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Abstract

In 1980 C.M. Newman has proven the Central Limit Theorem for a sequence of
strictly stationary random variables {Xn}n∈N that are linearly positive or negative

quadrant dependent with convergent
∞∑
i=2

Cov(X1, Xi). In this paper, we present a new

proof of the Newman’s CLT based on Stein’s method under additional assumptions.

1 Introduction

In the past century, a lot of the effort had been dedicated to proving the Central Limit
Theorem (CLT) under a variety of dependence restrictions. C. M. Newman [18, 19, 20]
has proven the CLT for the sequences of strictly stationary linearly positive or linearly
negative quadrant dependent random variables under finite second moment assumption.
In this paper, we will revisit the Newman’s CLT, and reprove it using the Stein’s method
under additional association and finite third moment assumptions. Note that the finite third
moment assumption is usual for the Stein’s method.

In 1966, Lehmann [14] introduced the notion of positive and negative quadrant dependencies.

Definition 1. A pair of random variables, X and Y , is positive quadrant dependent
(PQD) if

P [X > x, Y > y]− P [X > x]P [Y > y] ≥ 0, ∀x, y ∈ R. (1)

Consequently, a pair of random variables, X and Y , is said to be negative quadrant
dependent (NQD) if X and −Y are positive quadrant dependent.

There are stronger dependencies defined as follows.

Definition 2. A sequence of random variables Xn is linearly positive quadrant depen-
dent (LPQD) if for any pair of disjoint sets of indices A and B, and a positive sequence
{λi}, the random variables Σi∈AλiXi and Σj∈BλjXj are positive quadrant dependent.

Similarly, Xn is linearly negative quadrant dependent (LNQD) if for any pair of
disjoint sets of indices A and B, and a positive sequence {λi}, the random variables Σi∈AλiXi

and Σj∈BλjXj are negative quadrant dependent.

The above defined LPQD and LNQD are weaker types of dependencies than the positive
and negative associations that were originally introduced by Esary at al. in [10].
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Definition 3. A finite set of random variables {X1, X2, . . . , Xn} is said to be positively
associated (or simply, associated) if for any pair A and B of subsets of {1, 2, . . . , n} the
following holds

Cov
(
f(Xi, i ∈ A), g(Xj, j ∈ B)

)
≥ 0

for all coordinate-wise increasing functions f on R|A| and f on R|B|, whenever the respective
covariances exist.

A finite set of random variables {X1, X2, . . . , Xn} is said to be negatively associated
if for any pair A and B of subsets of {1, 2, . . . , n} the following holds

Cov
(
f(Xi, i ∈ A), g(Xj, j ∈ B)

)
≤ 0

for all coordinate-wise increasing functions f on R|A| and f on R|B|, whenever the respective
covariances exist.

An infinite sequence of random variables {Xn}n∈N is said to be positively associated
or associated (respectively, negatively associated) if every finite subfamily is positively
associated (respectively, negatively associated).

Next, we recall the definition of strict stationarity.

Definition 4. A sequence {Xn}n∈N is said to be strictly stationary if for all k, n ∈ N,
and all indices t1 < t2 < · · · < tn in N, the random vector (Xt1+k, Xt2+k, . . . , Xtn+k) has the
same joint distribution as (Xt1 , Xt2 , . . . , Xtn).

In 1980, Newman [18] established the following version of CLT for positively associated
strictly stationary sequences.

Theorem 1 (Newman’s CLT,[18, 21]). Consider an LPQD strictly stationary sequence

{Xn}n∈N ∈ L2 such that the series
∞∑
j=2

Cov(X1, Xj) converges. Then,

1

σ
√
n

n∑
j=1

(
Xj − E[Xj]

) d−→ Z, (2)

where

σ2 = V ar(X1) + 2
∞∑
j=2

Cov(X1, Xj),

Z denotes the standard normal random variable, and
d−→ in (2) refers to convergence in

distribution.

Moreover, Newman [18] proved a corresponding version of the above CLT in the general
context of random fields, (Xi, i ∈ Zd). The above Theorem 1 corresponds to the case when
d = 1. In 1983, Newman [20] also extended the CLT result to sequence of functions, not
necessarily monotone, of positively associated random variables.

