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Abstract. We introduce and analyze a novel type of coalescent processes called cross-
multiplicative coalescent that models a system with two types of particles, A and B. The
bonds are formed only between the pairs of particles of opposite types with the same
rate for each bond, producing connected components made of particles of both types.
We analyze and solve the Smoluchowski coagulation system of equations obtained as
a hydrodynamic limit of the corresponding Marcus-Lushnikov process. We establish
that the cross-multiplicative kernel is a gelling kernel, and find the gelation time. As
an application, we derive the limiting mean length of a minimal spanning tree on a
complete bipartite graph Kα[n],β[n] with partitions of sizes α[n] = αn + o(

√
n) and

β[n] = βn+ o(
√
n) and independent edge weights, distributed uniformly over [0, 1].
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1. Introduction

The coalescence dynamics of clusters with multidimensional weight (mass) vectors was
originally considered in Krapivsky and Ben-Naim [24] and Vigil and Ziff [37] in the con-
text of aggregation kinetics with applications to aerosol dynamics and copolymerization
kinetics. In this paper, we consider a coalescent process whose clusters have vector-valued
weights in R2

+. The coalescent process begins with α[n] = αn+o(
√
n) singletons of weight[

1
0

]
and β[n] = βn+ o(

√
n) singletons of weight

[
0
1

]
. This continuous time Markov pro-

cess evolves as follows. Each pair of clusters with respective weight vectors i =

[
i1
i2

]
and

j =

[
j1
j2

]
has the rate K(i, j)/n for coalescing into a cluster of weight i + j, where

K(i, j) = i1j2 + i2j1

is the cross-multiplicative coalescent kernel governing the coalescent process. Such process
will be called the cross-multiplicative coalescent process.

As a physical model, one may consider a system with two types of particles, A and B. The
process begins with α[n] particles of type A and β[n] particles of type B. Each particle
interacts only with the particles of opposite type, with which it may form a bond. The
bonds are formed independently, each with rate 1/n. Thus, the bonds may be formed
only between the pairs of particles of opposite types, producing connected components
(clusters). In these clusters, each pair of neighbor vertices will be of opposite type. The
model can be interpreted as a bond percolation model on a complete bipartite graph
Kα[n],β[n] with the probability of an edge being open p = 1− e−t/n increasing from zero to
one as the time t increases from zero to infinity. See Subsect. 4.4.

Let ζ
[n]
i1,i2

(t) denote the number of the components of weight

[
i1
i2

]
at time t. The hydro-

dynamic limit

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for an arbitrary T > 0 is established in Sect. 5.3 via the weak convergence results of Kurtz
[11, 25] for density dependent population processes. The limiting functions ζi1,i2(t) indexed
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by Z2
+ \ {(0, 0)} are expressed as the solutions of the following modified Smoluchowski

coagulation system of differential equations

(1)
d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 +βδ0,i1δ1,i2 . The above system has a unique
solution as established in the following theorem.

Sect. 3, Theorem 3.2. The modified Smoluchowski coagulation system of equations (1)
with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 has the unique solution

ζi1,i2(t) =
ii2−11 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1.

This solution of the coagulation system enables us to establish gelation in the cross-
multiplicative coalescent process.

Sect. 3, Corollary 3.7. The cross-multiplicative kernel is a gelling kernel, with the
gelation time given by

Tgel =
1√
αβ

.

We already mentioned the connection of cross-multiplicative coalescece to aggregation
kinetics [24, 37]. Besides this, the study of the cross-multiplicative coalescent process is
justified by its relation to the Erdős-Rényi process on Kα[n],β[n]. This relation will be used
in the applications presented in Sect. 4 of this paper.

1.1. Applications in minimal spanning trees. As an application, we attempt to
extend the connection between coalescent processes and random graph processes, e.g.
Erdős-Rényi random graph evolution as described in Sect. 4. In particular, deriving a
formula for the limiting length of the minimal spanning tree in a random graph process in
terms of the solutions of the Smoluchowski coagulation equations for the corresponding
coalescent process.

It is well known that in many cases the cluster dynamics of a random graph process
can be replicated with a coalescent process. For example, the Erdős-Rényi random graph
process on Kn can be tied to the n-particle multiplicative coalescent (see Aldous [2]).
The connection lies in that the probability of two components merging, at a given time,
depends only on the number of edges that connect those two components (rather than
other structural properties). There are more elaborate examples.

The cluster dynamics of a coalescent process (without merger history) is traced by an
auxiliary process called the Marcus-Lushnikov process. The merger dynamics of such coa-
lescent processes corresponds to a greedy algorithm for finding the minimal spanning tree
in the respective random graph process. This observation allows us to express the limiting
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mean length of a minimal spanning tree in terms of the solutions of the Smoluchowski
coagulation equations that represent the hydrodynamic limit of the Marcus-Lushnikov
process corresponding to the random graph process.

As a particular application of the proposed general approach we find the asymptotic
limit for the mean length of a minimal spanning tree for the complete bipartite graph
with partitions of sizes α[n] = αn + o(

√
n) and β[n] = βn + o(

√
n). See Sect. 4. There,

the probability of two components merging at a given time depends only on the number
of edges that connect those two components. If connected component Ci and Cj have
partition sizes (i1, i2) and (j1, j2) respectively, then there are i1j2 + i2j1 edges which, when
opened, would connect Ci and Cj.

Sect. 4, Theorem 4.2. Let α, β > 0 and Ln = Ln(α, β) be the length of a minimal
spanning tree on a complete bipartite graph Kα[n],β[n] with partitions of sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0, 1]. Then

lim
n→∞

E[Ln] =
∞∑
i1,i2

∞∫
0

ζi1,i2(t)d(t),

where ζi1,i2(t) indexed by Z2
+ \ {(0, 0)} is the solution of the following system of equations

d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2.

Recall that the above system of equations is the modified Smoluchowski coagulation sys-
tem (18) of the cross-multiplicative coalescent process with the cross-multiplicative kernel
introduced in (14).

In Theorem 3.2, the system of equations in Theorem 4.2 is solved. This yields the main
result of Sect. 4.

Sect. 4, Theorem 4.3. Let α, β > 0, γ = α/β, and Ln = Ln(α, β) be the length of a
minimal spanning tree on a complete bipartite graph Kα[n],β[n] with partitions of sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0, 1]. Then the limiting mean length of the
minimal spanning tree is

lim
n→∞

E[Ln] = γ +
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−11 ii1−12

(i1 + γi2)i1+i2
.
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The above result is novel for α 6= β, when the complete bipartite graph Kα[n],β[n] is an
irregular graph. For α = β, Theorem 4.3 recovers the result of Frieze and McDiarmid
[17], as stated in the following corollary that we also prove in Section 3.

Corollary 1.1 (Sect. 4, Corollary 4.4). If α = β, then

lim
n→∞

E[Ln] = 2ζ(3).

The paper is organized as follows. Sect. 2 provides the background on coalescent pro-
cesses, multiplicative coalescent, and gelation. In Sect. 3 the cross-multiplicative coa-
lescent process and the corresponding Marcus-Lushnikov process are analyzed. Sect. 4
gives applications of multiplicative and cross-multiplicative coalescent processes in mini-
mal spanning trees. Finally, in Section 5, the weak convergence results of Kurtz [11, 25]
are applied to Marcus-Lushnikov processes with multiplicative and cross-multiplicative
kernels. The paper concludes with a discussion in Section 6.

2. Background on coalescent processes and gelation

A general finite coalescent process begins with n singletons (clusters of mass one). The
cluster formation is governed by a symmetric collision rate kernel K(i, j) = K(j, i) > 0.
Specifically, a pair of clusters with masses (weights) i and j coalesces at the rate K(i, j)/n,
independently of the other pairs, to form a new cluster of mass i+j. The process continues
until there is a single cluster of mass n. See [31, 2, 5, 4, 13] and references therein.

Formally, for a given n consider the space P[n] of partitions of [n] = {1, 2, . . . , n}. Let Π
(n)
0

be the initial partition in singletons, and Π
(n)
t (t ≥ 0) be a strong Markov process such

that Π
(n)
t transitions from partition π ∈ P[n] to π′ ∈ P[n] with rate K(i, j)/n provided that

partition π′ is obtained from partition π by merging two clusters of π of weights i and j. If

K(i, j) ≡ 1 for all positive integer masses i and j, the process Π
(n)
t is known as Kingman’s

n-coalescent process. If K(i, j) = i+ j the process is called n-particle additive coalescent.
Finally, if K(i, j) = ij the process is called n-particle multiplicative coalescent. The so
called Marcus-Lushnikov process

(2) MLn(t) =
(
ζ
[n]
1 (t), ζ

[n]
2 (t), . . . , ζ [n]n (t), 0, 0, . . .

)
is an auxiliary process to the corresponding coalescent process that keeps track of the

numbers of clusters in each weight category. Here we let ζ
[n]
k (t) denote the number of

clusters of mass k in a coalescent process of n particles at time t ≥ 0. See [27] and
[26] for the original papers by Marcus and Lushnikov. The latter work considered the
gelation phenomenon emerging in some of the Marcus-Lushnikov processes. The Marcus-
Lushnikov process does not differentiate between the clusters of the same weight, and
therefore does not keep track of the merger history of the n-particle coalescent process.
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The deterministic dynamics of the limiting fractions ζk(t) = lim
n→∞

ζ
[n]
k (t)

n
of clusters of size

k is described by the Smoluchowski system of coagulation equations [34] or by its modified
version, the Flory equations. See [15, 22, 30, 18, 19]. The general system of Smoluchowski
coagulation equations with a positive symmetric kernel K(i, j) is the following mean-field
approximation of coalescent dynamics

(3)
d

dt
ζj = −ζj

∞∑
i=1

K(i, j)ζi +
1

2

j−1∑
i=1

K(i, j − i)ζiζj−i (k = 1, 2, . . .).

One of the important questions in the theory of Smoluchowski equations is whether the
conservation of mass property

(4)
∞∑
j=1

jζj(t) =
∞∑
j=1

jζj(0)

holds for all t ≥ 0, or if there exists a time Tgel <∞ after which the total mass
∑∞

j=1 jζj
begins to dissipate.

2.1. Gelation. The phenomenon of loosing total mass after a certain finite time Tgel is
called gelation. Time Tgel > 0, if finite as in the multiplicative case, is called the gelation
time. The kernel function K(·, ·) for which such Tgel < ∞ is called the gelling kernel.
Informally, the gelation time corresponds to formation of a giant cluster called the gel.
The gelation phenomenon was studied extensively in the coagulations equations literature.
See [1, 2, 36, 23, 26] and references therein. Here, we would like to summarize some (but
not all) of the concepts and results concerning the gelation phenomenon.

