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SUMMARY
We propose a theoretical modeling framework for earthquake occurrence and cluster-
ing based on a family of invariant Galton-Watson (IGW) stochastic branching pro-
cesses. The IGW process is a rigorously defined approximation to imprecisely ob-
served or incorrectly estimated earthquake clusters modeled by Galton-Watson branch-
ing processes, including the Epidemic Type Aftershock Sequence (ETAS) model. The
theory of IGW processes yields explicit distributions for multiple cluster attributes,
including magnitude-dependent and magnitude-independent offspring number, cluster
size, and cluster combinatorial depth. Analysis of the observed seismicity in southern
California demonstrates that the IGW model provides a close fit to the observed earth-
quake clusters. The estimated IGW parameters and derived statistics are robust with
respect to the catalog lower cutoff magnitude. The proposed model facilitates analyses
of multiple quantities of seismicity based on self-similar tree attributes, and may be
used to assess the proximity of seismicity to criticality.

Key words: Statistical seismology; Earthquake dynamics; Persistence, memory, cor-
relations, clustering; Earthquake interaction, forecasting, and prediction

1 INTRODUCTION AND MOTIVATION

Stochastic branching processes have been widely used for
modeling earthquake occurrence since the 1970s, starting with
the pioneering works of Kagan (1973), Kagan & Knopoff
(1976), and Vere-Jones (1976). The most widespread and
mathematically developed approach builds on the self-exciting
Hawkes point process (Hawkes 1971; Adamopoulos 1976; Da-
ley & Vere-Jones 2003), which is equivalent to a branching
process with immigration (Hawkes & Oakes 1974; Saichev
et al. 2005; Baró 2020). Informally, a stochastic branching pro-
cess describes a population (here – a sequence of earthquakes)
where each member generates offspring according to a prede-
fined set of rules. Accordingly, the earthquake population is
decomposed into a collection of clusters, each of which starts
with an immigrant and includes all its offspring, offspring of
offspring, etc. Every such cluster can be represented by a tree
graph (tree). The root of the tree corresponds to the first cluster
event (immigrant), the other vertices to triggered earthquakes,
and edges to triggering relations imposed by the model (which
may or may not correspond to actual physical triggering if
the model is fitted to data). An inflow of immigrants (back-

ground events) ensures that the population does not disappear
with time. During 1970-1990 powerful probabilistic tools have
been developed for working with space-time-magnitude gen-
eralizations of branching processes, and a tradition of their
seismological applications has been established in a series of
studies by Vere-Jones, Ogata, and coauthors (e.g., Vere-Jones
1970, 1978; Vere-Jones & Ozaki 1982; Ogata et al. 1982;
Ogata 1983; Ogata & Vere-Jones 1984; Ogata & Katsura 1986,
1988; Musmeci & Vere-Jones 1992).

The Epidemic Type Aftershock Sequence (ETAS) model
introduced by Ogata (1988) builds on these developments
by synthesizing the key empirical laws of statistical seismol-
ogy with rigorous stochastic modeling and estimation tools;
see also Ogata (1998, 1999). The model describes a regional
flow of earthquakes with magnitudes above M0. Background
events are modeled by a Poisson process with intensity µptq.
Each earthquake generates offspring according to a modified
Omori law (Omori 1894; Utsu 1970; Utsu et al. 1995). Specif-
ically, an earthquake with magnitude Mi that occurred at time
ti produces offspring, also called the first-generation after-



2 Kovchegov, Zaliapin, and Ben-Zion

shocks, according to a Poisson process with intensity

νpt|ti,Miq “
K010αpMi´M0q

pt´ ti ` cqp
, t ą ti (1)

parameterized by positive constants K0, α, c and p ą 1. The
offspring intensity ν combines an exponential productivity law
(numerator) and a power-law temporal decay (denominator).
Every newly generated event, background or offspring, is as-
signed a magnitude Mi independently of other events (includ-
ing its parent) according to the Gutenberg-Richter law (Guten-
berg & Richter 1944):

PpMi ąMq “ 10´bpM´M0q, M ąM0. (2)

The combined earthquake flow includes the background
events, their first-generation aftershocks, offspring of these
aftershocks (called second generation aftershocks), offsping
of the second-generation aftershocks (third generation after-
shocks), and so on. The combined flow is a point process spec-
ified by its conditional intensity

λpt|Htq “ µptq `
ÿ

i:tiăt

νpt|ti,Miq, (3)

with a process history Ht “ tpti,Miq : ti ă tu. This mod-
eling framework may include a space component, by consid-
ering a point field with the background intensity µpt,xq and
a conditional space-time distribution of offspring given by a
density νpt,x|ti,xi,Miq; see details in Ogata (1998, 1999).

A Galton-Watson (GW) stochastic branching process de-
scribes a population that begins with a single progenitor at step
s “ 0 and develops in discrete steps. At every time step each
existing member gives birth to k “ 0, 1, . . . offspring, inde-
pendently of other members, according to a distribution tpku,
and terminates. If we only focus on the parent-offspring earth-
quake relations in the ETAS model, leaving aside for now the
time and space attributes, then a single cluster that begins with
an earthquake of a random magnitude and includes its after-
shocks of all generations is described by a GW process. If the
average offspring number is unity (

ř

kpk “ 1) the process
is called critical, and if it is less than unity (

ř

kpk ă 1) it is
called sub-critical. The average progeny (population size) of
a critical process is unity at each step, and it can be shown
that the average progeny of a subcritical process vanishes ex-
ponentially. Critical and subcritical GW processes produce fi-
nite populations with probability 1. At the same time, the av-
erage size of a critical population is infinite. Within the ETAS
framework, the offspring distribution pk is obtained by taking
the conditional Poisson distribution of offspring numbers for a
parent of a given magnitude and integrating it with respect to
the magnitude distribution (2).

