and 1 =

 1
1
...

. We
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proved the following spectral identity

(Q− s1I) Lf̂ (s1, s2) = −1− is2


 Lf̂0(s1, s2)

0
0
...

 (2)

Thus  Lf̂ (s1, s2) = −(Q− s1I)−11− is2  Lf̂0(s1, s2)(Q− s1I)−1e0 and

 Lf̂0(s1, s2) = −
(
(Q− s1I)−11, e0

)
− is2  Lf̂0(s1, s2)

(
(Q− s1I)−1e0, e0

)
Therefore the Laplace-Fourier transform of f0 can be represented as

 Lf̂0(s1, s2) =
− ((Q− s1I)−11, e0)

1 + is2 ((Q− s1I)−1e0, e0)
(3)

Since 1
s1

(Q− s1I)1 = −1, the expression in (3) can be simplified to

 Lf̂0(s1, s2) =
1/s1

1− is2h(s1)
,

where h(s) = − ((Q− sI)−1e0, e0). The Fourier transform can be inverted via complex
integration over a lower semi-circle contour with the radius converging to infinity, thus
giving us

 Lf0(s1, x) =
1

s1h(s1)
exp

{
− x

h(s1)

}

Proof. (Theorem 2.2) In the case of a simple random walk, the equation (2) translates
as

 Lf̂0(s1, s2) =
1

r + s1 − is2

+
r

r + s1 − is2

 Lf̂1(s1, s2)

 Lf̂1(s1, s2) =
1

2 + s1

+
1

2 + s1

 Lf̂0(s1, s2) +
1

2 + s1

 Lf̂2(s1, s2)

 Lf̂k
(s1, s2) =

1

2 + s1

+
1

2 + s1

 Lf̂k−1
(s1, s2) +

1

2 + s1

 Lf̂k+1
(s1, s2) (k = 1, 2, . . . )

where  Lf̂k
(s1, s2) again denotes the Laplace transform in the first variable t and the Fourier

transform in the second variable x of fk(t, x). The functions lk(s1, s2) =  Lf̂k
(s1, s2) − 1

s1
satisfy the following recurrence relation

lk(s1, s2) =
1

2 + s1

lk−1(s1, s2) +
1

2 + s1

lk+1(s1, s2) (k = 1, 2, . . . )

7



Y.Kovchegov, N.Meredith and E.Nir Occupation times and Bessel densities

Observe that  Lf̂k
(s1, 0) =

∫
[0,+∞)

∫
R e

−s1tfk(t, x)dxdt = 1
s1

and

 Lf̂k
(s1, s2) =

∫
[0,+∞)

∫
R
e−s1t+is2xfk(t, x)dxdt→

∫
[0,+∞)

∫
R
e−s1t+is2xδ0(x)dxdt =

1

s1

as k →∞

That is lk(s1, s2) → 0 as k →∞ and therefore lk(s1, s2) = l0(s1, s2)

(
2+s1−

√
s21+4s1

2

)k
as

s1 > 0. Thus the top recurrence equation reads

 Lf̂0(s1, s2) =
1

r + s1 − is2

+
r

r + s1 − is2

[(
 Lf̂0(s1, s2)−

1

s1

)2 + s1 −
√
s2
1 + 4s1

2
+

1

s1

]

and therefore

 Lf̂0(s1, s2) =
i

2s1

· (2− r)s1 + r
√
s2
1 + 4s1

s2 + i
2
((2− r)s1 + r

√
s2
1 + 4s1)

Once again, using complex integration, we invert the Fourier transform

 Lf0(s1, x) =
(2− r)s1 + r

√
s2
1 + 4s1

2s1

exp

{
−x

2

(
(2− r)s1 + r

√
s2
1 + 4s1

)}

Here the spectral measure will satisfy∫
(−∞,0]

dµ(x)

x− s
=

−2

(2− r)s+ r
√
s2 + 4s

(4)

We will now invert the Laplace transform by decomposing  Lf0(s1, x) as follows

 Lf0(s1, x) =
2− r

2
PI +

r

2
PII + 2rPIII ,

where

PI = exp
{
−x

2
(2− r)s1

}
· exp

{
−x

2
r
√
s2
1 + 4s1

}
,

PII =
s1√

s2
1 + 4s1

exp
{
−x

2
(2− r)s1

}
· exp

{
−x

2
r
√
s2
1 + 4s1

}
and

PIII =
1√

s2
1 + 4s1

exp
{
−x

2
(2− r)s1

}
· exp

{
−x

2
r
√
s2
1 + 4s1

}
We will quote a Laplace transform formula (29.3.91) in [1]:∫ ∞

k

e−ste−
1
2
atI0

(
1

2
a
√
t2 − k2

)
dt =

e−k
√
s(s+a)√

s(s+ a)
, (k ≥ 0)

