Critical percolation and Lorentz lattice gas model: an expository talk

Yevgeniy Kovchegov

Percolation For each edge of the *d*-dimensional square lattice \mathbb{Z}^d in turn, we declare the edge *open* with probability *p* and *closed* with probability 1 - p, independently of all other edges.

If we delete the closed edges, we are left with a random subgraph of \mathbb{Z}^d . A connected component of the subgraph is called a "cluster", and the number of edges in a cluster is the "size" of the cluster.

$$\theta(p) \equiv P_p[\mathsf{0} \leftrightarrow \infty]$$

Obviously $\theta(0) = 0$ and $\theta(1) = 1$.

 \exists critical $0 < p_c < 1$ such that

- $\theta(p) = 0$ if $p < p_c \Leftrightarrow subcritical \mod and$
- $\theta(p) > 0$ if $p > p_c \Leftrightarrow supercritical \mod$

Standard reference:

• "Percolation." by G.R.Grimmett (1999)

Increasing events.

Configurations: $\omega = \{\omega(e) : e \in \mathbb{E}^d\}$, where

 $\omega(e) = 1 \Leftrightarrow e \text{ is open};$

 $\omega(e) = 0 \Leftrightarrow e \text{ is closed.}$

Sample space: $\Omega = \{0, 1\}^{\mathbb{E}^d}$.

Partial Order: we say $\omega_1 \leq \omega_2$ if and only if $\omega_1(e) \leq \omega_2(e)$ for all $e \in \mathbb{E}^d$.

Def. A random variable X is **increasing** if $X(\omega_1) \leq X(\omega_2)$ whenever $\omega_1 \leq \omega_2$

Def. An event A is **increasing** if its indicator variable 1_A , given by $1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$, is increasing.

Russo's formula. Given a configuration $\omega \in \Omega$ and an event A, an edge e is **pivotal** if changing

$$\omega(e)
ightarrow 1 - \omega(e)$$

will determine weather the configuration is in A or A^C ; i.e. either

$$\omega \in A$$
, {changed ω } $\in A^C$

or

$$\omega \in A^C$$
, {changed ω } $\in A$.

Suppose A depends on **finitely** many edges, and let $N_A := \#$ of pivotal edges .

Thm. (Russo's formula) If A is increasing, then

$$\frac{d}{dp}P_p(A) = E_p[N_A]$$

Exponential decay: M.V.Menshikov (1986), enhanced - M.Aizenman and D.J.Barsky (1987)

Thm. If $p < p_c$ then $\exists \psi(p) > 0$ such that

$$P_p[\mathbf{0} \leftrightarrow \partial B(n)] < e^{-n\psi(p)}$$
 for all n .

Proof outline: let $K_n = \{0 \leftrightarrow \partial B(n), \text{ then by} Russo's formula$

$$\frac{d}{dp}P_p(K_n) = E_p[N_{K_n}] = \frac{1}{p}E_p[N_{K_n}|K_n]P_p(K_n).$$

Integrating $\frac{d}{dp}P_p(K_n)/P_p(K_n)$, get

$$P_a(K_n) = P_b(K_n)e^{-\int_a^b \frac{1}{p}E_p[N_{K_n}|K_n]dp},$$

where $0 \le a < b \le 1$. It can be showed that $E_p[N_{K_n}|K_n]$ growth roughly linearly in n when $p < p_c$.

2D Lorentz Lattice Gas (LLG) model. We place two-sided mirrors on the vertices of \mathbb{Z}^2 according to the following law: for $0 \le p \le 1$, place

with probability
$$=\frac{p}{2}$$
 each.

Place NO MIRROR with probability 1 - pwith probability = 1 - p. $\eta(p) = P_p$ (the light ray returns to origin).

 $\eta(0)=0$

Grimmett: $\eta(1) = 1$, using $p_c = \frac{1}{2}$ for 2D bond percolation model.

Russo's formula adapted for LLG model.

Here $A_n = \{ \text{ light cycle reaches } \partial B(n) \}$ is not increasing.

Need: a substitute property for "increasing".

Consider V = V(n) - the set of vertices inside the box B(n).

Let $\Omega_V \equiv \{-1, 0, 1\}^V$ be the states space:

"-1" corresponds to NW mirror,

"1" to NE mirror

"0" to placing no mirror at a vertex.

For a vertex $v \in V$, we let

$$\omega_v^+(u) = \begin{cases} \omega(u) & \text{if } u \neq v, \\ 1 & \text{if } u = v; \end{cases}$$

$$\omega_v^-(u) = \begin{cases} \omega(u) & \text{if } u \neq v, \\ -1 & \text{if } u = v; \end{cases}$$

$$\omega_v^0(u) = \begin{cases} \omega(u) & \text{if } u \neq v, \\ 0 & \text{if } u = v. \end{cases}$$

Types of "pivotal" vertices: For an event $E \subset \Omega_V$, we say that a vertex $v \in V$ is

pivotal if
$$\begin{cases} \omega_v^+ \in E, \\ \omega_v^0 \notin E, \\ \omega_v^- \in E. \end{cases}$$

pivotal⁺ if
$$\begin{cases} \omega_v^+ \in E, \\ \omega_v^0 \in E, \\ \omega_v^- \notin E; \end{cases}$$

pivotal⁻ if
$$\begin{cases} \omega_v^+ \notin E, \\ \omega_v^0 \in E, \\ \omega_v^- \in E. \end{cases}$$

and $v \in V$ is **indifferent** if either

$$\begin{cases} \omega_v^+ \in E, \\ \omega_v^0 \in E, \\ \omega_v^- \in E. \end{cases} \quad \text{or} \quad \begin{cases} \omega_v^+ \notin E, \\ \omega_v^0 \notin E, \\ \omega_v^- \notin E. \end{cases}$$

Important Observation: we notice that in case of the event A_n there can be only pivotal, pivotal⁺, pivotal⁻ and indifferent vertices.

Thm. (K.) For
$$0 ,$$

$$\frac{d}{dp}P_p(A_n) = \sum_{v \in V_n} P_p(\{v \text{ pivotal}\}) - \sum_{v \in V_n} P_p(\{v \text{ pivotal}^+\})$$

that is

$$\frac{d}{dp}P_p(A_n) = \mathbb{E}_p[N(A_n)] - \mathbb{E}_p[N^+(A_n)].$$