The ETAS model and its multiple ramifications demon-
strated an unprecedented success in approximating and fore-
casting observed earthquake rates in various seismically active
regions. It provides a foundational tool for the Uniform Cal-
ifornia Earthquake Rupture Forecasts (e.g., Field et al. 2017)
and facilitates multiple forecast models tested within the Col-
laboratory for the Study of Earthquake Predictability (e.g.,
Zechar et al. 2010).

Despite the overall effectiveness of the ETAS model,
it has several well recognized features that complicate anal-
yses of observed seismicity. First, it is well known that
“[p]arameters of the modified Omori formula and the ETAS
model may [...] vary spatially and in some cases temporally”

(Utsu et al. 1995, p. 26). For example, Page et al. (2016) es-
timated regional aftershock parameters in the Omori law us-
ing global regionalization of Garcı́a et al. (2012). They found
that while the mean aftershock productivity varies from region
to region by a factor of 10, the reported ratios of the after-
shock productivities for distinct sequences within the same re-
gion may be as high as 1000 (Page et al. 2016, Fig. 8). Using
notations of the present work, this refers to the sequence-to-
sequence ratio of parameter K0 from (1). One may wonder if
an alternative parameterization may help decreasing this large
variability of parameters. An independent evidence of an in-
sufficient model flexibility against data comes from analysis
of offspring (first generation aftershock) numbers. The total
number of offspring generated by a single earthquake accord-
ing to (1) is a Poisson random variable with mean

Noff
pMq “

ż 8

0

νpt|0,Mqdt “ R010αpM´M0q, (4)

whereR0 “ K0 c
1´p
pp´1q´1. However, the offspring num-

bers estimated in observations may deviate from the Poisson
distribution. The data commonly exhibit over-dispersion, with
the negative binomial distribution providing a much closer fit
(e.g., Zaliapin & Ben-Zion 2013a). Kagan (2010) performed
an alternative (non-ETAS) analysis suggesting importance of
the over-dispersed negative binomial distribution for space-
time earthquake counts. Second, the model fitting involves es-
timation of multiple (typically, six to eight) parameters, which
is known to be unstable with respect to the lower magnitude
cutoff M0, and other catalog specifications and uncertainties
(Veen & Schoenberg 2008; Wang et al. 2010). Finally, most
of the results related to model forecast and estimation are ob-
tained numerically, which is challenging in short time intervals
right after large earthquakes, and more generally in a near-
critical process that often produces very large clusters.

We propose a new theoretical framework for model-
ing earthquake clustering that overcomes the above discrep-
ancies while preserving the main postulates of stochastic
branching theory. The framework is based on a family of
invariant Galton-Watson (IGW) branching processes (Neveu
1986; Duquesne & Winkel 2007, 2019; Kovchegov & Zali-
apin 2021). The trajectories of IGW processes induce a one-
parameter family of critical Galton-Watson tree distributions
that is invariant under the operations of tree erasure, thinning,
hereditary reduction, Horton pruning, and generalized dynam-
ical pruning. These operations mimic tree deformation caused
by imprecise observations or estimations. Moreover, the IGW
trees are the only attractors of other critical Galton-Watson
trees under the tree-deforming operations (Kovchegov & Za-
liapin 2021). This means that if any sufficiently large critical
tree is consecutively deformed, the resulting tree necessarily
approaches an IGW tree; see more in Sect. 2.3. Accordingly,
the class of IGW processes is a convenient approximation to
general imprecisely observed Galton-Watson branching pro-
cesses, including the ETAS model.

Seismicity in the crust is not expected to operate at all
places and times precisely at criticality (e.g., Ben-Zion 2008,
Sects. 4 and 5), and can exhibit deviations from criticality re-
lated to values of physical parameters governing seismicity
and the time within large earthquake cycle. Examples of key
controlling parameters, which likely vary among faults and in
time, include the difference between dynamic and static fric-
tions on a fault (Fisher et al. 1997), conservation of elastic
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stress transfer (Dahmen et al. 1998) and evolving geometrical
and stress heterogeneities (Ben-Zion et al. 2003). The close-
ness of fitness of our model results to data may reflect the dis-
tance from criticality of the analyzed data in specific space-
time domain in relation to these and other parameters.

The theory of IGW processes yields explicit distributions
for various tree (i.e., cluster) statistics, including magnitude-
dependent and magnitude-independent offspring number, tree
size, and tree combinatorial depth. Moreover, it suggests new
observed statistics based on the Horton-Strahler analysis of
earthquake clusters, such as distribution of Horton-Strahler
tree orders, number of branches and side-branches of differ-
ent orders, and Tokunaga coefficients; see additional details in
Sect. 6 and Kovchegov & Zaliapin (2020).

We show that the IGW process closely approximates a
theoretical ETAS model, using a single parameter q “ α{b.
The respective theoretical distributions of IGW cluster at-
tributes provide a close fit to their empirical counterparts es-
timated for the crustal seismicity in southern California. The
analysis suggests that the cluster statistics of the observed seis-
micity are well approximated by those of a critical branch-
ing process, implying that the observed seismicity operates
on average close to criticality. The near criticality further re-
duces the model parameterization by imposing a constraint
R0 “ 1 ´ q. Notably, the estimated process parameter q, and
other examined statistics, are stable with respect to the lower
magnitude threshold M0.

The rest of the paper is organized as follows. Section 2
defines the IGW process, derives the distributions of its key
attributes, and discusses its invariance and attraction proper-
ties. The earthquake branching process – the main focus of
this study – is introduced in Sect. 3. The practical problems
of assessing process criticality in finite data, and some ways
of overcoming these problems, are discussed in Sect. 4. Sec-
tion 5 illustrates a close fit provided by the IGW process for
selected cluster attributes estimated using the observed cata-
log of seismicity in southern California (Hauksson et al. 2012,
extended). The results are discussed and some future research
directions are outlined in Sect. 6.