8
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First we will find the inverse-Laplace transform of PIII . Taking s = s1, a = 4 and k = rx
2

in (29.3.91) of [1], we get∫ ∞

rx
2

e−s1te−2tI0

(
2

√
t2 −

(rx
2

)2
)
dt =

e−
rx
2

√
s1(s1+4)√

s1(s1 + 4)

Multiplying both sides of the above equation by exp
{
− (2−r)x

2
s1

}
, and changing the vari-

able to t := t+ (2−r)x
2

, obtain

PIII =

∫ ∞

x

e−s1te(2−r)x−2tI0

(
2
√

(t− x)(t+ (r − 1)x)
)
dt (5)

Therefore, the inverse of PIII is

L−1(PIII) = e(2−r)x−2tI0

(
2
√

(t− x)(t+ (r − 1)x)
)
· 1{x≤t}

We differentiate ∂
∂t

and integrate by parts in (5):

L
(
∂

∂t

[
e(2−r)x−2tI0

(
2
√

(t− x)(t+ (r − 1)x)
)
· 1{x≤t}

])
= PII − e−rxe−s1x

Hence

L−1(PII) = e−rtδ0(t− x)− 2e(2−r)x−2tI0

(
2
√

(t− x)(t+ (r − 1)x)
)
· 1{x≤t}

+
2t− (2− r)x√

(t− x)(t+ (r − 1)x)
e(2−r)x−2tI1

(
2
√

(t− x)(t+ (r − 1)x)
)
· 1{x≤t}

In order for us to invert PI , we will need (29.3.96) of [1], that states the following∫ ∞

k

e−st
ak√
t2 − k2

I1

(
a
√
t2 − k2

)
dt = e−k

√
s2−a2 − e−ks, (k > 0)

Here we let s = s1 + 2, a = 2 and k = rx
2

, thus obtaining

PI = e−rxe−s1x +

∫ ∞

rx
2

e−s1(t+
(2−r)x

2
) rxe−2t√

t2 −
(
rx
2

)2 I1
(

2

√
t2 −

(rx
2

)2
)
dt

Once again changing the variable to t := t+ (2−r)x
2

, get

PI = e−rxe−s1x +

∫ ∞

x

e−s1t
rxe(2−r)x−2t√

(t− x)(t+ (r − 1)x)
I1

(
2
√

(t− x)(t+ (r − 1)x)
)
dt

and

L−1(PI) = e−rtδ0(t− x) +
rxe(2−r)x−2t√

(t− x)(t+ (r − 1)x)
I1

(
2
√

(t− x)(t+ (r − 1)x)
)
· 1{x≤t}

We add up all three terms together, thus proving the theorem.

9



Y.Kovchegov, N.Meredith and E.Nir Occupation times and Bessel densities

Acknowledgment

The authors wish to thank R.Burton and M.Ossiander for sharing thoughts on the subject
of this paper. We are grateful to the anonymous referee for suggesting that we include a
discussion on limit behavior of f0(t, x) following Theorem 2.2.

References

[1] M.Abramowitz and I.A. Stegun (Eds.), Handbook of mathematical functions with
formulas, graphs, and mathematical tables U.S. Department of Commerce (1972)

[2] M.Bladt, B.Meini, M.F.Neuts and B.Sericola, Distributions of reward functions on
continuous time Markov chains in Matrix-analytic methods: theory and application
(Eds. G. Latouche and P. Taylor) (2002), pp.39-62

[3] L.Bondesson, On occupation times for quasi-Markov processes J.Appl.Prob., 18,
(1981), pp.297-301

[4] D.A.Darling and M.Kac, On occupation times for Markoff processes Transactions of
AMS, 84, (1957), pp.444-458

[5] J.N.Darroch, Identities for passage times with applications to recurrent events and
homogeneous differential functions J.Appl.Prob., 3, (1966), pp.435-444

[6] J.N.Darroch and K.Morris, Passage-time generating functions for continuous-time
finite Markov chains J.Appl.Prob., 5, (1968), pp.414-426

[7] P.Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Ap-
proach Amer. Math. Soc., Providance, RI, (2000)

[8] W.Feller, An Introduction to Probability Theory and Its Applications (Volume II)
Second Edition, John Wiley & Sons (1971)

[9] M.L.Gorbachuk and V.I.Gorbachuk, M.G.Krein’s Lectures on Entire Operators
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