Consider a general system (3) of Smoluchowski coagulation equations with a positive
symmetric kernel K(i, j), and given initial conditions ζj(0). Then, following [28], we use
the Smoluchowski equations (3) to obtain

d

dt

∞∑
j=1

jζj =
∞∑
j=1

j
d

dt
ζj = −

∞∑
i,j=1

jK(i, j)ζjζi +
1

2

∞∑
j=1

j−1∑
i=1

(
i+ (j − i)

)
K(i, j − i)ζiζj−i

= −
∞∑

i,j=1

jK(i, j)ζjζi +
1

2

∞∑
i,j=1

(
i+ j

)
K(i, j)ζiζj = 0

provided convergence of
∞∑

i,j=1

jK(i, j)ζjζi. Thus, letting the gelation time be defined via

the following critical transition,

(5) Tgel := inf
{
t > 0 :

∞∑
i,j=1

jK(i, j)ζj(t)ζi(t) =∞
}
,

we have d
dt

∑∞
j=1 jζj = 0 for t ∈ [0, Tgel), which in turn implies (4) for t ∈ [0, Tgel).
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Suppose the hydrodynamic limit lim
n→∞

ζ
[n]
k (t)

n
= ζk(t) is established for the Marcus-

Lushnikov process with the given kernel K(i, j), where ζk(t) is the solution of a coag-
ulation system of equations. See [30, 18, 19]. Then the definition of gelation time in
formula (5) is replaced with

(6) Tgel := inf
{
t > 0 :

∞∑
j=1

jζj(t) <
∞∑
j=1

jζj(0)
}
.

While (5) relies on the explosion of higher moments (often, the second moment
∑

j j
2ζj)

and (6) concerns the behavior of the first moment, the two definitions of gelation are
usually equivalent.

Weak convergence of the Marcus-Lushnikov processes to either a Smoluchowski sys-
tem or a modified Smoluchowski (Flory) system was explored in Jeon [22], Norris [30],
Fournier and Giet [18], and in Fournier and Laurençot [19]. Specifically, it was shown in

Fournier and Giet [18] that if lim
i→∞

K(i,j)
i

= `(j) > 0, then the hydrodynamic limit of the

Marcus-Lushnikov process with kernel K(i, j) is the solution to the corresponding modi-
fied Smoluchowski (Flory) system. While, in Jeon [22] and Norris [30] it was established

that lim
i→∞

K(i,j)
i

= 0 implies the hydrodynamic limit of the Marcus-Lushnikov process is

the solution to the Smoluchowski system.
The question whether Tgel < ∞ is the question of whether the gelation phenomenon

occurs in a given system of Smoluchowski equations. The first mathematical proof of
gelation was produced in McLeod [28] for the multiplicative kernel. Historically, this
happened around the time when the formation of a giant cluster in the Erdős-Rényi
random graph model (see Sect. 4.1) was proved by P. Erdős and A. Rényi [9]. The
overlap in mathematical formulas obtained in the two papers, [28] and [9], representing
the two different branches of mathematics is quite remarkable. The work of finding a
mathematically solid proof of gelation phenomenon for other conjectured gelling kernels
began fifteen years later with the work of Lushnikov [26]. It continued with publications of
Ziff [38], Ernst et al. [10], van Dongen and Ernst [36], Jeon [22, 23], Escobedo et al. [12],
and many other mathematicians and mathematical physicists. In Spouge [35], gelation is
demonstrated numerically for the general bilinear kernel K(i, j) = A + B(i + j) + Cij.

Aldous [1] proved gelation for K(i, j) = 2(ij)γ

(i+j)γ−iγ−jγ , where γ ∈ (1, 2). While γ = 2

corresponds to the multiplicative kernel for which, as we know, gelation also occurs. Jeon
[23] proved that complete and instantaneous gelation occurs if K(i, j) ≥ ijψ(i, j), where

ψ(i, j) is a function increasing in both variables, i and j, such that
∞∑
j=1

1
jψ(i,j)

<∞ for all i.

This includes K(i, j) = (ij)α, α > 1, as a primary example. Finally, Rezakhanlou [32] lists
sufficient conditions for each of the three modes of gelation, i.e., simple, instantaneous,
and complete.
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2.2. Multiplicative coalescent and its coagulation equations. Consider the Marcus-
Lushnikov process MLn(t) corresponding to the multiplicative coalescent process that
begins with n singletons, i.e., K(i, j) = ij and MLn(0) = (n, 0, 0, . . .). In this case, the
Smoluchowski coagulation equations (3) are stated as follows

(7)
d

dt
ζk = −kζk

∞∑
j=1

jζj +
1

2

k−1∑
j=1

j(k − j)ζjζk−j (k = 1, 2, . . .) with ζk(0) = δ1,k.

The dynamics of the total mass
∑∞

j=1 jζj begins with
∑∞

j=1 jζj(0) = 1, and following

McLeod [28], we have

d

dt

∞∑
j=1

jζj =
∞∑
j=1

j
d

dt
ζj = −

∞∑
i,j=1

ij2ζjζi +
1

2

∞∑
j=1

j−1∑
i=1

(
i+ (j − i)

)
i(j − i)ζiζj−i

= −
∞∑

i,j=1

ij2ζjζi +
1

2

∞∑
i,j=1

(
i+ j

)
ijζiζj = 0(8)

provided convergence of
∞∑
j=1

j2ζj(t). Thus, there exists a time Tgel ∈ (0,∞], defined as

the time such that the following conservation of mass formula (4) is satisfied up to Tgel,

i.e.,
∞∑
j=1

jζj(t) = 1.

Next, we want to modify the system (7) since the decay rate of kζk
∑∞

j=1 jζj in (7) does
not include the gravitation of clusters of size k towards all the rest of the clusters. The
problem is that a cluster of an exceptionally large size, say εn, in a single quantity will
not be accounted for in (7). Yet, such a large cluster has to contribute εkζk to the decay
rate of ζk. Replacing the decay rate kζk

∑∞
j=1 jζj with kζk would resolve this issue as the

new rate accounts for the gravitation of a cluster of a given size k towards all clusters in
the Marcus-Lushnikov process, whose weights add up to n− k = n

(
1 +O(n−1)

)
.

Thus, as it was done in [28], the Smoluchowski coagulation system (7) reduces to

(9)
d

dt
ζk = −kζk +

1

2

k−1∑
j=1

j(k − j)ζjζk−j (k = 1, 2, . . .) with ζk(0) = δ1,k

which is solved explicitly:

(10) ζk(t) =
kk−2tk−1

k!
e−kt for t ≥ 0.

Now, since (9) is obtained from (7) by substituting
∑∞

j=1 jζj(t) = 1, the solutions of

systems (7) and (9) coincide as long as the conservation of mass holds, i.e., for all t ∈
[0, Tgel).
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The above system of equations (9) is called modified Smoluchowski system (see Fournier
and Giet [18]), and is also known as the Flory coagulation system of equations (named
after Flory [15]). See also [19] for the analysis of a broad class of Smoluchowski and Flory
systems, where the kernel K(i, j) = iαj + ijα, α ∈ (0, 1].

Importantly, it is well known that the hydrodynamic limit of the Marcus-Lushnikov pro-

cess lim
n→∞

ζ
[n]
k (t)

n
= ζk(t) is the solution (10) of the modified Smoluchowski system (9) for

the multiplicative kernel.

For the multiplicative kernel K(i, j) = ij the gelation time Tgel is finite [28], and therefore,
K(i, j) = ij is a gelling kernel. Indeed, applying Stirling’s approximation, we have the
series

(11)
∞∑
j=1

j2ζj(s) =
∞∑
j=1

jjsj−1

j!
e−js =

1√
2πs

∞∑
j=1

e−j(s−ln s−1)√
j

(
1 + o(j−1)

)
converging for all positive s 6= 1 and diverging for s = 1. Hence, the second moment
∞∑
j=1

j2ζj(t) in (8) converges for t ∈ [0, 1) and diverges for t = 1, i.e.,

Tgel := inf
{
t > 0 :

∞∑
j=1

j2ζj(t) =∞
}

= 1.

Thus, the conservation of mass (4) is satisfied until the explosion of the second moment
at t = 1.

Moreover, for t > 0, consider

(12) x(t) := min{x > 0 : xe−x = te−t},

i.e., x(t) is the unique x ∈ (0, 1] such that xe−x = te−t. Obviously, x(t) = t for 0 < t ≤ 1.

We know that for t < 1,
∞∑
k=1

kζk(t) = 1 implies
∞∑
k=1

kk−1(te−t)k

k!
= t. Thus, for all t > 0,

∞∑
k=1

kk−1(te−t)k

k!
= x(t). Hence, the first moment of the solutions ζk of (9) equals

(13)
∞∑
k=1

kζk(t) =
1

t

∞∑
k=1

kk−1(te−t)k

k!
=
x(t)

t
.

and therefore, the solutions of (9) satisfy
∞∑
k=1

kζk(t) = 1 if t ≤ 1,

∞∑
k=1

kζk(t) < 1 if t > 1.
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Compare this to the mass conservation property in the Marcus-Lushnikov processes:

∞∑
k=1

k
ζ
[n]
k (t)

n
= 1 ∀t ≥ 0.

The above can be restated using the following alternative definition of the gelation time

Tgel := inf
{
t > 0 :

∞∑
j=1

jζj(t) < 1
}

= 1,

where ζk are the solutions of (9).

3. The cross-multiplicative coalescent process

In this section we analyze the cross-multiplicative coalescent process. We are motivated
by the need to extend the theory and applications of coalescent processes to the particle
system, described in the introduction, where not all pairs of particles interact with each
other. Specifically, each particle may bond only with the particles of the opposite type.

For given α, β > 0, we consider two integer valued functions, α[n] = αn + o(
√
n) and

β[n] = βn+o(
√
n). We will examine a coalescent process where the weight of each cluster

is a two-dimensional (weight) vector i =

[
i1
i2

]
. Here, i1, i2 ≥ 0 and i1+i2 > 0. Each cluster

of weight i consists of i1 particles of type A and i2 particles of type B. The coalescent

process begins with α[n] +β[n] singletons, of which α[n] singletons are of weight

[
1
0

]
and

the other β[n] singletons are of weight

[
0
1

]
. The coalescence kernel is defined by

(14) K(i, j) := i1j2 + i2j1

for any pair of clusters with weight vectors i =

[
i1
i2

]
and j =

[
j1
j2

]
. Each pair of clusters of

respective weights i and j would coalesce into a cluster of weight i + j with rate K(i, j)/n.

The last merger will create a cluster of weight

[
α[n]
β[n]

]
. We will call this cross-multiplicative

coalescent process, and the kernel K(i, j) defined in (14) will be referred to as the cross-
multiplicative kernel.

3.1. Coagulation equations. Consider the Marcus-Lushnikov process MLn(t) that keeps
track of cluster counts in the above defined cross-multiplicative coalescent process that

begins with α[n] +β[n] singletons of the two types, α[n] of weight

[
1
0

]
and β[n] of weight[

0
1

]
. Specifically, let ζ

[n]
i1,i2

(t) denote the number of components of weight i =

[
i1
i2

]
at time
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t. Then MLn(t) is the process with coordinates ζ
[n]
i1,i2

(t), i.e.

MLn(t) =
(
ζ
[n]
i1,i2

(t)
)
i1,i2

with the starting values ζ
[n]
1,0(0) = α[n], ζ

[n]
0,1(0) = β[n], and ζ

[n]
i1,i2

(0) = 0 for all other pairs
(i1, i2).

The Smoluchowski coagulation equations for the Marcus-Lushnikov process MLn(t) with
cross-multiplicative kernel are written as follows:

d

dt
ζi1,i2(t) = −ζi1,i2(t)

∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t) +
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

(15)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 .

A reduced system of differential equations corresponding to the above Smoluchowski coag-
ulation equations (15) will be given in (18). It will take into account the mass conservation
property of the above Marcus-Lushnikov process MLn(t), and therefore will represent the
smaller cluster dynamics over the whole time interval [0,∞).