2 INVARIANT GALTON-WATSON BRANCHING
PROCESS

2.1 Definition

An invariant Galton-Watson (IGW) process with parameters
q P p1{2, 1q and r P r0, 1q is defined as a critical Galton-
Watson process with offspring distribution given by q1 “ r
and

qk “ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
, k “ 0, 2, 3, ... (5)

This is a Zipf-type distribution with

qk „ Ck´p1`qq{q, C “ p1´ rq
1´ q

q Γp2´ 1{qq
. (6)

Here the power index p1 ` qq{q decreases from 3 to 2 as the
model parameter q increases from q “ 1{2 to q “ 1 (not in-
cluding the boundary points). The IGW family also includes
the critical binary Galton-Watson process with offspring dis-
tribution

tq0 “ q2 “
1´ r

2
, q1 “ ru, (7)

Figure 1. Seismicity of Southern California examined in this work.
Earthquakes with magnitude M ě 2 in Hauksson et al. (2012) cat-
alog extended to 1981-2019 are shown by gray dots, the examined
earthquakes in the central part of the catalog are shown by red circles
whose size is proportional to magnitude. Black lines show the major
faults.

which is the only member of the family with a finite branching.
Most concisely, one can define the IGW process as a crit-

ical Galton-Watson process whose offspring distribution tqku
has the generating function

Qpzq “
8
ÿ

k“0

qkz
k
“ z ` p1´ rqqp1´ zq1{q, (8)

with some q P r1{2, 1q and r P r0, 1q. Recall that the offspring
probabilities are related to Qpzq as

qk “
1

k!

dkQpzq

dzk
|z“0.

Accordingly, the case q “ 1{2 corresponds to the critical bi-
nary Galton-Watson distribution (7).

Sometimes it is more convenient to use the following
equivalent expressions for the IGW offspring probabilities,
which can be easily calculated for large k:

q0 “ p1´ rqq, (9)

q1 “ r, (10)

q2 “ p1´ rq
1´ q

2q
, (11)

qk “ p1´ rq
1´ q

k q

k´1
ź

i“2

ˆ

1´
1

iq

˙

, k ě 3. (12)

We observe that the parameter r only affects the distribu-
tion of linear chains – sequences of degree-2 vertices – within
an IGW tree. The tree combinatorial structure – the distribu-
tion of IGW trees after removing the chains of degree-2 ver-
tices – is completely determined by a single parameter q and
remains the same for all r P r0, 1q.
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Figure 2. Examples of the IGW offspring distribution (5) with differ-
ent parameters q and r. (a) Varying q for a fixed r “ 0.25. (b) Varying
r for a fixed q “ 0.75.

Figure 2 shows several examples of the IGW offspring
distribution. Each illustrated distribution has a clear power-law
tail with index p1` qq{q, expressed in the double-logarithmic
plot as a line with slope ´p1 ` qq{q. Panel (a) illustrates that
at small offspring numbers a family with a lower q (and hence
a faster decaying power-law tail) has higher probabilities qk.
Panel (b) illustrates that higher values of r lead to smaller off-
spring probabilities qk, k ą 1, for the same q.

2.2 The depth and size distribution of IGW trees

Consider the generating function (8) of an IGW tree with off-
spring distribution tqku. Let Q0 ” 0 and, for any k ě 1,
define the composite function

Qkpzq “ Q ˝ ... ˝Q
loooomoooon

k times

pzq. (13)

For k “ 0, 1, ..., let dk denote the probability that a random
IGW tree has combinatorial depth k, that is the earthquake
cluster described by this tree has k generations of aftershocks.
The depth distribution dk is given by (Appendix A)

dk “ p1´ rqq
`

1´Qkp0q
˘1{q

for k “ 0, 1, .... (14)

Let vn, n “ 1, 2, ..., denote the probability that a random IGW
tree has n vertices (i.e., the earthquake cluster represented by
this tree is comprised of n events). Then (Appendix B)

vn “
n
ÿ

k“1

p´1qk´1

˜

n´ 1

k ´ 1

¸

Γpk{q ` 1q

k! Γ
`

1´q
q
k ` 2

˘ p1´ rqkqk.

(15)
The expression (15) involves summation of terms with very
large absolute values and interchanging signs, which compli-
cates its numerical evaluation. For example, for r “ 0, q “
0.75 and n “ 30, the maximal term in the summation is
5.5 ˆ 109, while the resulting value vn “ 7.5 ˆ 10´4, with
the ratio between these two values of the order of 1012. The
ratio between the largest summation terms and the final results
increases with n. Say, for n “ 50 it increases to 1020. As
a result, the equation (15) cannot be used (without a special
precision treatment) for large n.

Appendix C shows that the tail of the cluster size distri-
bution is approximated by

un “
8
ÿ

k“n`1

vk „
n´q

p1´ rqqqqΓp1´ qq
as nÑ8. (16)

2.3 Invariance and attraction property

Here we informally discuss the characteristic property of the
IGW processes – invariance and attraction with respect to mul-
tiple transformations of their trajectories.

Consider a Galton-Watson process with offspring distri-
bution tpku and the respective generating function gpzq “
ř

pkz
k. A process trajectory is a tree T , which is finite as

soon as the process is critical or subcritical. Consider now a
transformation of the tree T that eliminates some of its sub-
trees. It is often the case that the transformed tree can be rep-
resented as a trajectory of another Galton-Watson process with
the new offspring distribution p̃k and generating function g̃pzq
such that (Duquesne & Winkel 2019)

g̃pzq “ z ` p1´ ρq
g pz ` p1´ zqaq ´ a´ p1´ aqz

p1´ aq p1´ g1paqq
(17)

for some a P r0, 1q that often represents a fraction of elim-
inated edges, and some ρ P r0, 1s. Such transformation in-
clude a continuous erasure of Neveu (1986) that eliminates
a tree from leaves down as a constant rate; a thinning of
Duquesne & Winkel (2007) that transforms a tree to its min-
imal subtree that contains the root and a set of randomly and
independently selected leaves; a Horton pruning as in Burd
et al. (2000) and Kovchegov & Zaliapin (2020, 2021) that re-
moves all leaf chains, each consisting of a leaf together with
the maximal possible adjacency chain of degree-2 vertices di-
rectly connected to the leaf; a generalized dynamical pruning
of Kovchegov & Zaliapin (2020) and Kovchegov, Xu, & Za-
liapin (2021) that selects an increasing function on subtrees
and removes all subtrees whose value is below a threshold;
and a hereditary reduction introduced by Duquesne & Winkel
(2019).