In 1972, Stein [25] introduced what is now known as Stein’s method, which is a powerful
tool for approximations and convergences of random variables. Specifically, for the standard
normal distribution, the characterizing (Stein) operator A is defined as follows

Af(x) = f ′(x)− xf(x).

The operator A is used to characterize the standard normal random variable.
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Lemma 1 ([25]). A random variable W is standard normal if and only if E[Af(W )] = 0
for all piecewise continuously differentiable f satisfying E|f ′(Z)| <∞ for Z ∼ N(0, 1).

The following lemma is a consequence of the classical Sturm–Liouville theory.

Lemma 2. For any real-valued function g such that E|g(Z)| <∞ for Z ∼ N(0, 1), there is
a function f solving the Stein equation

f ′(x)− xf(x) = g(x)− E[g(Z)]. (3)

Moreover, if g is Lipschitz, then the solution f of the Stein equation (3) satisfies

‖f‖∞ ≤ ‖g′‖∞; ‖f ′‖∞ ≤
√

2

π
‖g′‖∞; ‖f ′′‖∞ ≤ 2‖g′‖∞ (4)

where ‖f‖∞ := sup{|f(x)| : x ∈ R}.

Then for all function g belonging to a large class of test functionsD, there exists a function
f belonging to a suitably large class D′ such that E[g(X)− g(Z)] = E[f ′(X)−Xf(X)] by
taking expectation in (3). It implies that

sup
h∈D

E[h(X)− h(Z)] ≤ sup
f∈D′

E[f ′(X)−Xf(X)]. (5)

Thus, if D consists of all 1-Lipschitz functions, then we will need the Wasserstein distance
also known as the Kantorovich-Monge-Rubinstein metric defined by

dW (X,Z) = sup
h∈D

∣∣E[h(X)]− E[h(Z)]
∣∣.

As the right hand side of (5) is easier to bound than the left hand side of (5), Stein’s method
can be used for finding the rates of convergence.

Theorem 2 (Theorem 3.1 in [24]). Let W be a random variable and Z the standard normal

distribution. Define D′ = {f : ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤
√

2
π

and ‖f ′′‖∞ ≤ 2}. Then

dW (W,Z) ≤ sup
f∈D′

E[f ′(W )−Wf(W )]. (6)

Therefore, in order to prove Sn
d−→ Z it suffices to show that

lim
n→∞

sup
f∈D′

E[f ′(Sn)− Snf(Sn)] = 0.

The Stein’s method was expanded beyond Gaussian distributions. The so called Stein-
Chen method is based on the work of Chen (a Ph.D. student Stein at the time) who adapted
the Stein’s method for approximating the Poisson distribution. See Chen[6] and Barbour et
al. [4]. The Stein’s method was later adapted for the Gaussian processes by Barbour [1], the
binomial distribution by Ehm [9], the gamma distribution by Luk [16], the uniform distribu-
tion by Diaconis [7], the compound Poisson distribution by Barbour et al. [3], Barbour and
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Utev [2] and Roos [23], the multinomial distribution by Loh [15], the geometric distribution
by Peköz [22], and so forth.

Recently, Goldstein and Wiroonsri [11] established a non-asymptotic bound on the Wasser-

stein distance between the sum
m∑
i=1

Xi and the standard normal random variable in case when

{X1, X2, . . . , Xm} is a finite set of positively associated mean zero random variables satis-

fying V ar

(
m∑
i=1

Xi

)
= 1 and |Xi| < B for some B > 0 and all i ∈ {1, 2, . . . ,m}. Later,

Wiroonsri [26] extended the results of [11] by replacing the positive association requirement
with the negative association, and obtained a non-asymptotic bound on the Wasserstein
distance. Both papers, [11] and [26], employ the Stein’s method for obtaining their main
results, that we state in the theorem below.

Theorem 3 ([11], [26]). Let {X1, X2, . . . , Xm} be a finite set of a positively associated (resp.

negatively associated) mean zero obeying |Xi| < B for some B > 0 for all i. Set W =
m∑
i=1

Xi

and additionally assume that the variance of W is 1. Then, in the positively associated case,

dW (W,Z) ≤ 5B +

√
8

π

∑
i 6=j

Cov(Xi, Xj)

and, in the negatively associated case,

dW (W,Z) ≤ 5B − 5.2
∑
i 6=j

Cov(Xi, Xj)

where Z is the standard normal random variable.