First, we notice that here the initial total mass is
∑
i1,i2

(i1 + i2)ζi1,i2(0) = α+ β. Moreover,

the initial total ‘left mass’ (type A) is
∑
i1,i2

i1ζi1,i2(0) = α and the initial total ‘right mass’

(type B) is
∑
i1,i2

i2ζi1,i2(0) = β.

Next, we consider the rate of change for the total left mass and the total right mass,
and use (15) to obtain

d

dt

∑
i1,i2

i1ζi1,i2(t) = −
∑

i1,i2,j1,j2

i1(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`1 + k1)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0(16)

and

d

dt

∑
i1,i2

i2ζi1,i2(t) = −
∑

i1,i2,j1,j2

i2(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`2 + k2)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0(17)

whenever
∑
i1,i2

(i1 + i2)
2ζi1,i2(t) converges.
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Here, for t < Tgel,
∑
j1,j2

j1ζj1,j2(t) = α and
∑
j1,j2

j2ζj1,j2(t) = β. Therefore, for any i1 and

i2,
∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t) = βi1 + αi2. Thus we can consider the following modified

Smoluchowski coagulation system of equations:

(18)
d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 . Once again, the solutions of
Smoluchowski coagulation system (15) and the above modified Smoluchowski coagulation
system (18) will match up until Tgel. Consequently, the solution (23) of the modified
Smoluchowski system of equations (18) is used in Sect. 3.3 for establishing the finiteness
of the gelation time and for finding its value, Tgel.

In Sect. 5.3 we establish that the solution to the above modified Smoluchowski coagulation
system (18) is the hydrodynamic limit of the Marcus-Lushnikov process MLn(t) with
cross-multiplicative kernel. Specifically, in equation (64), it is shown that

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for any given T > 0 and all i1, i2 ≥ 1, where ζi1,i2(t) solves the modified Smoluchowski
coagulation system (18).

3.2. The unique solution of the modified Smoluchowski coagulation system.
Next, we want to find the solution ζi1,i2(t) of the reduced system (18) for all t ≥ 0. Here
we observe that ζ1,0(t) = αe−βt and ζ0,1(t) = βe−αt, and extend the approach of McLeod
[28] by considering the solutions of the following form

(19) ζi1,i2(t) = αi1βi2Si1,i2e
−(βi1+αi2)tti1+i2−1

and plugging them into equation (18). After cancelations, we arrive with the following
recursion

(20) (i1 + i2 − 1)Si1,i2 =
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2

with initial conditions Si,0 = S0,i = δ1,i, and Si1,i2 = Si2,i1 .

In the next lemma we state the explicit solution to the recursion relation (20) which we
prove using a generalization of Abel’s binomial theorem.

Lemma 3.1. The system of equations (20) with the initial conditions Si,0 = S0,i = δ1,i
has the following unique solution

(21) Si1,i2 =
ii2−11 ii1−12

i1!i2!
.



CROSS-MULTIPLICATIVE COALESCENT 13

Note that the numerator ii2−11 ii1−12 in (21) is the total number of spanning trees in Ki1,i2 .
See [3].

Proof. In Theorem 1.1(3) of [20], F. Huang and B. Liu generalize Abel’s binomial theorem
as follows:

i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v + zi1 − zk1

)k2−1(− z(i1 − k1)
)i2−k2(−zk2)k1(u+ zk2)

i1−k1−1

=
[uv − i1i2z2]ui1−1vi2−1

(v + i1z)(u+ i2z)
(22)

Then, we use (22) with z = −1 to confirm our candidate solution satisfies (20) by plugging
it into the right hand side of (20) as follows.

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 =
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

`1k2S`1,`2Sk1,k2

=
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2,

(k1,k2),(`1,`2)6=(0,0)

``21 `
`1−1
2 kk2−11 kk12
`1!`2!k1!k2!

=
1

i1!i2!

∑
k1: 0≤k1≤i1,
k2: 0≤k2≤i2,

(k1,k2)6=(0,0),(i1,i2)

(
i1
k1

)(
i2
k2

)
kk2−11 (i1 − k1)i2−k2kk12 (i2 − k2)i1−k1−1

=
1

i1!i2!
lim
v→i1,
u→i2

{ i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v − i1 + k1

)k2−1(i1 − k1)i2−k2kk12 (u− k2)i1−k1−1

− ii21 u
i1−1

v − i1
− ii12 v

i2−1

u− i2

}

=
1

i1!i2!
lim
v→i1,
u→i2

{ [uv − i1i2]ui1−1vi2−1

(v − i1)(u− i2)
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
=

1

i1!i2!
lim
v→i1,
u→i2

{i1vi2−1ui1−1
v − i1

+
ui1vi2−1

u− i2
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
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Hence,

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 =
1

i1!i2!
lim
v→i1,
u→i2

{
i1u

i1−1v
i2−1 − ii2−11

v − i1
+ vi2−1

ui1 − ii12
u− i2

}

=
1

i1!i2!

(
(i2 − 1) · ii2−11 ii1−12 + i1 · ii2−11 ii1−12

)
= (i1 + i2 − 1)

ii2−11 ii1−12

i1!i2!

= (i1 + i2 − 1)Si1,i2

thus completing the proof. �

The solution of equations (18) follows from (19) and Lemma 3.1.

Theorem 3.2. The modified Smoluchowski coagulation system of equations (18) with the
initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 has the unique solution

(23) ζi1,i2(t) =
ii2−11 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1.

3.3. Gelation in the cross-multiplicative coalescent process. Next, we prove the
finiteness of the gelation time that, following the approach in (6), we define as

Tgel := inf
{
t > 0 :

∑
i1,i2

(i1 + i2)ζi1,i2(t) < α + β
}
.

Let

(24) s(u, v) :=
∑

(i1,i2)∈Z2
+\{(0,0)}

Si1,i2u
i1vi2 =

∑
(i1,i2)∈Z2

+\{(0,0)}

ii2−11 ii1−12

i1!i2!
ui1vi2

be the generating function of Si1,i2 . The recurrence relation (20) implies

(25) u
∂s

∂u
+ v

∂s

∂v
− s = uv

∂s

∂u

∂s

∂v

with the initial conditions ∂
∂u
s(0, 1) = ∂

∂v
s(1, 0) = 1.

Lemma 3.3. Consider the Smoluchowski coagulation system of equations (15) with the
initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2. Then, a phase transition occurs at

inf
{
t > 0 :

∑
i1,i2

(i1 + i2)
2ζi1,i2(t) =∞

}
=

1√
αβ

.

Note that the above phase transition corresponds to the gelation times as defined in (5).
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Proof. We will follow the approach in [1, 2] and [38]. Let

E(t) :=
∑
i1,i2

i21ζi1,i2(t), F (t) :=
∑
i1,i2

i1i2ζi1,i2(t), and G(t) :=
∑
i1,i2

i22ζi1,i2(t)

denote all the second order moments of ζi1,i2(t). By differentiating as in (16) and (17), we
obtain

d

dt
E(t) = 2E(t)F (t),

d

dt
F (t) = E(t)G(t) + F 2(t), and

d

dt
G(t) = 2G(t)F (t)

with the initial conditions E(0) = α, F (0) = 0, and G(0) = β. We require the finiteness
of all third order moments when deriving the above differential equations for the second
order moments. Here the first and the third equations yield E(t) = α

β
G(t). Hence the

system reduces to

d

dt
E(t) = 2E(t)F (t) and

d

dt
F (t) =

β

α
E2(t) + F 2(t),

and therefore,

d

dt

(√
β

α
E(t) + F (t)

)
=

(√
β

α
E(t) + F (t)

)2

.

Thus, √
β

α
E(t) + F (t) =

1
1√
αβ
− t

for t < 1√
αβ

. The statement of the lemma follows from the fact that all functions obtained

as all-order partial derivatives of the series (24) have the same domain of convergence. �

For given α, β > 0 and t > 0, define

(26)
(
x(t), y(t)

)
:= min

{
(x, y) : xe−y = αte−βt, ye−x = βte−αt

}
,

where the minimum in one coordinate implies the minimum in another as x and y solving

(27) xe−y = u and ye−x = v

for u, v > 0 are mutually monotonous, e.g. x = uey.

Proposition 3.4. For given u, v > 0, consider the system (27). Then, the following
holds.

(i) Depending on the values of u and v, the system (27) may have one, two, or no
solutions.

(ii) If the system (27) has a unique solution, then the solution should satisfy xy = 1.
(iii) If the system (27) has two solutions, then the smallest solution should satisfy

xy < 1, and the largest solution should satisfy xy > 1.
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Proof. First, observe that x = ueve
x
, and statement (i) follows from the convexity of ueve

x
.

Next, suppose (x1, y1) and (x2, y2) are two solutions of (27). Then

(28) x1e
−y1 = x2e

−y2 and y1e
−x1 = y2e

−x2 .

We express x2 in terms of x1 and y1, obtaining x2 = x1e
y1(ex2−x1−1). We notice that there

is a unique solution x = x1 of

(29) x = x1e
y1(ex−x1−1)

if and only if x = x1 is the root of 1 = xy1e
x−x1 . This yields statement (ii).

Finally, suppose there are two distinct solutions of (29), and x2 > x1 (implying y2 > y1).
Then, there is a local extremum x ∈ (x1, x2), satisfying 1 = xy1e

x−x1 > x1y1.
Similarly, suppose there are two distinct solutions of (29), and x2 < x1 (implying

y2 < y1). Then, there is a local extremum x ∈ (x2, x1), satisfying 1 = xy1e
x−x1 < x1y1.

Hence, statement (iii). �

Prop. 3.4 immediately yields the following corollary concerning the functions defined
in (26).

Corollary 3.5. For given α, β > 0 and t > 0, consider
(
x(t), y(t)

)
as defined in (26).

Then,

• x(t) = αt and y(t) = βt for all t ≤ 1√
αβ

;

• x(t) < αt and y(t) < βt for all t > 1√
αβ

.

Next, we derive an analogue to the equation (13) that was proved in McLeod [28] for the
regular multiplicative kernel.

Lemma 3.6. Consider the solution ζi1,i2(t) of the modified Smoluchowski coagulation
system of equations (18) with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2, as
found in Theorem 3.2. Then,∑

i1,i2

i1ζi1,i2(t) =
∑
i1,i2

ii21 i
i1−1
2 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1 =

x(t)

t

and ∑
i1,i2

i2ζi1,i2(t) =
∑
i1,i2

ii2−11 ii12 α
i1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1 =

y(t)

t
,

where x(t) and y(t) are the functions defined in (26).

Proof. Observe that ∑
i1,i2

i1ζi1,i2(t) = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
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and ∑
i1,i2

i2ζi1,i2(t) = βte−αt
∂s

∂v

(
αte−βt, βte−αt

)
.

By (16), (17), and Lemma 3.3, we have

(30) αt = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
and βt = βte−αt

∂s

∂v

(
αte−βt, βte−αt

)
∀α, β > 0 and ∀t < 1√

αβ
. Now, since the function s(u, v) does not depend on the values

of α and β, (30) implies

x = xe−y
∂s

∂u

(
xe−y, ye−x

)
and y = ye−x

∂s

∂v

(
xe−y, ye−x

)
for all xy < 1. Hence, by Prop. 3.4 , we have

x = u
∂s

∂u
(u, v) and y = v

∂s

∂v
(u, v)

whenever (x, y) is the smallest solution of (27). The equations

(31) x(t) = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
and y(t) = βte−αt

∂s

∂v

(
αte−βt, βte−αt

)
∀t ≥ 0,

with x(t) and y(t) defined in (26), follow from Proposition 3.4. �

Corollary 3.7. The cross-multiplicative kernel defined in (14) is a gelling kernel, and
the gelation time corresponding to the Smoluchowski coagulation system of equations (15)
with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 equals

Tgel =
1√
αβ

.