Observe that for IGW process with generating function
Qpzq defined in (8) equation (17) yields

Q̃pzq “ z ` p1´ ρq
Q pz ` p1´ zqaq ´ a´ p1´ aqz

p1´ aq p1´Q1paqq

“ z ` p1´ ρq
p1´ rqqp1´ aq1{q

p1´ aq p1´Q1paqq
p1´ zq1{q

“ z ` p1´ ρqqp1´ zq1{q. (18)

Hence, IGW trees are invariant under a variety of thinnings,
prunings, and hereditary reductions. Moreover, the parameter
q stays the same under these transformations.

Furthermore, Kovchegov & Zaliapin (2021) and
Kovchegov, Xu, & Zaliapin (2021) have shown that the IGW
trees are the only possible attractors of critical Galton-Watson
trees under the generalized dynamical pruning, subject to mild
technical conditions. This means that if the transformation is
applied to a (random) critical Galton-Watson tree consecu-
tively, then the transformed tree distribution approaches that
of the IGW process. An analogous result is expected to hold
for other types of tree transformations.

3 EARTHQUAKE BRANCHING PROCESS

Here we describe a temporal version of the IGW model for
earthquakes: A marked point process that represents earth-
quake occurrence times ti and magnitudes Mi. Informally,
the process consists of background events (immigrants), each
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of which starts a cluster whose combinatorial part is approxi-
mated by an IGW process.

The background events are modeled by a Poisson pro-
cess with intensity µptq. Every event is assigned a magnitude
Mi ě M0 independently of other events and in accordance
with the Gutenberg-Richter distribution (2). Next we describe
the combinatorial and temporal structure of a cluster – collec-
tion of events triggered by a single background earthquake.
One can also readily introduce a spatial component in a way
that is used in the existing spatial ETAS models.

3.1 Combinatorial structure of a cluster

Every event i in the process triggers Ni offspring according to
a conditional offspring distribution

pkpMq “ PpNi “ k|Mi “Mq,

which is interpreted as the probability that event with magni-
tudeM triggers k ě 0 offspring. The triggering event is called
the parent with respect to its offspring. The offspring are also
known as aftershocks of the first generation. Each offspring is
assigned a magnitude according to (2) independently of other
events (including its parent).

As in the ETAS model, the conditional average offspring
number follows the Utsu scaling (Utsu et al. 1995):

y :“ ErNi|M s “ R010αpM´M0q, α ą 0. (19)

Combining this with the Gutenberg-Richter magnitude distri-
bution (2) we obtain

ErNis “ E rErNi|Miss

“ R0E
”

10αpMi´M0q
ı

“ R0
b

b´ α
. (20)

The constraint b ą α is required for a finite average progeny;
the process is critical if R0 “ pb ´ αq{b and subcritical if
R0 ă pb´ αq{b.

The unconditional branching probabilities pk for a ran-
domly selected earthquake i to have k offspring are obtained
by integrating with respect to the event magnitude Mi:

pk “

ż 8

M0

pkpMqdPpMi ďMq. (21)

Using the magnitude distribution (2) and changing the integra-
tion variable to y of (19) we obtain

pk “
b

α
R
b
α
0

ż 8

R0

pkpyqy
´
b`α
α dy. (22)

Hence, for each fixed conditional distribution pkpMq, a cluster
that starts with a random background event is a Galton-Watson
process with offspring probabilities pk parameterized by the
triplet pb, α,R0q.

Appendix D shows that commonly used conditional crit-
ical offspring distributions pkpMq – Poisson, Geometric, and
Negative Binomial – correspond to an unconditional distribu-
tion pk that can be represented as

pk “ qk ` Ek,

where qk are the IGW offspring probabilities given by (5) with
q “ α{b, and Ek are distribution-specific error terms such that
Ek “ opqkq as k Ñ8 and Ek Ñ 0 as q Ñ 1. In other words,

the IGW process provides a close approximation to the com-
monly used earthquake branching model for a range of con-
ditional offspring probabilities, and the approximation quality
improves for α{b close to unity and for large offspring num-
bers.

Furthermore, Appendix E shows that if pkpMq is either
Poisson, Geometric, or Negative Binomial critical conditional
offspring distribution, then there exist p̃kpMq such that

p̃kpMq Ñ pkpMq as q Ñ 1,

and the unconditional distribution of (22) that corresponds to
p̃kpMq is the IGW distribution qk of (5) with q “ α{b. This
provides further support to an informal statement that the IGW
process is a slight variation of a branching earthquake process
with Poisson, Geometric, or Negative Binomial conditional
offspring distribution.

3.2 Temporal structure of a cluster

Consider an earthquake i with occurrence time ti and mag-
nitude Mi. We assume that the offspring of event i occur ac-
cording to a Cox point process, that is a Poisson process with
a stochastic intensity

V pt|ti,Miq “ R010αpMi´M0q`pt´ tiq “ yi`pt´ tiq.

Given a particular realization of the intensity process, the ran-
dom number Ni of offspring of event i is a Poisson random
variable with intensity yiΛ, where

Λ “

ż 8

0

`ptqdt.

Selecting a process `psq such that ErΛs “ 1 we ensure that

ErNis “ ErErNi|Λss “ EryiΛs “ yi “ R010αpMi´M0q.

In particular, if Λ is a Gamma random variable with vari-
ance 1{η, that is Λ „ Gammapη, ηq, then pkpMq is a Nega-
tive Binomial distribution given by (Appendix F)

pkpMiq “

˜

k ` η ´ 1

k

¸

pyi{ηq
k

p1` yi{ηqk`η
.