Note that the above theorem provides a Berry-Esséen type bound for the Wasserstein
metric in the case of independent and identically distributed mean zero bounded random
variables Xi.

In the original Newman’s CLT (1980), the proof uses the characteristic function of the
sum Sn = X1 +X2 + · · ·+Xn In this paper, we will prove a version of Newman’s CLT for a
positively associated strictly stationary processes via Stein’s method.

2 Preliminaries

The pointwise ergodic theorem is a generalization of the strong law of large numbers (SLLN).
We state the ergodic theorem, preceded by a few necessary definitions.

Definition 5. A measure-preserving transformation (Ω,F , P, T ) is defined by a the prob-
ability space (Ω,F , P ), and a measurable transformation T : Ω → Ω, for which P (E) =
P (T−1(E)) for all E ∈ F .

An event E is invariant under a transformation T if E = T−1(E), where equality is
defined if the symmetric difference has measure 0. The collection of all T -invariant sets
forms a σ-algebra, denoted by I.

Definition 6. A measure preserving transformation (Ω,F , P, T ) is said to be ergodic if I is
trivial, that is, if P (A) = 0 or 1 for all A ∈ I.
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Theorem 4. (Ergodic theorem) Let (Ω,F , P, T ) be a measure preserving system. For any
random variable X ∈ Lp(Ω,F , P ), we have

lim
n→∞

1

n

n−1∑
k=0

X ◦ T k → E[X|I],

where the convergence is a.s. and in Lp and I is the set of all T -invariant sets. If the system
is ergodic, then

1

n

n−1∑
k=0

X ◦ T k → E[X]

a.s. and in Lp as n→∞.

The a.s. convergence in Theorem 4 is called the pointwise ergodic theorem and the L2

convergence in Theorem 4 is known as the mean ergodic theorem. The mean ergodic theorem
is established by John von Neumann [17] and the pointwise ergodic theorem is established
by George Birkhoff [5].

Recall that for a strictly stationary sequence Xj,

lim
n→∞

1

n

n∑
j=1

Cov(X1, Xj) = 0. (7)

is the necessary and sufficient condition for

lim
n→∞

1

n

n∑
j=1

Xj = E[X1] in L2. (8)

See [27, 12].

It is known (see [21]) that (7) is also a necessary and sufficient condition for a strictly
stationary sequence of associated random variables with finite second moment to be ergodic.
This statement appeared implicitly in Lebowitz [13], and later formalized in Theorem 7 of
[21]. By Thm. 4 the ergodicity is a stronger property than L2 convergence in (8).

Theorem 5 (Theorem 7 in [21]). Let {Xn} be a strictly stationary sequence which is either
associated or negatively associated and let T be the usual shift transformation. Then T is
ergodic if and only if (7) is satisfied. Consequently (Thm. 4), if (7) is satisfied, then for
any function f(x) such that f(X1) ∈ L1,

lim
n→∞

1

n

n∑
j=1

f(Xj) = E[f(X1)] a.s. and in L1. (9)

Curiously Thm. 5 gives a partial answer to the question asked on pp. 20-21 in Yaglom [27].

Remark 1. The following result shows that for any stationary sequence, we can associate
in a measure preserving system.

Theorem 6. If {Xn} is strictly stationary then there exists a measure preserving transfor-
mation T such that Xn(x) = X1(T

n−1(x)). Indeed, T is the shift transformation.
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Finally, we will need the following auxiliary results. First, Lemma 3.3 in [11] establishes the
sufficient conditions under which a pair of random variables is PQD.

Lemma 3 (Lemma 3.3 in [11]). A pair (X, Y ) = (φ(ξ), ϕ(ξ)) is PQD whenever ξ =
(X1, . . . , Xn) is positively associated and φ(x1, . . . , xn) and ϕ(x1, . . . , xn) are coordinate wise
increasing functions of ξ.

Then, Lemma 3 in [18] presents an important upper bound for the covariance.

Lemma 4 (Lemma 3 in [18]). Suppose X and Y are either PQD or NQD random vari-
ables with finite variances, and f, g are C1 complex valued functions over R, with bounded
derivatives f ′, g′. Then

|Cov(f(X), g(Y ))| ≤ ‖f ′‖∞‖g′‖∞ |Cov(X, Y )| , (10)

where ‖ · ‖∞ denotes the sup norm on R.