Proof. Lemma 3.6 and Proposition 3.4 imply that the mass of the system in (18) is
conserved until 1√

αβ
, after which time it begins to dissipate, i.e.,

∑
i1,i2

(i1 + i2)ζi1,i2(t) = α + β if t ≤ 1√
αβ

;∑
i1,i2

(i1 + i2)ζi1,i2(t) < α + β if t > 1√
αβ
.

�

Recall that we considered two alternative definitions of gelation time in Sect. 2.1. Defini-
tion (5) would often describe the time of the explosion of a higher moment while definition
(6) is based on the loss of total mass after gelation. Comparing Lemma 3.3 with Corollary
3.7, we confirm the equivalence of the two alternative definitions of the gelation time for
the cross-multiplicative kernel, i.e.,

inf
{
t > 0 :

∑
i1,i2

(i1+i2)
2ζi1,i2(t) =∞

}
= Tgel = inf

{
t > 0 :

∑
i1,i2

(i1+i2)ζi1,i2(t) < α+β
}
.
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4. Applications in minimal spanning trees

In this section we demonstrate how the coagulation equations for the multiplicative and
cross-multiplicative coalescent processes and the weak convergence results of Section 5 can
be used for finding the lengths of the minimal spanning trees on the complete graph Kn

and on the complete bipartite graph Kα[n],β[n] respectively. The main result of this section
Theorem 4.3 is proved using Marcus-Lushnikov processes and coagulation equations in
Sect. 4.6. The proof of Theorem 4.3 is preceded by the proof of Theorem 4.1 in Sect. 4.3,
a well-known result of Frieze [16] that we use to illustrate the approach.

We recall the following quote from Aldous [1]: It turns out that there is a large scientific
literature relevant to the Marcus-Lushnikov process, mostly focusing on its deterministic
approximation. Curiously, this literature has been largely ignored by random graph theo-
rists. The broader goal of this section is in bridging the gap between the theory of the
Smoluchowski coagulation equations for the Marcus-Lushnikov processes and the random
graph theory. Here we concentrate on analyzing the length of the minimal spanning tree
as the prime example that demonstrates the usefulness of the Marcus-Lushnikov processes
and the coalescence theory in general for answering questions about random graphs. We
recall that the asymptotic limit for the mean length of a minimal spanning tree on Kn

with independent uniform edge weights over [0, 1] was derived in Frieze [16]. There, it

is shown to be lim
n→∞

E[Ln] = ζ(3) =
∞∑
k=1

1
k3

. In [17], the mean length of the minimal

spanning tree for the complete bipartite graph Kn,n with independent edge weights dis-
tributed uniformly over [0, 1] was shown to have asymptotic limit lim

n→∞
E[Ln] = 2ζ(3). In

Beveridge et al [6], the minimal spanning tree problem was addressed for d-regular graphs.
In Sect. 4.5 and 4.6, we will find the mean length of the minimal spanning tree in the case
of a complete bipartite graph Kα[n],β[n] via a connection between the coalescence theory
and the random graph theory. Note that Kα[n],β[n] is an irregular graph when α 6= β.

4.1. Relation of Erdős-Rényi process on Kn to multiplicative coalescent. Recall
that Erdős-Rényi random graph is a model on a complete graph of n vertices, Kn, where
each edge e of

(
n
2

)
edges there is an associated uniform random variable Ue over [0, 1].

The random variables {Ue}e are assumed to be independent. For the “time” parameter
p ∈ [0, 1], an edge e is considered “open” if Ue ≤ p. Erdős-Rényi random graph G(n, p)
will consist of all n vertices and all open edges at time p. The number of open edges is a

binomial random variable with parameters
(
n
2

)
and p, and mean value

(
n
2

)
p ∼ pn2

2
. As we

increase p, more and more edges open up, new clusters are created, and cluster merges
occur. Thus Erdős-Rényi random graph model can be viewed as a dynamical model that
describes an evolution of a random graph [9].

If we condition on the number of edges in G(n, p), the graph structure will no longer
depend on p. Let ξn,N be the number of components in an Erdős-Rényi random graph
with n vertices and N edges. For t > 0, letting N ∼ tn

2
, Theorem 6 in [9] by P. Erdős and
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A. Rényi states that

(32)
E[ξn,N ]

n
=

1

t

∞∑
k=1

kk−2(te−t)k

k!
+Rt,

where the error term is

Rt =


O
(
1
n

)
if 0 < t < 1

O
(
logn
n

)
if t = 1

o(1) if t > 1

.

There ϕ(t) = 1
t

∞∑
k=1

kk−2(te−t)k

k!
reaches its maximum at t = 1, and ϕ(1) =

∞∑
k=1

kk−2e−k

k!
= 1

2
.

Recall the function x(t) defined in (12). It was pointed out by P. Erdős and A. Rényi
that ϕ(t) in the equation (32) can be represented via x(t) as follows,

ϕ(t) =
x(t)− x2(t)

2

t
.

Observe that here, since we are letting N ∼ tn
2

, parameter t is essentially equivalent to
np. So t is a scaled time parameter.

Let the number of vertices in a connected component of a random graph be referred to as
a weight of the cluster (or cluster size). In Sect. 2.2 we considered the Marcus-Lushnikov
process

MLn(t) =
(
ζ
[n]
1 (t), ζ

[n]
2 (t), . . . , ζ [n]n (t), 0, 0, . . .

)
corresponding to the multiplicative coalescent process of n particles that begins with n
singletons, i.e., MLn(0) = (n, 0, 0, . . .). As observed in [2], the process MLn(t) describes
cluster size dynamics of the Erdős-Rényi random graph process G(n, p) with p = 1−e−t/n.
Here the scaled time parameter in the Erdős-Rényi process is np = n

(
1−e−t/n

)
∼ t. Thus

the time scale is consistent with the one used in [9] by P. Erdős and A. Rényi.

Recall the function ζk in (10) that solves (9). As we know, in the Erdős-Rényi process,
the gelation time Tgel = 1 of the Marcus-Lushnikov process with the multiplicative kernel
corresponds to a time after which a single giant component emerges, and continues to
absorb components of smaller size. Indeed, in [9], P. Erdős and A. Rényi showed that the
cycles are rare for a given fixed t > 0, and the clusters of size k at time t consist mainly
of isolated trees of order k. Specifically, if τk denotes the number of isolated trees of order
k, Theorem 4b in [9] asserts that

(33) lim
n→∞

kE[τk]

n
=
kk−2tk−1

k!
e−kt = ζk(t)
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and

(34) lim
n→∞

∞∑
k=1

kE[τk]

n
= lim

n→∞

n∑
k=1

kE[τk]

n
=
x(t)

t
,

where x(t) is defined in (12). Moreover, Theorem 9b in [9] proves the emergence of one
giant component after time t = 1. There, if we let γn(t) denote the size of the greatest
component at time t, then

lim
n→∞

γn(t)

n
= 1− x(t)

t
in probability.

So the dynamics of g(t) := 1−
∞∑
k=1

kζk(t) = 1− x(t)
t

represents the asymptotic size of the

giant component.

4.2. The length of the minimal spanning tree in Kn. Recall that in the construc-
tion of the Erdős-Rényi random graph model, each edge e of the complete graph Kn had
a random variable Ue associated with it. Here we consider Ue to be uniform over [0, 1].
However, in general, various types of probability distributions are considered in the ex-
tensive literature on the topic. Now, thinking of Ue as the length of the edge e, one can
construct a minimal spanning tree on Kn. Let random variable Ln denote the length of
such minimal spanning tree. The asymptotic limit of the mean value of Ln was considered
in Frieze [16]. There, the results (33) and (34) from P. Erdős and A. Rényi [9] are used
in proving the following limit

(35) lim
n→∞

E[Ln] =

∞∫
0

x(t)

t
dt =

∞∑
k=1

∞∫
0

kk−2tk−1

k!
e−ktdt = ζ(3),

where ζ(3) =
∞∑
k=1

1
k3

= 1.202 . . . is the value of the Riemann zeta function at 3.

Consider a coalescent process with a kernel K(i, j) for which Tgel <∞ has been proved.
See [1, 23]. Then for a corresponding random graph model, we use the following S. Janson’s
formula [21]

(36) lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))]dp− 1,

where κ(G(n, p)) is the number of components in the Erdős-Rényi random graph G(n, p),
and prove the following statement.
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Theorem 4.1. Let Ln denote the length of the the minimal spanning tree in Kn, where
edge weights are independent and uniform random variables on [0, 1]. Then

(37) lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt,

where ζk(t) are the solutions (10) of the corresponding system of the modified Smolu-
chowski coagulation equations (9).

Observe that the above equation (37) reproduces the result (35) of Frieze [16]. Indeed,
plugging (10) into (37), we obtain

lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt =
∞∑
k=1

∞∫
0

kk−2tk−1

k!
e−ktdt

=
∞∑
k=1

1

k3

∞∫
0

kktk−1

Γ(k)
e−ktdt =

∞∑
k=1

1

k3
= ζ(3).

Theorem 4.1 will be proved in Sect. 4.3. There, we give a novel proof to this well known
result [16]. The proof utilizes only the modified Smoluchowski coagulation equations (9)
and the weak convergence results that appear in Section 5 of this paper..

Here is the heuristics behind the proof of Theorem 4.1 presented in Sect. 4.3. We already
observed that the Marcus-Lushnikov process MLn(t) corresponding to the multiplicative
coalescent process that begins with n singletons is equivalent to the cluster size dynamics
in the process G(n, 1− e−t/n). Here

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))] dp− 1 = lim
n→∞

∞∫
0

1

n
E[κ(G(n, 1− e−t/n))]e−t/ndt− 1

= lim
n→∞

∞∫
0

∞∑
k=1

1

n
E[κer(k, n, 1− e−t/n)]e−t/ndt− 1

= lim
n→∞

∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt− 1,
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where κer(k, n, p) is the number of components of size k in G(n, p) and p = 1 − e−t/n.
Therefore, one could informally calculate the limit as follows:

lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

∞∫
Tgel

1

n
e−t/ndt− 1

=
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

e−Tgel/n − 1 =
∞∑
k=1

∞∫
0

ζk(t)dt.(38)

Here
∞∫

Tgel

1
n
e−t/ndt represents the emergence of one giant component at time Tgel = 1.

4.3. Proof of Theorem 4.1. Here we give a rigorous proof using the idea behind the
approach in formula (38). Note that unlike the original proof in Frieze [16], our proof
will not rely on knowing the distribution of sizes and the geometry of clusters in the
Erdős-Rényi process as provided in [9]. Nor will it require knowing anything about large
clusters or the emergence of a unique giant component at time Tgel = 1. All that we use is
the weak convergence results of Kurtz [11, 25] that we applied to the Marcus-Lushnikov
processes in Section 5.

Proof. Observe that

(39) lim
t→∞

∞∑
k=1

kζk(t) = lim
t→∞

∞∑
k=1

kk−1tk−1

k!
e−kt = lim

t→∞

x(t)

t
= 0.

Thus, for any given ε ∈ (0, 1/4), we can fix T � Tgel so large that

(40)
∞∑
k=1

kζk(T ) ≤ ε

2
.