A simple way to construct a process ` that satisfies the
above requirements is to select some p ą 1, c ą 0, and η ą 0
and put

`ptq “ `0
pp´ 1qcp´1

pt` cqp
, `0 „ Gammapη, ηq, (23)

where the only stochastic element is the random variable `0
used to scale the familiar Omori-Utsu offspring decay func-
tion.

4 DETECTING CRITICALITY

Branching criticality (unit average progeny) is an important
property of a stochastic branching process that affects its ap-
plied statistical analysis. The IGW processes are critical, and
their attraction property discussed above only applies to other
critical processes. In particular, one expects that an IGW ap-
proximation to the earthquake branching process would be
useful only if the latter exhibits critical-like behavior. Subcrit-
ical processes behave rather differently; for instance, similar
transformations of subcritical trees converge to a trivial empty
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tree. Accordingly, it is important to test criticality in obser-
vations. Such testing is affected by what we call the curse of
criticality, which may bias assessment of criticality by using
the empirical offspring numbers. Here we discuss this effect
and suggest alternative ways of detecting criticality in obser-
vations.

4.1 Curse of criticality

Consider a tree withN vertices (i.e. an earthquake cluster with
N events). Since each vertex, except the root, represents a trig-
gered event and has a single parent, the total number of off-
spring in the tree isN ´1. Accordingly, the empirical average
offspring number is

sNoff
“

# offspring

# parents
“
N ´ 1

N
“ 1´

1

N
.

Observe that this expression is completely determined by the
tree size and is independent of the actual offspring distribution.
It is a standard practice to select large aftershock sequences for
statistical analysis, assuming that they are most informative of
the earthquake cluster properties. The above result indicates
that every large aftershock sequence suggests a nearly critical
branching, which can mislead the interpretation of results.

More generally, in a finite forest that consists of M trees
with total of N vertices, we have

sNoff
“

# offspring

# parents
“
N ´M

N
“ 1´

M

N
.

Hence, even when working with multiple clusters, the empir-
ical average offspring number may not be informative of the
actual offspring average. This is the case when the cluster se-
lection is subject to size constraining. For example, if one de-
cides to only examine clusters with over 50 events, then the
empirical average is bounded within 0.98 ă sNoff

ă 1.
Appendix G shows that the offspring statistics

tk1, . . . , kNu collected in a finite forest with M trees
and N vertices have the same conditional distribution for a
range of Galton-Watson processes with the actual average
progeny anywhere within p0, 1q. Accordingly, these statistics
alone may be not informative about the actual offspring
probabilities.

In this work, we examine the criticality condition of
earthquake trees by several alternative techniques that avoid
the above curse of criticality. One of them is related to the
cluster size distribution, which we discuss below.

4.2 Scaling of cluster size: A cure to the curse of
criticality

The proposed branching process predicts three types of cluster
size scaling that we summarize and compare in this section.
Notably, these scalings are different in critical and sub-critical
cases and are not affected by the curse of criticality discussed
in Sect. 4.1.

First is the scaling (19) of the average number of off-
spring of earthquake with parent magnitude Mi. This is an
exponential scaling of the form 10αM with index α. This scal-
ing is independent of criticality or subcriticality of the process.

Second is the scaling of the average size of (number of
events within) the aftershock sequence generated by a main-
shock with magnitude M . Recall that mainshock is defined as

the earliest cluster event with the largest magnitude (Zaliapin
& Ben-Zion 2013a). Accordingly, the aftershock sequence of
a mainshock can be modeled as the earthquake branching pro-
cess conditioned on having magnitudes not exceeding that of
its first event. Appendix H shows that the average number of
events in such a process, given that it begins with an earth-
quake of magnitudeM , scales exponentially as 10bM in a crit-
ical case and 10αM in a subcritical case, where b is the b-value
of the Gutenberg-Richter law (2) and α is the exponent of the
offspring scaling (19).

Third, one can consider the average size of a cluster that
begins with an event of magnitude M and may include events
of larger magnitudes. The first event of such a cluster produces
a random number of offspring according to pkpMq. Next, each
of these offspring produce their own sequences that include
aftershocks of all generations. Each such sequence is an inde-
pendent realization of the earthquake branching process. In a
subcritical case, the average size of each sequence is constant,
so the final scaling is the same as that for the number of first
generation aftershocks, 10αM . In a critical case, the average
size of each sequence is infinite, so the average cluster size is
also infinite. This suggests that in a critical case the empirical
cluster sizes conditioned on the magnitude of the first event
should exhibit an erratic behavior.

4.3 Critical process that deviates from Utsu scaling

We have shown in (20) that the criticality of an earthquake
branching process implies R0 “ pb ´ αq{b. It is important to
emphasize that this regularity does not affect any of our quali-
tative conclusions regarding the behavior of a critical process.
This equality is a consequence of the explicit form of the Utsu
scaling (19), and may not hold in a general critical process. In-
deed, the Utsu scaling only applies to sufficiently large parent
magnitudes and may not hold for M « M0. Such deviations,
however, do not affect more fundamental cluster properties, in-
cluding the scaling of the size of an aftershock sequence. For
example, Appendix H shows that if one considers the offspring
scaling of the form

ErNi|Mi “M s “ R0 10αpM´M0q ` o
´

10αM
¯

,

then the scaling of the average size of an aftershock sequence
is still given by 10bM . In summary – some of the process quan-
titative properties, for example the equality R0 “ pb ´ αq{α,
should not be used to test for criticality in data. The focus
should be on more robust characteristics, for example scaling
of the cluster size.