3 Results

In this section, we present a new proof of the Newman’s CLT which is based on applying
Stein’s Method. It is the main result of this paper, and appears in Theorem 7.

3.1 Main Result

The results from this section are derived for a sequence of random variables {Xk}k∈N satis-
fying the following hypotheses.

Assumption 1. Sequence {Xk}k∈N satisfies the following conditions.

(a) {Xk}k∈N is a strictly stationary sequence of positively associated random variables with
finite third moment.

(b)
∞∑
j=2

Cov(X1, Xj) <∞.

Next, we formulate the main result of this paper. Its proof invokes a series of lemmas that
will be presented in Subsection 3.2 that follows.

Theorem 7. Suppose the sequence {Xk}k∈N satisfies Hypotheses 1. Then

1

σ
√
n

n∑
j=1

(
Xj − E[Xj]

) d−→ Z,

where

σ2 = V ar(X1) + 2
∞∑
j=2

Cov(X1, Xj),

and Z denotes the standard normal random variable.
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Proof. Without loss of generality, assume E[Xk] = 0. We will use the following notations.

Denote W = 1
σ
√
n

n∑
i=1

Xi. Next, we let In = {1, 2, . . . , n}, and for a given i ∈ Z and K ∈ Z+,

define
Ji,K = {i−K, . . . , i− 1, i, i+ 1, . . . , i+K}.

Finally, for i ∈ In, we define

Yi,K =
∑

j∈In∩Ji,K

Xj and Wi,K = W − Yi,K
σ
√
n
.

The term E[XiYi,K ] will appear many times in our calculations. For K ∈ Z+ and i ∈
{K + 1, . . . , n−K}, we set

γK = E[XiYi,K ] = V ar(X1) + 2
K+1∑
j=2

Cov(X1, Xj). (11)

Because of Theorem 2, it is sufficient to establish that

lim
n→∞

sup
f∈D′

∣∣E (f ′(W )−Wf(W ))
∣∣ = 0.

Lemma 6 from Subsection 3.2 implies∣∣∣E[f ′(W )]− E[Wf(W )]
∣∣∣ ≤ ∣∣∣ 1

n

n∑
i=1

(
E[XiYi,K ]

σ2
− 1

)
E [f ′(Wi,K)]

∣∣∣
+
∣∣∣ 1

σ
√
n

n∑
i=1

E [Xif(Wi,K)]
∣∣∣+
∣∣∣ 1

σ2n

n∑
i=1

Cov (XiYi,K , f
′(Wi,K))

∣∣∣+O
(

1√
n

)
. (12)

Now, we will show that each term on the right hand side of (12) converges to zero. Observe
that E[XiYi,K ] = γK → σ2 as K →∞ and f ′ is bounded. Thus, the first term on the right
hand side of (12) goes to zero because

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

(
E[XiYi,K ]

σ2
− 1

)
E [f ′(Wi,K)]

∣∣∣∣∣ ≤ (1− γK
σ2

)
‖f ′‖∞ −→ 0 as K →∞.

In order for us to bound the second term on the right hand side in (12), we note that the
variables Xi and Wi,K are coordinate wise increasing functions of (X1, . . . , Xn). By Lemma
3, the pair (Xi,Wi,K) is PQD, and therefore, Lemma 4 implies∣∣∣∣∣ 1

σ
√
n

n∑
i=1

E [Xif(Wi,K)]

∣∣∣∣∣ =

∣∣∣∣∣ 1

σ
√
n

n∑
i=1

Cov (Xi, f(Wi,K))

∣∣∣∣∣ ≤ ‖f ′‖∞σ
√
n

n∑
i=1

Cov (Xi,Wi,K) .