Notice that the above inequality (40) ties T to ε.

Fix integer K > 0. By the equation (62) proved in Sect. 5.2 we know that

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣
K∑
k=1

n−1ζ
[n]
k (s)−

K∑
k=1

ζk(s)

∣∣∣∣∣ = 0 a.s.

Thus, the probability of the complement of the event

(41) Qε
K,T,n :=

{
K∑
k=1

kζ
[n]
k (T )

n
≤ ε

}
is decreasing to zero as n→∞. Moreover,

qεK,T (n) := P (Qε
K,T,n) = O(n−2)
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by Proposition 5.3 in Sect. 5.4 as
K∑
k=1

kζ
[n]
k (0)

n
−

K∑
k=1

kζk(0) = 0.

We will split
∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt as follows.

∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt =

T∫
0

K∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt (Term I)

+

T∫
0

∞∑
k=K+1

E[ζ
[n]
k (t)]

n
e−t/ndt (Term II)

+
(
1− qεK,T (n)

) ∞∫
T

K∑
k=1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt (Term III)

+
(
1− qεK,T (n)

) ∞∫
T

∞∑
k=K+1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt (Term IV)

+ qεK,T (n)

∞∫
T

∞∑
k=1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt (Term V)(42)

Next, we estimate the terms I-V in (42).

Term I. As it is proven in (61) of Section 5, lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]k (s)− ζk(s)
∣∣∣ = 0 a.s. on

[0, T ] for all k = 1, 2, . . . , K. Therefore,

lim
n→∞

T∫
0

K∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt =

K∑
k=1

T∫
0

ζk(t)dt.

Term II. Observe that,

∞∑
k=K+1

ζ
[n]
k (t)

n
≤ 1

Kn

∞∑
k=K+1

kζ
[n]
k (t) =

1

K

(
1−

K∑
k=1

kζ
[n]
k (t)

n

)
≤ 1

K
.

Thus,
T∫

0

∞∑
k=K+1

E[ζ
[n]
k (t)]

n
e−t/ndt = O

(
T

K

)
regardless of the value of n > 0.
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Term III. Recall that in the theory of Marcus-Lushnikov processes the gel is the set of
all “large” clusters. By analogy, we define the K-gel to be the collection of all clusters of
mass bigger than K. Let MK gel(t) denote the total mass of all clusters in the K-gel at
time t ≥ 0.

Now, conditioning on the event Qε
K,T,n, the mass of the K-gel is MK gel(t) ≥ (1 − ε)n for

all t ≥ T . Thus each cluster not in K-gel will be gravitating toward the K-gel with the

rate of at least
MK gel(t)

n
≥ 1− ε. Consider a cluster that was not in K-gel at time T . Let

T + L be the time it becomes a part of the K-gel. Then, its contribution to the integral
∞∫
T

K∑
k=1

E[ζ
[n]
k (t) | QεK,T,n]

n
e−t/ndt is at most

∞∫
T

E[1[T,T+L](t) | Qε
K,T,n]

n
e−t/ndt ≤

∞∫
T

E[1[T,T+L](t) | Qε
K,T,n]dt

n
e−T/n

=
E[L | Qε

K,T,n]

n
e−T/n ≤ 1

(1− ε)n
,

where

1A =

{
1 if t ∈ A
0 if t 6∈ A

.

The number of clusters not in K-gel at time t ≥ T is

K∑
k=1

ζ
[n]
k (t) ≤

K∑
k=1

kζ
[n]
k (t) ≤ εn.

Therefore,
∞∫
T

K∑
k=1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt ≤ εn

(1− ε)n
=

ε

1− ε
< 2ε.

Term IV. We let C = {C1, C2, C3, . . . , CM} denote the set of all clusters that ever ex-
ceeded mass K in the whole history of the process

{
MLn(t)

}
t∈[0,∞)

. There are less than

n/K such clusters, i.e., M < n/K. For each Ci, the emergence time ai is the time when
a pair of clusters of mass not exceeding K mergers into a new cluster Ci of mass greater
than K. We enumerate these clusters in the order they emerge.

Let Mi(t) denote the mass of cluster Ci at time t. Consider a pair of clusters, Ci and Cj,
coexisting in the K-gel at time t, each of mass smaller than n/2. We split their merger
rate into two by saying that Ci absorbs Cj with rate 1

2n
Mi(t)Mj(t), and Cj absorbs Ci

with rate 1
2n
Mi(t)Mj(t). In other words, Ci and Cj merge with rate 1

n
Mi(t)Mj(t), and

which one of the two clusters absorbs the other is decided with a toss of an independent
fair coin.
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There is a finite stopping time

t∗ = min{t ≥ 0 : ∃Ci ∈ C with Mi(t) ≥ n/2}
when a cluster Ci∗ has its mass Mi∗(t

∗) ≥ n/2. After t∗, the rules of interactions of cluster
Ci∗ with the other clusters in C change as follows. For t > t∗, Ci∗ absorbs Cj with rate
1
n
Mi∗(t)Mj(t), while Ci∗ itself cannot be absorbed by any other cluster in C.

Let bi denote the time when cluster Ci is absorbed by another cluster in collection C.
Naturally, there will be only one survivor Ci∗ with bi∗ = ∞. Let Ji = [ai, bi) ∩ [T,∞)
denote the lifespan of cluster Ci. Note that a cluster Ci from the set C existing at time
t ∈ [ai, bi) is absorbed into one of the clusters in the K-gel with the total instantaneous
rate of

λi(t) ≥
1

2n
Mi(t)

(
MK gel(t)−Mi(t)

)
.

Conditioning on the event Qε
K,T,n defined in (41), we have that if Mi(t) < n/2 for t ∈ Ji,

then the rate of absorption of Ci into the K-gel is

λi(t) ≥
1

2n
Mi(t)

(
(1− ε)n− 1

2
n

)
≥ 1

2n
Mi(t)

(
3

4
n− 1

2
n

)
≥ 1

8
Mi(t) >

K

8
.

Next,

(43)

∞∫
T

∞∑
k=K+1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt =

∞∫
T

1

n
e−t/ndt+ E

where
∞∫
T

1
n
e−t/ndt is due to the event Qε

K,T,n which guarantees the existence of at least one

component from C in the K-gel for all t ∈ [T,∞) and the second term E is responsible
for all the times t ≥ T when the number of clusters in the K-gel is greater than one. The
term E is bounded as follows

E ≤
∞∫
T

E

[ ∑
i: i 6=i∗

1Ji(t)
∣∣ Qε

K,T,n

]
n

e−t/ndt.

Now, each cluster Ci is gravitating towards the rest of the K-gel with the rate of at least
K/8. Thus, for each i 6= i∗,

∞∫
T

E
[
1Ji(t) | Qε

K,T,n

]
n

e−t/ndt ≤
E[|Ji| | Qε

K,T,n]

n
e−

T
n ≤ 8

nK
.

Hence, since the cardinality of set C is M < n/K,

E < n

K
· 8

nK
=

8

K2
,
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and from (43), we obtain

∞∫
T

∞∑
k=K+1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt = 1 +O(K−2) +O

(
T

n

)
as n→∞,

where the term O(K−2) does not depend on the value of n > 0.

Term V. Here

qεK,T (n)

∞∫
T

∞∑
k=1

E[ζ
[n]
k (t) | Qε

K,T,n]

n
e−t/ndt ≤ nqεK,T (n)

∞∫
T

1

n
e−t/ndt ≤ nqεK,T (n) = O(n−1).

Finally, by putting together the analysis in Terms I-V in the equation (42), we obtain for
a given fixed ε ∈ (0, 1/4), sufficiently large fixed T � Tgel satisfying (40), and arbitrarily
large K,
(44)
∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt =

K∑
k=1

T∫
0

ζk(t)dt+1+O

(
T

K

)
+O(K−2)+O(ε)+O

(
T

n

)
+O(n−1),

which, when we increase n to infinity will yield

lim sup
n→∞

∣∣∣∣∣∣
∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt−

∞∑
k=1

∞∫
0

ζk(t)dt− 1

∣∣∣∣∣∣ =
∞∑

k=K+1

T∫
0

ζk(t)dt+
∞∑
k=1

∞∫
T

ζk(t)dt

+O

(
T

K

)
+O(K−2) +O(ε).

Consequently, taking lim sup
K→∞

, we obtain

lim sup
n→∞

∣∣∣∣∣∣
∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt−

∞∑
k=1

∞∫
0

ζk(t)dt− 1

∣∣∣∣∣∣ =
∞∑
k=1

∞∫
T

ζk(t)dt+O(ε).

Finally, formula (40) guarantees that decreasing ε down to zero will propel T to +∞, and

lim
n→∞

∞∫
0

∞∑
k=1

E[ζ
[n]
k (t)]

n
e−t/ndt =

∞∑
k=1

∞∫
0

ζk(t)dt+ 1.

Thus we confirmed formula (37) for the case of the multiplicative coalescent process. �
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4.4. Relation of Erdős-Rényi process on Kα[n],β[n] to cross-multiplicative coales-
cent. Let α, β > 0 be given, and consider two integer valued functions, α[n] = αn+o(

√
n)

and β[n] = βn + o(
√
n). Next, we introduce the Erdős-Rényi random graph process on

the bipartite graph Kα[n],β[n] with α[n] vertices on the left side and β[n] vertices on the
right side. In this random graph process on Kα[n],β[n], for each edge e of α[n]β[n] =
αβn2 + o(n

√
n) edges we have an associated random variable Ue, distributed uniformly

on [0, 1]. The random variables {Ue}e are assumed to be independent. For the “time”
parameter p ∈ [0, 1], an edge e is considered “open” if Ue ≤ p. Erdős-Rényi random graph
G(n, p) will consist of all n vertices and all open edges at time p.

In this Erdős-Rényi random graph process, the probability of two components merging at
a given time depends only on the number of edges that connect those two components.
If connected component Ci and Cj have partition sizes (i1, i2) and (j1, j2) respectively,
then there are i1j2 + i2j1 edges which, when opened, would connect Ci and Cj. Therefore,
the cross-multiplicative coalescent process represents the cluster dynamics of the above
Erdős-Rényi random graph process on the bipartite graph Kα[n],β[n] under the time change

p = 1 − e−t/n. This coalescent process representation is obtained by letting each cluster
connecting i1 vertices on the left side of the bipartite graph with i2 vertices on the right

side of the bipartite graph be assigned a two-dimensional weight vector

[
i1
i2

]
. Then, the

Marcus-Lushnikov process ζ
[n]
i1,i2

(t) corresponding to the cross-multiplicative coalescent

process will count the number of clusters with the weight vector

[
i1
i2

]
at time t.

4.5. The length of the minimal spanning tree on Kα[n],β[n] via ζi1,i2(t). Consider
the Erdős-Rényi random graph model on a complete bipartite graph Kα[n],β[n]. Let us
interpret Ue as the length of edge e. Then one can construct a minimal spanning tree on
Kα[n],β[n]. Let random variable Ln denote the length of such minimal spanning tree. We
want to represent the asymptotic limit of the mean value of Ln via ζi1,i2(t).

For a random graph process G(n, p) over Kα[n],β[n], Lemma 1 in Beveridge et al [6]
implies

(45) E[Ln] =

1∫
0

E[κ(G(n, p))]dp− 1,

where κ(G(n, p)) is the number of components in the random graph process G(n, p) at
time p. This will be used in Sect. 4.6 for proving the following theorem.