5 ANALYSIS OF SOUTHERN CALIFORNIA
SEISMICITY

We examine observed seismicity in southern California during
1981-2019 using an extended version of the catalog produced
by Hauksson et al. (2012). The completeness magnitude in this
catalog is known to be betweenMc “ 2 andMc “ 3 and may
change in time and space (Hauksson et al. 2012). We examine
the central region of the observational domain with higher den-
sity of stations, which does not include the offshore seismic-
ity and earthquakes south of the Mexican border (Fig. 1). The
catalog for this part has better location and magnitude quality.
The lower magnitude for analysis is M0 “ 2. The examined
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Figure 3. Magnitude distribution of the examined earthquakes (green
circles) is well fit by the Gutenberg-Richter law with b “ 1 (black
line).

seismicity includes 82 716 earthquakes. The average horizon-
tal location error for the analyzed events is 237m, the average
vertical error is 928m.

The magnitude-frequency distribution of the examined
seismicity (Fig. 3) is closely approximated by the Gutenberg-
Richter law (2) with b « 1. Specifically, the Aki-Utsu max-
imum likelihood estimation is b̂ “ 1.003 with a 99%confi-
dence interval of r0.99, 1.01s (Shi & Bolt 1982).

We identify (estimate) offspring and earthquake clusters
using the nearest-neighbor approach of Zaliapin & Ben-Zion
(2013a) that is summarized in Appendix I. The analysis is
done for hypocenters with w “ 1, df “ 2.6, and η0 “ 10´4.
This results in 21 385 clusters with sizes varying between 1
and 14 390 earthquakes. The offspring numbers vary between
1 and 2 268.

Figures 4a,b illustrate how the empirical offspring num-
bers of earthquakes with magnitude M ě 2 are approximated
by the IGW offspring distribution (5). The fit minimizes the
total variation distance between the theoretical (qk) and em-
pirical (q̂k) distributions with respect to the parameters pr, qq:

δpqk, q̂kq “
1

2

K0
ÿ

k“0

|qk ´ q̂k| Ñ min. (24)

Here K0 denotes the maximal observed offspring number;
both distributions are conditioned on this maximum number.
We notice that the main contribution to the total variation dis-
tance is made by the largest probabilities, q0 and q1, which,
according to (9) and (10), can be used to uniquely solve for
pr, qq.

Overall, the IGW framework provides a reasonably close
fit to the data, although there are some notable deviations
that are emphasized by the c.d.f. representation of Fig. 4b.
The empirical offspring distribution seems to have a slightly
higher power law index at the small-to-intermediate offspring
numbers k ă 100, and a heavier tail at the largest numbers
k ą 100 than that predicted by the best fit IGW distribution
with parameters r “ 0.24 and q “ 0.86. These deviations
might be caused by a combination of the following factors.
The observed proportion of earthquakes with M ě 6 in the
examined catalog is slightly higher than that predicted by the

Figure 4. IGW fit to the empirical offspring numbers. (a) p.m.f. for
events with M ě 2; the horizontal pattern of green circles in the
bottom right corner corresponds to large offspring numbers that have
been only observed once in the examined catalog; (b) survival function
(1´c.d.f.) for M ě 2, (c) p.m.f. conditioned on k ě 4 for 2 ď
M ď 6, (d) survival function (1´c.d.f.) conditioned on k ě 4 for
2 ďM ď 6. Catalog of (Hauksson et al. 2012, extended) in southern
California.

Gutenberg-Richter law (Fig. 3). This is often the case, and it
may be related to possible relevance of the characteristic earth-
quake distribution on large individual faults (Ben-Zion 2008).
Hence, it is expected that the proportion of very large off-
spring numbers, which are associated with such events, is also
higher than that in a model that assumes an exact Gutenberg-
Richter law. It is also known that the clusters associated with
the largest earthquakes (M ě 6) include a mixture of more
elementary clusters, and behave differently from the majority
of clusters associated with small-to-medium magnitude events
(Zaliapin & Ben-Zion 2013a). Next, the IGW approximation
may not be expected to apply to very small offspring num-
bers. Indeed, if the observed clusters were a realization of
a Galton-Watson process (not necessarily critical, or IGW),
then the empirical proportions of single-event clusters (among
all clusters) and events with no offspring (among all individ-
ual events) should be close, since their theoretical counterparts
match exactly. This, however, is not the case in the examined
data set, where the empirical proportion of single event clus-
ters is 0.77 and the empirical proportion of earthquakes with
no offspring is 0.66. The observed difference is highly signifi-
cant for the large number of the examined clusters and events.
Accordingly, one may assume that the observed process is a
mixture of a population of very small clusters that deviate from
the IGW predictions and a population that follows the IGW
branching dynamics. If this is the case, the IGW approxima-
tion should apply to the empirical offspring distribution con-
ditioned on sufficiently large offspring numbers. Figure 4c,d
shows the IGW fit to the offspring numbers of earthquakes
with 2 ď M ď 6 conditioned on k ě 4 (i.e., we eliminated
events with 0, 1, 2 or 3 offspring from analysis). Such condi-
tioning results in a very close fit.

Figure 5 shows the IGW fit of (15,16) to the empirical
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Figure 5. IGW fit to the empirical cluster sizes (number of tree ver-
tices). The empirical survival function of cluster size (green) and its
IGW fit (red). Catalog of (Hauksson et al. 2012, extended) in southern
California.

cluster size distribution. We notice a very close approximation
for cluster sizes n ď 20 and a proper power law decay of the
distribution tail. There exist slight fluctuations in the empirical
tail, reminiscent of those observed in the offspring distribution
of Fig. 4b; and they can be interpreted in a similar fashion.
Notably, these fluctuations do no exceed the expected statis-
tical fluctuations of a sample distribution. This suggests that
the IGW process provides a useful projection of the expected
cluster sizes.