(13)
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Next, the bound in (13) can be rewritten as

‖f ′‖∞
σ
√
n

n∑
i=1

Cov (Xi,Wi,K) =
‖f ′‖∞
σ
√
n

n∑
i=1

E[XiW ]− ‖f
′‖∞
σ2n

n∑
i=1

γk +O
(
K

n

)

= ‖f ′‖∞E

[
n∑
i=1

XiW

σ
√
n

]
− ‖f

′‖∞
σ2n

n∑
i=1

γk +O
(
K

n

)
= ‖f ′‖∞

(
E[W 2]− γk

σ2

)
+O

(
K

n

)
−→ ‖f ′‖∞

(
1− γK

σ2

)
as n→∞, (14)

where (14) follows from Corollary 1, and finally,

1− γK
σ2
−→ 0 as K →∞.

The last term of the right hand side in (12) can be bounded as follows:∣∣∣∣∣
n∑
i=1

Cov

(
XiYi,K
σ2n

, f ′(Wi,K)

)∣∣∣∣∣ ≤
∣∣∣∣∣Cov

(
n∑
i=1

XiYi,K
σ2n

, f ′(W )

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

Cov

(
XiYi,K
σ2n

, f ′(Wi,K)− f ′(W )

)∣∣∣∣∣
≤ 2‖f ′‖∞

(
E

[∣∣∣∣∣
n∑
i=1

XiYi,K
σ2n

− γK
σ2

∣∣∣∣∣
])

+
1

σ2n

n∑
i=1

∣∣Cov (XiYi,K , f
′(Wi,K)− f ′(W ))

∣∣, (15)

where the last inequality follows from the Hölder inequality. Next, we observe that in (15),

1

σ2n

n∑
i=1

|Cov (XiYi,K , f
′(Wi,K)− f ′(W ))|

≤ ‖f
′′‖∞

σ3n
√
n

n∑
i=1

E
[
|Xi|Y 2

i,K

]
−→ 0 as N →∞. (16)

Let Vi = XiYi,K for i ∈ {K + 1, . . . , n − K}. Since {Xn}∞n=1 is stationary, then {Vi}∞i=1 is
stationary for all i ∈ {K + 1, . . . , n−K}. Letting n > K, we have

1

n

n∑
i=1

XiYi,K − γK =
1

n

n−K∑
i=K+1

Vi − γK +
∑

In\{K+1,...,n−K}

XiYi,K
n

.
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Consequently, using the fact that |a+ b|p ≤ 2p(|a|p + |b|p) for p > 0, we obtain

E

[∣∣∣∣∣ 1n
n∑
i=1

XiYi,K − γK

∣∣∣∣∣
]
≤ 2
√

2E

[∣∣∣∣∣ 1n
n−K∑
i=K+1

Vi − γK

∣∣∣∣∣
]

+ 2
√

2E

∣∣∣∣∣∣
∑

In\{K+1,...,n−K}

XiYi,K
n

∣∣∣∣∣∣


= 2
√

2E

[∣∣∣∣∣ 1

n− 2K

n−K∑
i=K+1

Vi − γK

∣∣∣∣∣
]

+O
(

1

n
√
n

)
.

By Lemma 8, we have lim
n→∞

E

[∣∣∣∣ 1
n−2K

n−K∑
i=K+1

Vi − γK
∣∣∣∣] = 0, which implies

lim
n→∞

E

[∣∣∣∣∣ 1n
n∑
i=1

Vi − γK

∣∣∣∣∣
]

= 0.

Therefore, the right hand side in (15) goes to zero as n→∞, which completes the proof.

3.2 Auxiliary Results

Lemma 5. In the set-up of the proof of Thm. 7 we have

E [f ′ (Wi,K)] = E [f ′ (W )] +O
(

1√
n

)
,

and

E

[
Xif

(
Wi,K +

Yi,K
σ
√
n

)]
= E [Xif(Wi,K)] +

1

σ
√
n
E [XiYi,Kf

′(Wi,K)] +
1√
n
O
(

1√
n

)
.

Proof. Using Lagrange’s form of the remainder term, there exists c between Wi,K and W
such that

f

(
Wi,K +

Yi,K
σ
√
n

)
= f (Wi,K) + f ′ (Wi,K)

Yi,K
σ
√
n

+ f ′′(c)
Y 2
i,K

2σ2n
.

Hence, taking the expectations, we obtain

E [f ′ (W )] = E

[
f ′
(
Wi,K +

Yi,K
σ
√
n

)]
= E [f ′(Wi,K)] +O

(
1√
n

)
Next, since f ′′ is bounded and Xi has finite third moment, we have

E

[
Xif

(
Wi,K +

Yi,K
σ
√
n

)]
= E [Xif (Wi,K)] +

1

σ
√
n
E [XiYi,Kf

′(Wi,K)] +
1√
n
O
(

1√
n

)
.