Theorem 4.2. Let α, β > 0 and Ln = Ln(α, β) be the length of a minimal spanning tree
on a complete bipartite graph Kα[n],β[n] with partitions of sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)
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and independent uniform edge weights over [0, 1]. Then

(46) lim
n→∞

E[Ln] =
∞∑
i1,i2

∞∫
0

ζi1,i2(t)dt.

where ζi1,i2(t) indexed by Z2
+ \ {(0, 0)} is the solution of the modified Smoluchowski coag-

ulation system (18) with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2.

Observe that if we plug-in the solutions (19) of the reduced system of Smoluchowski
coagulation equations (18) into the right hand side of (46), we get

∞∑
i1,i2

∞∫
0

ζi1,i2(t)dt =
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2

∞∫
0

ti1+i2−1e−(βi1+αi2)tdt

=
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2
(βi1 + αi2)i1+i2

(i1 + i2 − 1)!

= γ +
1

γ
+

∑
i1≥1: i2≥1

γi1Si1,i2
(i1 + γi2)i1+i2

(i1 + i2 − 1)!(47)

with γ = α
β
.

Next, by combining Lemma 3.1 with (47) we obtained the following important theorem.

Theorem 4.3. Let α, β > 0, γ = α/β, and Ln = Ln(α, β) be the length of a minimal
spanning tree on a complete bipartite graph Kα[n],β[n] with partitions of sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0, 1]. Then the limiting mean length of the
minimal spanning tree is

lim
n→∞

E[Ln] = γ +
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−11 ii1−12

(i1 + γi2)i1+i2
.

Theorem 4.3 is consistent with [17], where it was shown that for α = β, lim
n→∞

E[Ln] =

2ζ(3). Indeed, we have the following Corollary reproducing the results in [17]. Observe
however that for α 6= β the bipartite graph is irregular and the results in Frieze and
McDiarmid [17] no longer apply.

Corollary 4.4. If γ = 1, then

lim
n→∞

E[Ln] = 2ζ(3).
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Proof. Abel’s binomial theorem [7, 33] states that

n∑
k=0

(
n

k

)
(x− kz)k−1(y + kz)n−k = x−1(x+ y)n.

Plugging-in x = nz 6= 0, y = 0, and i = n− k, we obtain

n∑
i=0

(
n

i

)
in−i−1(n− i)i = nn−1

and therefore, ∑
i1,i2: i1+i2=n

i1Si1,i2 =
∑

i1,i2: i1+i2=n

i1
ii2−11 ii1−12

i1!i2!
=
nn−1

n!
.

Hence,

n ·
∑

i1,i2: i1+i2=n

Si1,i2 =
∑

i1,i2: i1+i2=n

(i1 + i2)Si1,i2 = 2
∑

i1,i2: i1+i2=n

i1Si1,i2 = 2
nn−1

n!

and ∑
i1,i2: i1+i2=n

Si1,i2 = 2
nn−2

n!
.

Plugging the above into (47) with γ = 1, we obtain

lim
n→∞

E[Ln] = 2 +
∑

i1≥1: i2≥1

Si1,i2
(i1 + i2)i1+i2

(i1 + i2 − 1)!

= 2 +
∞∑
n=2

( ∑
i1,i2: i1+i2=n

Si1,i2
nn

)
(n− 1)!

= 2 +
∞∑
n=2

2
nn−2

n!
· 1

nn
(n− 1)!

= 2 +
∞∑
n=2

2

n3
= 2ζ(3).(48)

Thus confirming the results in [17]. �

4.6. Proof of Theorem 4.2. Let us give a rigorous proof of Theorem 4.2. Here, we will
follow the strategy used for proving Theorem 4.1 in Sect. 4.3.

Proof. Observe that

(49) lim
t→∞

∑
i1,i2

i1ζi1,i2(t) = 0 and lim
t→∞

∑
i1,i2

i2ζi1,i2(t) = 0.
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Indeed, by plugging in ζi1,i2(t) as in (23), we obtain

d

dt

∑
i1,i2

i1ζi1,i2(t) =
∑
i1,i2

i1ζi1,i2(t)

(
i1 + i2 − 1

t
− (βi1 + αi2)

)
≤ −(α ∧ β)

∑
i1,i2

i1ζi1,i2(t)

for t > 1
α∧β . Thus,

∑
i1,i2

i1ζi1,i2(t), and similarly
∑
i1,i2

i2ζi1,i2(t), would decrease to zero

exponentially fast when t > 1
α∧β .

Now, having established (49), for any given ε ∈ (0, 1/4), we can fix T � Tgel so large that

(50)
∑
i1,i2

i1ζi1,i2(t) ≤
αε

2
and

∑
i1,i2

i2ζi1,i2(t) ≤
βε

2
.

Notice that the above inequalities (50) ties T to ε.

Fix integers K1 > 0 and K2 > 0, and let R := R(K1, K2) = {1, 2, . . . , K1}×{1, 2, . . . , K2}.
By the equation (65) in Sect. 5.3 we have

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣n−1∑
R

ζ
[n]
i1,i2

(s)−
∑
R

ζi1,i2(s)

∣∣∣∣∣ = 0 a.s.

Thus, the probability of the complement of the event

(51) Qε
R,T,n :=

{∑
i∈R

i1
ζ
[n]
i1,i2

(T )

n
≤ 3

4
αε and

∑
i∈R

i2
ζ
[n]
i1,i2

(T )

n
≤ 3

4
βε

}
is decreasing to zero as n→∞. Moreover,

qεR,T (n) := P (Qε
R,T,n) = O(n−2)

by Proposition 5.3 in Sect. 5.4 since

lim
n→∞

√
n

(∑
i∈R

i1
ζ
[n]
i1,i2

(0)

n
−
∑
i∈R

i1ζi1,i2(0)

)
= lim

n→∞

√
n
(
α[n]/n− α

)
= 0

and

lim
n→∞

√
n

(∑
i∈R

i2
ζ
[n]
i1,i2

(0)

n
−
∑
i∈R

i2ζi1,i2(0)

)
= lim

n→∞

√
n
(
β[n]/n− β

)
= 0.

We know from (45) that

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))]dp− 1 = lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt− 1

provided the latter limit exists.
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We will split
∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt as follows.

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term I)

+

T∫
0

∑
i6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term II)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term III)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term IV)

+ qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt (Term V)(52)

Next, we estimate the terms I-V in (52).

Term I. As we establish in (64) of Section 5, lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

on [0, T ] for all i =

[
i1
i2

]
∈ R. Therefore,

lim
n→∞

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R

T∫
0

ζi1,i2(t)dt.

Term II. Observe that,

∑
i6∈R

ζ
[n]
i1,i2

(t)

n
≤ 1

n

∑
i1>K1

∑
i2

ζ
[n]
i1,i2

(t) +
1

n

∑
i1

∑
i2>K2

ζ
[n]
i1,i2

(t)

≤ 1

K1n

∑
i1>K1

∑
i2

i1ζ
[n]
i1,i2

(t) +
1

nK2

∑
i1

∑
i2>K2

i2ζ
[n]
i1,i2

(t)

≤ α[n]

K1n
+
β[n]

nK2

≤ 2
α

K1

+ 2
β

K2
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for all n large enough. Thus,

T∫
0

∑
i 6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt = O

(
T

K1

)
+O

(
T

K2

)
.

Term III. We define the R-gel to be the collection of all clusters whose mass vector is
not in R. Let

(53) MRgel(t) =

[
m1(t)
m2(t)

]
denote the total mass vector of all clusters in the R-gel at time t ≥ 0.

Now, conditioning on the event Qε
R,T,n, we have m1(t) ≥ α(1− ε)n and m2(t) ≥ β(1− ε)n

for all t ≥ T , and n large enough. Thus each cluster in R will be gravitating toward the
R-gel with the rate of at least (α ∧ β)(1 − ε). Consider a cluster in R at time T . Let
T + L be the time it becomes a part of the R-gel. Then, its contribution to the integral
∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]
n

e−t/ndt is at most

∞∫
T

E[1[T,T+L](t) | Qε
R,T,n]

n
e−t/ndt ≤

E[L | Qε
R,T,n]

n
e−T/n ≤ 1

(α ∧ β)(1− ε)n
.

The number of clusters in R at time t ≥ T is∑
i∈R

ζ
[n]
i1,i2

(t) ≤
∑
i∈R

(i1 + i2)ζ
[n]
i1,i2

(t) ≤ (α + β)εn.

Therefore,
∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt ≤ (α + β)εn

(α ∧ β)(1− ε)n
=

2ε

1− ε
< 3ε.

Term IV. We let C = {C1, C2, C3, . . . , CM} denote the set of all clusters whose mass
vectors ever exceeded K1 in the first coordinate and/or ever exceeded K2 in the second
coordinate in the history of the process MLn(t), i.e., all clusters that were ever a part
of R-gel. The number of clusters in C is less than α[n]/K1 + β[n]/K2. For each Ci, the
emergence time ai is the time of a merger of a pair of clusters in R, resulting in appearance
of a new cluster Ci in R-gel. We enumerate these clusters in the order they emerge.

Let Mi(t) =

[
m1,i(t)
m2,i(t)

]
denote the mass vector of cluster Ci at time t. Consider a pair

of clusters, Ci and Cj, coexisting in the R-gel at time t, such that m1,i,m1,j < αn/2 and
m2,i,m2,j < βn/2. We split their merger rate into two by saying that Ci absorbs Cj with
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rate 1
2n

(
m1,i(t)m2,j(t) + m2,i(t)m1,j(t)

)
, and Cj absorbs Ci with rate 1

2n

(
m1,i(t)m2,j(t) +

m2,i(t)m1,j(t)
)
.

There is a finite stopping time

t∗ = min{t ≥ 0 : ∃Ci ∈ C with m1,i(t) ≥ αn/2 or m2,i(t) ≥ βn/2}
when a cluster Ci∗ has its mass vector satisfying either m1,i∗(t

∗) ≥ αn/2 or m2,i∗(t
∗) ≥

βn/2. After time t∗ the rules of interactions of cluster Ci∗ with the other clusters in C
change as follows. For t > t∗, Ci∗ absorbs Cj with rate 1

n

(
m1,i∗(t)m2,j(t)+m2,i∗(t)m1,j(t)

)
,

while Ci∗ itself cannot be absorbed by any other cluster in C.
Let bi denote the time when cluster Ci is absorbed by another cluster in collection C.
Naturally, there will be only one survivor Ci∗ with bi∗ = ∞. Let Ji = [ai, bi) ∩ [T,∞)
denote the lifespan of cluster Ci. Note that a cluster Ci from the collection C existing at
time t ∈ [ai, bi) is absorbed into one of the clusters in the R-gel with the total instantaneous
rate of

λi(t) ≥
1

2n

(
m1,i(t)

(
m2(t)−m2,i(t)

)
+m2,i(t)

(
m1(t)−m1,i(t)

))
,

where m1(t) and m2(t) are as defined in (53). Conditioning on the event Qε
R,T,n defined

in (51), we have that if m1,i(t) < αn/2 and m2,i(t) < βn/2 for t ∈ Ji, then the rate of
absorption of Ci into the R-gel is

λi(t) ≥
1

2n
m1,i(t)β

(
(1− ε)n− 1

2
n

)
+

1

2n
m2,i(t)α

(
(1− ε)n− 1

2
n

)
≥ 1

2n
m1,i(t)β

(
3

4
n− 1

2
n

)
+

1

2n
m2,i(t)α

(
3

4
n− 1

2
n

)
≥ m1,i(t)β +m2,i(t)α

8
>
K1β +K2α

8
.