The scaling of the three cluster attributes discussed in
Sect. 4.2 is examined in Fig. 6. Figure 6a compares the scaling
of the number of offspring of an event of magnitude M (green
circles) with that of the total number of aftershocks triggered
by the cluster mainshock (red squares). Both attributes are ex-
amined in catalogs with differentM0 and are shown as a func-
tion ofM ´M0. The results exhibit a well-defined scaling for
both attributes, expressed in a linear form of the plots. Notably,
the scaling exponents are significantly different for the two
examined attributes. The number of aftershocks (red squares)
scales as 10bpM´M0q with b « 1, which matches the regional
b-value of the Gutenberg-Richter law; see Fig. 3. The offspring
numbers scale as 10αpM´M0q with α « 0.83, which is close
to the IGW parameter q estimated in empirical offspring num-
bers; see Fig. 4a,b. The relation q “ α{b (Sect. 3.1) indicates
that the scaling of Fig. 6a is consistent with that predicted by a
critical branching process. Furthermore, Fig. 6b illustrates the
same scaling analysis for the cluster sizes averaged for a given
magnitude of the first event in the cluster. The results fluctuate
as expected for a near critical branching process (Sect. 4.2).

Finally, we illustrate stability of the IGW estimation. Fig-
ure 7 shows the values of the four key IGW parameters esti-
mated with different cutoff magnitude M0 that varies between
M0 “ 2 and M0 “ 4. This 2-unit change in the cutoff magni-
tude corresponds to a 100-fold decrease of the total number of
examined events (from 82 716 to 773) and the total number of
detected clusters (from 21 385 to 236). The offspring and clus-
ter identification was performed independently for each exam-
ined cutoff value using the nearest-neighbor technique of Za-
liapin & Ben-Zion (2013a). Despite a dramatic change in the

Figure 6. Cluster size scaling. (a) Average number of offspring of
an earthquake of magnitude M (green) and average number of after-
shocks of all generation of a mainshock of magnitude M (red) as a
function of M ´ M0. Dashed lines show the least square fits done
for 2 ď M ´M0 ď 4. (b) Average size of a cluster with the first
event of magnitude M as a function of M ´M0. Dashed line is taken
from panel (a) for visual comparison. Averaging is done in a sliding
magnitude window of width 0.3, with a step of 0.2. The analysis uses
catalogs with cutoff magnitudes M0 “ 2.0, 2.1, . . . , 2.9, 3.0. Cata-
log of (Hauksson et al. 2012, extended) in southern California.

examined catalogs, the estimated IGW parameters remain ap-
proximately the same for each cutoff magnitude, and preserve
the same relative order. This indicates a structural stability of
the earthquake clustering, as analyzed using the proposes IGW
process.

6 DISCUSSION

We propose the IGW branching process (Sect. 2) as a model
for earthquake occurrence (Sect. 3), and illustrate performance
of the model with several types of analysis of seismicity from
southern California (Sect. 5). The IGW process models the
combinatorial part of earthquake clusters (parent-offspring re-
lations between earthquakes), and the magnitude, time, and
space earthquake attributes are added as marks of the process.

Figure 7. Stability of empirical IGW statistics with respect to the cut-
off magnitude M0. The IGW parameter q estimated for empirical off-
spring numbers (green circles), proportion of singles among clusters
(blue squares), proportion q0 of events with no offspring, and propor-
tion q1 “ r of events with a single offspring as a function of the cutoff
magnitude M0 “ 2.0, 2.1, . . . , 3.9, 4.0. Catalog of (Hauksson et al.
2012, extended) in southern California.
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The key justification for the proposed framework comes
from the following two properties of the IGW process. First,
the IGW is theoretically shown (Appendix D) to approximate
a number of branching processes with magnitude-dependent
offspring generation mechanism, including the Poisson off-
spring distribution that is used in the ETAS model (Ogata
1988) and the negative binomial distribution that is proposed
in several observational studies and in this work. Second, the
IGW is a unique sub-family of Galton-Watson branching pro-
cesses that is invariant with respect to numerous prunings and
other operations that mimic imprecise observations and errors
of cluster reconstruction in observed data (Sect. 2.3). This is
also the only sub-family that can be an attractor of the tree-
deforming operations applied to any critical Galton-Watson
tree distribution (Kovchegov & Zaliapin 2021).

The main practical advantage of the proposed approach
is the existence of an analytical framework that yields theo-
retical distributions for multiple cluster statistics. We present
explicit expressions for the offspring number distribution qk
(5), tree (cluster) size distribution vn (15), and combinatorial
tree depth dk (14). The theoretical IGW distributions provide
a close fit to the observations in Southern California (Figs. 4,
5). The combinatorial depth distribution suggests a theoret-
ical foundation for examining the average leaf depth (Zali-
apin & Ben-Zion 2013b) that has been shown useful in iden-
tifying burst-like and swarm-like clusters in natural and lab-
oratory seismicity and discriminating between natural and in-
duced earthquakes (Reverso et al. 2015; Zaliapin & Ben-Zion
2016a,b; Davidsen et al. 2017; Bayliss et al. 2019; Martı́nez-
Garzón et al. 2019; Peresan & Gentili 2018, 2020; Baró 2020;
Kothari et al. 2020; Verdecchia et al. 2021). We also empha-
size the concise specification of the IGW process that only
uses two parameters r and q of (5) and stability of parame-
ter estimation with respect to the catalog cutoff magnitudeM0

that has been illustrated in Sect. 5, Fig. 7.
The branching process framework allows one to evalu-

ate the hypothesis of branching criticality without being af-
fected by the curse of criticality (Sect. 4.1). This can be done
by examining the magnitude dependence of different forms
of clusters (Sect. 4.2). The results of Fig. 6 suggests that the
earthquake clusters in southern California correspond to a re-
alization of a near-critical process. We emphasize that exact
criticality is not expected to exist in all space-time domains,
and is also unrealizable in a finite observed system that can-
not produce clusters of arbitrarily large size. Various studies
suggested that large earthquakes are associated with evolv-
ing conditions that approach criticality (e.g., Main 1995; Sam-
mis & Smith 1999; Rundle et al. 2000; Zöller & Hainzl 2002;
Ben-Zion et al. 2003; Girard et al. 2010; Renard et al. 2018).
Assessing deviations from criticality in different space-time
domains of observed seismicity (using the discussed and ad-
ditional tools) may be a useful diagnostic tool for seismicity
analysis.