9



Lemma 6. In the set-up of the proof of Thm. 7 we have

E[f ′(W )]− E[Wf(W )] =− 1

σ2n

n∑
i=1

Cov (XiYi,K , f
′(Wi,K))

− 1

n

n∑
i=1

(
E[XiYi,K ]

σ2
− 1

)
E [f ′(Wi,K)]

− 1

σ
√
n

n∑
i=1

E [Xif(Wi,K)] +O
(

1√
n

)
. (17)

Proof. By Lemma 5,

E[f ′(W )]− E[Wf(W )] =
1

n

n∑
i=1

E [f ′(Wi,K)]− 1

σ2n

n∑
i=1

E [XiYi,Kf(Wi,K)] (18)

− 1

σ
√
n

n∑
i=1

E [Xif(Wi,K)] +O
(

1√
n

)
.

Equation (17) is obtained by rearranging the terms in the right hand side of (18).

The following is a result from [21], which implies Corollary 1, used in the proof of the main
theorem.

Lemma 7 ([21]). Consider a stationary sequence {Xn}n∈N of positively associated random

variables. Then, letting σn = V ar

(
1√
n

n∑
i=1

Xi

)
, we have σ2 = lim

n→∞
σn.

Corollary 1. In the set-up of the proof of Thm. 7 we have lim
n→∞

E[W 2] = 1.

Proof. Since {Xi}i∈N is stationary and E(Xi) = 0 for all i ∈ N, then E[X2
i ] = V ar(X1) and

E[XiXi+k] = Cov(X1, Xk), for k ≥ 1. Thus,

E[W 2] = E

 1

σ2n

(
n∑
i=1

Xi

)2
 =

σn
σ2
.

Then, lim
n→∞

E(W 2) = 1 follows from Lemma 7.

Lemma 8. In the set-up of the proof of Thm. 7, for a given integer K ≥ 0, we have

lim
n→∞

E

[∣∣∣∣∣ 1

n− 2K

n−K∑
i=1+K

Vi − γK

∣∣∣∣∣
]

= 0 (19)

where Vi = XiYi,K and γK = E[Vi] for i ∈ {K + 1, . . . , n−K}.

Proof. Theorem 5 implies

lim
n→∞

1

n

n∑
i=1

Xi
2 = E[X2

1 ] a.s. (20)
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Since {Xn +Xn+K} is a stationary sequence and
∞∑
j=1

Cov(X1, Xj) <∞, we have that

lim
n→∞

1

n

n∑
i=1

Cov(X1 +X1+K , Xi +Xi+K) = 0,

and once again, by Theorem 5,

lim
n→∞

1

n

n∑
i=1

(Xi +Xi+K)2 = E[(X1 +X1+K)2] a.s. (21)

Since XiXi+K = 1
2

(
(Xi +Xi+K)2 −X2

i −X2
i+K

)
, we have

lim
n→∞

1

n

n∑
i=1

XiXi+K = E[X1X1+K ] a.s. (22)

Next, since {Vi}i∈{K+1,...,n−K} is a stationary sequence, we have

n−K∑
i=1+K

Vi =
K∑

j=−K

n+K∑
i=1+K

XiXi+j.

By formula (22),

lim
n→∞

1

n− 2K

n−K∑
i=1+K

Vi =
K∑

j=−K

E[X1+KX1+j+K ] = E[VK+1] = γK a.s. (23)

Observe that, by the Pointwise Ergodic Theorem (Thm. 4),

lim
n→∞

1

n− 2K

n−K∑
i=1+K

Vi = E[Vk+1|I] a.s.

where I is the class of invariant events. Since E [|VK+1|] <∞, Theorem 4 implies

lim
n→∞

1

n− 2K

n−K∑
i=1+K

Vi = E[Vk+1|I] in L1. (24)

By the equivalence of the limits in (23) and (24), one obtains E[Vk+1|I] = γK . Hence, (24)
yields

lim
n→∞

1

n− 2K

n−K∑
i=1+K

Vi = γK in L1.
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