Next,

(54)

∞∫
T

∑
i 6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt =

∞∫
T

1

n
e−t/ndt+ E

where
∞∫
T

1
n
e−t/ndt is due to the event Qε

R,T,n which guarantees the existence of at least one

component from C in the R-gel for all t ∈ [T,∞) and the second term E is responsible
for all the times t ≥ T when the number of clusters in the R-gel is greater than one. The
term E is bounded as follows

E ≤
∞∫
T

E

[ ∑
i: i 6=i∗

1Ji(t)
∣∣ Qε

R,T,n

]
n

e−t/ndt.
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Now, each cluster Ci is gravitating towards the rest of the R-gel with the rate of at least
K1β+K2α

8
. Thus, for each i 6= i∗,

∞∫
T

E
[
1Ji(t) | Qε

R,T,n

]
n

e−t/ndt ≤
E[|Ji| | Qε

R,T,n]

n
e−

T
n ≤ 8

n(K1β +K2α)
.

Hence, since the cardinality of set C is M < α[n]/K1 + β[n]/K2,

E < (α[n]/K1 + β[n]/K2) ·
8

n(K1β +K2α)
=

8(α/K1 + β/K2)

K1β +K2α
+ o(1),

and from (54), we obtain

∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt = 1 +O(K−21 ) +O(K−22 ) +O

(
T

n

)
+ o(1) as n→∞.

Term V. Here

qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | Qε
R,T,n]

n
e−t/ndt ≤ qεR,T (n)

∞∫
T

α[n] + β[n]

n
e−t/ndt

≤ (α[n] + β[n])qεR,T (n) = O(n−1)

as qεR,T (n) = O(n−2).

Finally, by putting together the analysis in Terms I-V in the equation (52), we obtain for
a given fixed ε ∈ (0, 1/4), sufficiently large fixed T � Tgel satisfying (50), and arbitrarily
large K1 and K2,

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R(K1,K2)

T∫
0

ζi1,i2(t)dt+ 1 +O

(
T

K1

)
+O

(
T

K2

)

+O(K−21 ) +O(K−22 ) +O(ε) +O

(
T

n

)
+O(n−1),(55)

which when we increase n to infinity will yield

lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i1,i2

∞∫
0

ζi1,i2(t)dt+ 1.

�
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5. Hydrodynamic limits for Marcus-Lushnikov processes

In [25] and [11], a certain class of Markov processes, called density dependent population
processes, was considered. These are jump Markov processes which depend on a certain
parameter n which can be interpreted depending on the context of a model. Usually it
represents the population size. Many coalescent processes can be restated as a case of
density dependent population processes if all cluster weights are integers. There, the total
mass n is the parameter representing the population size. Specifically, we may assume
that the coalescent process starts with n clusters of unit mass each (aka singletons). In
Kurtz [25] and in Chapter 11 of Ethier and Kurtz [11], the law of large numbers and the
central limit theorems were established for such density dependent population processes
as n→∞. In this section we will adopt these weak limit laws for the multiplicative and
cross-multiplicative coalescent processes.

5.1. Density dependent population processes. We first formulate the framework for
the convergence result of Kurtz as stated in Theorem 2.1 in Chapter 11 of [11] (Theorem
8.1 in [25]). There, the density dependent population processes are defined as continuous
time Markov processes with state spaces in Zd, and transition intensities represented as
follows

(56) q(n)(k, k + `) = n

[
β`

(
k

n

)
+O

(
1

n

)]
,

where `, k ∈ Zd, and β` is a given collection of rate functions.

In Section 5.1 of [2], Aldous observes that the results from Chapter 11 of Ethier and Kurtz
[11] can be used to prove the weak convergence of a Marcus-Lushnikov process to the solu-
tions of Smoluchowski system of equations in the case when the Marcus-Lushnikov process
can be formulated as a finite dimensional density dependent population process. Specifi-
cally, the Marcus-Lushnikov processes corresponding to the multiplicative and Kingman
coalescent with the monodisperse initial conditions (n singletons) can be represented as
finite dimensional density dependent population processes defined above.

Define F (x) =
∑̀
`β`(x). Then, Theorem 2.1 in Chapter 11 of [11] (Theorem 8.1 in [25])

states the following law of large numbers. Let X̂n(t) be the Markov process with the

intensities q(n)(k, k+`) given in (56), and let Xn(t) = n−1X̂n(t). Finally, let |x| =
√∑

x2i
denote the Euclidean norm in Rd.

Theorem 5.1. Suppose for all compact K ⊂ Rd,∑
`

|`| sup
x∈K

β`(x̄) <∞,

and there exists MK > 0 such that

(57) |F (x)− F (y)| ≤MK|x− y|, for all x, y ∈ K.
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Suppose lim
n→∞

Xn(0) = x0, and X(t) satisfies

(58) X(t) = X(0) +

∫ t

0

F (X(s))ds,

for all T ≥ 0. Then

(59) lim
n→∞

sup
s∈[0,T ]

|Xn(s)−X(s)| = 0 a.s.

5.2. Hydordynamic limit for multiplicative coalescent process. Consider a mul-
tiplicative coalescent process with kernel K(i, j) = ij. Recall that in the definition of a
coalescent process given in Sect. 2.2, a pair of clusters with masses i and j coalesces at
the rate K(i, j)/n. Consider the corresponding Marcus-Lushnikov process

MLn(t) =
(
ζ
[n]
1 (t), ζ

[n]
2 (t), . . . , ζ [n]n (t), 0, 0, . . .

)
that keeps track for the numbers of clusters in each weight category. There, the initial
conditions will be MLn(0) = (n, 0, 0, . . .) = ne1, where ei denotes the i-th coordinate
vector.

Next, for a fixed positive integer K, let X̂n(t) be the restriction of process MLn(t) to the
first K dimensions, i.e.

X̂n(t) =
(
ζ
[n]
1 (t), ζ

[n]
2 (t), . . . , ζ

[n]
K (t)

)
with the initial conditions X̂n(0) = ne1. Apparently, X̂n(t) is itself a (finite dimensional)

Markov process with the following transition rates of X̂n(t) stated as in (56). Let x =
(x1, x2, . . . , xK). Then, for any pair 1 ≤ i < j ≤ K, the change vector ` = −ei − ej +
ei+j1i+j≤K corresponding to a merger of clusters of respective sizes i and j is assigned the
rate

q(n)(x, x+ `) =
ij

n
xixj = nβ`

(x
n

)
,

where β`(x) = ijxixj.
For a given 1 ≤ i ≤ K, the change vector ` = −2ei + e2i12i≤K corresponding to a

merger of a pair of clusters of size i is assigned the rate

q(n)(x, x+ `) =
1

n

[
i2x2i

2
− i2xi

2

]
= n

[
β`

(x
n

)
+O

(
1

n

)]
,

where β`(x) = i2
x2i
2

.
For a given 1 ≤ i ≤ K, the change vector ` = −ei corresponding to a cluster of mass i

merging with a cluster of mass greater than K is assigned the rate

q(n)(x, x+ `) =
1

n
ixi

[
n−

K∑
j=1

jxj

]
= nβ`

(x
n

)
,
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where β`(x) = ixi

(
1−

K∑
j=1

jxj

)
.

Then, by Theorem 5.1, Xn(t) = n−1X̂n(t) converges to X(t) as in (59), where X(t)
satisfies (58) with

F (x) :=
∑
`

`β`(x) =
∑

ij: 1≤i<j≤K

ijxixj[−ei − ej + ei+j1i+j≤K ]

+
1

2

K∑
i=1

i2x2i [−2ei + e2i12i≤K ]−
K∑
i=1

ixi

(
1−

K∑
j=1

jxj

)
ei

=
K∑
i=1

−ixi +
1

2

∑
1≤i1,i2≤K
i1+i2=i

i1i2xi1xi2

 ei.(60)

Here, F (x) is naturally satisfying the Lipschitz continuity conditions (57), and the initial
conditions X(0) = Xn(0) = e1.

Observe that the system of equations (58) with F (x) as in (60) will yield the reduced
system of Smoluckowski coagulation equations (9) also known as the Flory coagulation
system [15]. Thus, for a given integer K > 0 and a fixed real T > 0,

(61) lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]k (s)− ζk(s)
∣∣∣ = 0 a.s.

for k = 1, 2, . . . , K.

Note that the above limit no longer requires a fixed K for each individual k in (61).
However, we mainly use the following limit in our calculations,

(62) lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣
K∑
k=1

n−1ζ
[n]
k (s)−

K∑
k=1

ζk(s)

∣∣∣∣∣ = 0 a.s.

5.3. Hydordynamic limit for cross-multiplicative coalescent processes. Fix in-
tegers K1 > 0 and K2 > 0, and let R := R(K1, K2) = {1, 2, . . . , K1}× {1, 2, . . . , K2}. Let

ei be the standard basis vectors in RK1K2 , enumerated by i =

[
i1
i2

]
∈ R. Consider a re-

striction to

[
i1
i2

]
∈ R of a Marcus-Lushnikov process ζi1,i2(t) with the cross-multiplicative

kernel. Let

X̂n(t) =
{
ζ
[n]
i1,i2

(t)
}

i∈R

with the initial conditions X̂n(0) = α[n]e0′ + β[n]e0′′ , where 0′ =

[
1
0

]
and 0′′ =

[
0
1

]
.
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We observe the following transition rates of X̂n(t) stated as in (56). Let x =
∑
i∈R

xiei.

Then, for any i and j in R, the change vector ` = −ei − ej + 1{i+j∈R}ei+j corresponding
to a merger of clusters of respective weights i and j is assigned the rate

q(n)(x, x+ `) =
1

n
(i1j2 + i2j1)xixj = nβ`(x),

where β`(x) = (i1j2 + i2j1)xixj.
For a given i ∈ R, the change vector ` = −ei corresponding to the merger of clusters

whose weight vector is i with clusters whose weight vectors are not in R is assigned the
rate

q(n)(x, x+`) =
1

n

[
i1xi

(
β[n]−

∑
j∈R

j2xj

)
+ i2xi

(
α[n]−

∑
j∈R

j1xj

)]
= n

[
β`(x) +O

(
1

n

)]
,

where β`(x) = i1xi

(
β −

∑
j∈R j2xj

)
+ i2xi

(
α−

∑
j∈R j1xj

)
.

Thus, by Theorem 5.1, Xn(t) converges to X(t) as in (59), where X(t) satisfies (58) with

F (x) :=
∑
`

`β`(x) =
1

2

∑
i,j∈R

[
−ei − ej + 1{i+j∈R}ei+j

]
(i1j2 + i2j1)xixj

−
∑
i∈R

eii1xi

(
β −

∑
j∈R

j2xj

)
−
∑
i∈R

eii2xi

(
α−

∑
j∈R

j1xj

)

=
∑
i∈R

ei

(
−(βi1 + αi2)xi +

1

2

∑
`,k: `+k=i

(`1k2 + `2k1)x`xk

)
(63)

for a fixed T > 0. The system of equations (58) with F (x) given in (63) will yield the
reduced system of Smoluckowski coagulation equations (18). So, for a fixed a pair of
positive integers K1 and K2, and a fixed real number T > 0,

(64) lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for all

[
i1
i2

]
∈ R. Consequently,

(65) lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣∣∣n−1
∑

1≤i1≤K1
1≤i2≤K2

ζ
[n]
i1,i2

(s)−
∑

1≤i1≤K1
1≤i2≤K2

ζi1,i2(s)

∣∣∣∣∣∣∣ = 0 a.s.
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5.4. Central Limit Theorem and related results. The usefulness of the framework
set in [11, 25] for proving weak convergence is that the law of large numbers Theorem 5.1
is enhanced with the corresponding central limit theorem (see Theorem 5.2 below) and
the large deviation theory [14]. The following central limit theorem is derived in Theorem
8.2 in [25] (and Theorem 2.3 in Chapter 11 of [11]).

Theorem 5.2. Suppose for all compact K ⊂ Rd,

(66)
∑
`

|`|2 sup
x∈K

β`(x) <∞

and that the β` and ∂F are continuous. Suppose Xn and X are as in Theorem 5.1, and
suppose Vn =

√
n(Xn −X) is such that limn→∞ Vn(0) = V (0), where V (0) is a constant.

Then Vn converges in distribution to V , which is the solution of

(67) V (t) = V (0) + U(t) +

∫ t

0

∂F (X(s))V (s)ds,

where U(t) is a Gaussian process and ∂F (X(s)) = (∂jFi(X(s)))i,j.

The proof of Theorem 5.2 is based on representing Vn(t) as follows. Let Y` be independent
Poisson processes with rate one. Then,

(68) Vn(t) = Vn(0) + Un(t) +

∫ t

0

√
n
(
F (Xn(s))− F (X(s))

)
ds,

where

Un(t) =
∑
`

`W
(n)
`

(∫ t

0

β`(Xn(s))ds
)
,

W
(n)
` (u) = n−1/2Ŷ`(nu), and Ŷ`(u) := Y`(u)− u are centralized Poisson processes.

Next, we will use formula (68) in order to derive an upper bound (69) on probability
P (|Xn(T )−X(T )| ≥ δ). Let us consider a simple case of a density dependent population
process on Rd for which the following three conditions are satisfied.

i: Vn =
√
n(Xn −X) is such that limn→∞ Vn(0) = V (0).

ii: Both Xn(t) and X(t) live on a compact set K.
iii: There are finitely many vectors ` ∈ Rd such that β`(x) > 0 for some x ∈ K.

Notice that the above conditions are satisfied for the Marcus-Lushnikov processes consid-
ered here, with the general bilinear kernel as in Sect. 5.2 and with the cross-multiplicative
kernel as in Sect. 5.3. Specifically, for a given m > 0, let

Km =
{
x ∈ Rd

+ :
∑
i

xi ≤ m
}
.

Then, in Sect. 5.2, Xn(t), X(t) ∈ K2, and in Sect. 5.3, Xn(t), X(t) ∈ Km for m > α + β.
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Proposition 5.3. Assuming the above conditions i-iii are satisfied together with the Lip-
schitz continuity conditions (57), we have

(69) P (|Xn(T )−X(T )| ≥ δ) = O(n−2).

Proof. Here,
√
n
∣∣F (Xn(s))− F (X(s))

∣∣ ≤ √nMK|Xn(s)−X(s)| = MK|Vn(s)|

and for a fixed T > 0 and any t ≤ T ,

|Vn(0) + Un(t)| ≤ εn(T ) := |Vn(0)|+
∑
`

|`| max

{∣∣∣W (n)
` (s)

∣∣∣ : s ∈
[
0, T sup

x∈K
β`(x)

]}
.

Hence, for a fixed T > 0, equation (68) implies the following inequality,

|Vn(t)| ≤ εn(T ) +MK

∫ t

0

|Vn(s)|ds for all t ∈ [0, T ].

Then, by Grönwall’s inequality (see Appendix 5 in [11]),

(70) |Vn(t)| ≤ εn(T )eMKt.

In particular, we use equation (70) together with Markov inequality to obtain the following
simple bound for any δ > 0,

(71) P (|Xn(T )−X(T )| ≥ δ) ≤ V 4
n (T )

n2δ4
≤ E[ε4n(T )]e4MKT

n2δ4
.

Here, for any fixed real S > 0, integer r > 0, and any real λ > 0, we have by Doob’s
martingale inequality,

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ

)
= P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣ ≥ λ1/r
)
≤
E

[(
W

(n)
` (S)

)2+2r
]

λ2+2/r

as
∣∣∣W (n)

` (s)
∣∣∣ is a non-negative sub-martingale. Therefore,

E

[
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r] ≤ 1 +

∞∫
1

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ

)
dλ

≤ 1 + (1 + 2/r)E

[(
W

(n)
` (S)

)2+2r
]
,

where by the classical central limit theorem,

lim
n→∞

E

[(
W

(n)
` (S)

)2+2r
]

= S1+rE[Z2+2r], Z - standard normal r.v.

Thus, E[ε4n(T )] = O(1), and (69) follows from (71). �
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6. Discussion: generalizations and open problems.

In this paper we considered an important example of coagulation ODEs obtained as a
hydrodynamic limit of a Marcus-Lushnikov process that tracks the merger history of a
coalescent process with two dimensional weight vectors. The coagulation equations and
gelation in the Marcus-Lushnikov dynamics for other coalescent processes with multidi-
mensional weight vectors is on its own an interesting object of studies. As a natural next
step, one may consider a generalization of the existing results [1, 22, 23, 30, 12, 18, 19]
on gelation phenomenon for vector weighted processes.

An extension of the application to minimal spanning trees may come from an observa-
tion that the convergence rates in the hydrodynamic limit yield the central limit theorem
for Ln on Kα[n],β[n] similar to the central limit theorem for Ln on Kn proved in Janson
[21]. Specifically, we hope to apply Theorem 5.2 in the analysis. Moreover, similarly to
[8], it is possible to examine the second and third order terms in Ln.

Finally, genetic recombination is one of the issues facing the use of coalescent processes
in genetics as models of genetic drift viewed backwards in time. Distinct gene loci would
follow different pathways of ancestry, resulting in different gene genealogies. As a biolog-
ical application, it is compelling to consider a coalescent process with multidimensional
weight vectors as a means of addressing the issue of genetic recombination, and possibly,
the issue of biological compatibility.
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Appendix: Some alternative proofs

Alternative proof of Lemma 3.3. We will repeat the approach in (11). By Stirling’s ap-
proximation and equation (23), we have∑

i1,i2

(i1 + i2)
2ζi1,i2(t) =

∑
i1,i2

(i1 + i2)
2 i
i2−1
1 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1

=t−1
∑
i1,i2

(i1 + i2)
2

i
3/2
1 i

3/2
2

ii2−i11 ii1−i22 e−(βt−ln(αt)−1)i1e−(αt−ln(βt)−1)i2

· 1

2π

(
1 +O(i−11 )

)(
1 +O(i−12 )

)
,(72)

where
ii2−i11 ii1−i22 = e−(i1−i2)(ln(i1)−ln(i2)).

Next, we plug in i1 = x and i2 = cx into the exponent in (72), obtaining

−(i1 − i2)
(

ln(i1)− ln(i2)
)
−
(
βt− ln(αt)− 1

)
i1 −

(
αt− ln(βt)− 1

)
i2

= −
[
(cα + β)t− ln(αt)− c ln(βt) + (c− 1) ln c− (c+ 1)

]
x.(73)

The maximal value of the exponent (73) is therefore achieved when

(74) t =
c+ 1

cα + β
.

We plug in the optimal value (74) into (73) with the exponent in (72) becoming equal to

(75)

[
c ln

(
(c+ 1)β

c(cα + β)

)
+ ln

(
(c+ 1)cα

cα + β

)]
x.

Now, since ln(x) is a strictly concave function,

(76) c ln

(
(c+ 1)β

c(cα + β)

)
+ ln

(
(c+ 1)cα

cα + β

)
≤ (c+ 1) ln 1 = 0

with the equality obtained if and only if

(77) c =

√
β

α
.

Thus, substituting (77) into (74) yields t = 1√
αβ

. Indeed, the exponent in (72) may

equal zero if and only if t = 1√
αβ

. If t < 1√
αβ

, the series (72) converges. While taking

t = 1√
αβ

, we have the portion of the series (72) corresponding to the indices satisfying

i1
√
β − i2

√
α = o(i1 + i2) diverging to infinity since

∑
i

1
i

=∞.

�

Next, we give an alternative proof of Lemma 3.6 that uses differential equations ap-
proach in the style of [28].
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Alternative proof of Lemma 3.6. Let x = u ∂
∂u
s(u, v) and y = v ∂

∂v
s(u, v) for all u, v ≥ 0

for which the series converge. The expression for the Jacobian ∂(x,y)
∂(u,v)

is obtained by first

taking the partial derivatives of (25) and arriving with

u
∂2s

∂u2
=

xy

u(1− y)
− 1− x

1− y
v
∂2s

∂u∂v
and v

∂2s

∂v2
=

xy

v(1− x)
− 1− y

1− x
u
∂2s

∂u∂v
.

Next, we substitute the above into the determinant, arriving with

∂(x, y)

∂(u, v)
=
xy

uv
+ y

u

v

∂2s

∂u2
+ x

v

u

∂2s

∂v2
+ uv

∂2s

∂u2
∂2s

∂v2
− uv

(
∂2s

∂u∂v

)2

=
xy

uv
+ y

u

v

∂2s

∂u2
+ x

v

u

∂2s

∂v2
+ xy

v

u(1− y)

∂2s

∂v2
+ xy

u

v(1− x)

∂2s

∂u2

=
∂s

∂u

∂s

∂v

(
1 +

u2

x(1− x)

∂2s

∂u2
+

v2

y(1− y)

∂2s

∂v2

)
.(78)

The above expression (78) implies ∂(x,y)
∂(u,v)

> 0 for (u, v) ∈ R2
+ in a small enough neighbor-

hood of (0, 0), insuring x, y < 1.

Equation (25) rewrites as s = x+y−xy with partial derivatives ∂s
∂x

= 1−y and ∂s
∂y

= 1−x.

Next, let ũ = xe−y and ṽ = ye−x. The Jacobian ∂(ũ,ṽ)
∂(x,y)

= (1 − xy)e−xe−y = 0 if and only

if xy = 1. Therefore, for xy < 1, we have

1− y =
∂s

∂x
= e−y

∂s

∂ũ
− ye−x ∂s

∂ṽ
=

1

x
ũ
∂s

∂ũ
− ṽ ∂s

∂ṽ

and 1− x =
∂s

∂y
= −xe−y ∂s

∂ũ
+ e−x

∂s

∂ṽ
= −ũ ∂s

∂ũ
+

1

y
ṽ
∂s

∂ṽ
,

yielding

ũ
∂s

∂ũ
= x = u

∂s

∂u
and ṽ

∂s

∂ṽ
= y = v

∂s

∂v

with s(u, v)
∣∣
(ũ,ṽ)=(0,0)

= s(0, 0) = 0. Hence, (u, v) and (ũ, ṽ) as functions of (x, y) will

coincide in the whole domain

{(x, y) ∈ R2
+ : xy < 1},

and

x = ũ
∂

∂u
s(ũ, ṽ) and y = ṽ

∂

∂v
s(ũ, ṽ).

Here, by Prop. 3.4, (x, y) is the smallest solution of ũ = xe−y and ṽ = ye−x. Equations
(31) follow. �
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