The IGW analyses in this study are based on a nearest-
neighbor identification of parent-offspring relations between
earthquakes, which is subject to errors of different types. Za-
liapin & Ben-Zion (2013a) showed (their Suppl. Inf., Sect. D)
that the proportion of misidentified event types (foreshock,
mainshosk, aftershock) in a synthetic ETAS catalog with pa-
rameters fit for southern California is about 10%, and it de-
creases with the cutoff magnitude M0. At the same time, the
proportion of misidentified parent-offspring relations is about

40%, independently of the cutoff magnitude. These identifi-
cation errors have the largest effect on the offspring numbers
of individual events. In particular, within clusters (which com-
prise about 75% of the examined seismicity, with the rest 25%
being single events) it is very likely to overestimate the propor-
tion of events with no offspring (because such events have a
large chance of being assigned some offspring of other events)
and underestimate the proportion of events with a large num-
ber of offspring (because many of these offspring are incor-
rectly assigned to other events). Overall, this should inflate
the relative proportion of the small offspring numbers in the
offspring distribution qk, and hence deflate the estimated pa-
rameter q. The cluster size vk seems to be a better data source
for estimating q. In agreement with this discussion, our anal-
ysis of offspring numbers (Fig. 4) suggests q̂ « 0.72, while
analysis of cluster sizes (Fig. 5) suggests a higher estima-
tion of q̂ « 0.9. A direct statistical estimation of the IGW
process, e.g. via the likelihood approach, may help avoiding
discrepancies caused by an independent estimation of parent-
offspring relations. Such an estimation would also open a way
for a direct comparison of the data fit between the IGW and
other models, including ETAS, using point process residu-
als (Clements et al. 2011; Gordon et al. 2015) or other well-
developed tests (Zechar et al. 2013). Such estimation and com-
parison will be a subject of a follow-up study.

Section 2.3 discusses invariance of the IGW process with
respect to multiple prunings and thinnings. The Horton prun-
ing (cutting the leaf chains) is particularly notable. The Hor-
ton prune-invariance makes the IGW a self-similar process
(Kovchegov & Zaliapin 2020, 2021), which has several prac-
tically relevant implications. Informally, statistical properties
of a self-similar process do not change after its trajectories are
zoomed in or out. Such a scale change may correspond, for
example, to changing the catalog cut-off magnitude M0. Ac-
cordingly, self-similarity ensures that the process parameters
are robust with respect to M0, which we have illustrated in
Fig. 7. Similarly, self-similarity ensures stability with respect
to various data imprecisions as discussed in Sect. 2.3. Further-
more, self-similarity allows adopting multiple related tools for
analysis of earthquake clusters (e.g., Holliday et al. 2008; Yo-
der et al. 2013). A self-similar analysis of directed tree graphs
is based on Horton-Strahler orders defined as the number of
Horton prunings needed to completely eliminate a tree or sub-
tree (Horton 1945; Strahler 1957; Peckham 1995; Burd et al.
2000; Kovchegov & Zaliapin 2020; Kovchegov et al. 2021).
Accordingly, a tree is decomposed into a set of linear segments
(branches) of a given order, from K “ 1 at the leaves to the
largest order K ě 1 at the root. Each branch represents a
linear chain of earthquakes where each event triggers exactly
one later event. The Horton-Strahler order K provides a log-
arithmic measure of a tree size N . More precisely, Horton’s
law of branch numbers states that the numbers Nk of order-k
branches are related as Nk{Nk`1 « RB and the tree size N
scales with tree order K as N „ 10RBK for some Horton
exponent RB ě 2. Scalings of the same form (called Horton’s
laws), with different Horton exponents, have been established
for multiple other tree attributes (Rodriguez-Iturbe & Rinaldo
2001; Kovchegov et al. 2021). A rigorous treatment of Hor-
ton’s laws in self-similar trees, which yields explicit values of
Horton exponents, can be found in a recent survey (Kovchegov
et al. 2021). The Hortonian analyses of scalings in a tree struc-
ture, and in the processes that operate on the tree, are among
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the key tools in hydrogeomorphological modeling (Peckham
1995; Burd et al. 2000; Peckham & Gupta 1999; Dodds &
Rothman 2000; Rodriguez-Iturbe & Rinaldo 2001; Kovchegov
et al. 2021), and we expect they can be informative in analysis
of seismicity.

Applying the self-similar analyses to the trees that de-
scribe earthquake clusters may advance quantification of re-
gional earthquake clustering style (e.g., finding additional dis-
criminants between induced and natural earthquakes or be-
tween environments with different temperature-fluid condi-
tions). An additional important application is analysis of po-
tential premonitory cluster attributes in zones showing local-
ization of seismicity (Ben-Zion & Zaliapin 2020), as part of
an effort to track preparation processes leading to large earth-
quakes. Specific quantities to explore include time- and space-
dependent branch numbers NK (the number of branches of
order K in a tree), branch magnitudes MK (the average num-
ber of leaves in a tree of order K), branch lengths (combi-
natorial or in years), side-branch numbers Ni,j (the number
of branches of order i that merge with branches of order j,
j ą i), and Tokunaga coefficients Ti,j (the average number of
branches of order i that merge with a random branch of order
j, j ą i). The theory of self-similar trees predicts a number
of power-law relations between distinct tree attributes, with
specific values of power exponents (Kovchegov et al. 2021).
The famous Hack’s law in hydrology (Hack 1957; Rodriguez-
Iturbe & Rinaldo 2001) that relates the length L of the longest
river stream to the basin area A via L „ Ah with h « 0.6
is an example of such a power law. It would be interesting to
explore and interpret similar relations in earthquake data, ex-
amining cluster duration, cluster area, cluster size, and total
cluster seismic moment.

Kovchegov & Zaliapin (2021) established that in an IGW
process with parameter q, we have Ti,i`k “ Tk “ ack´1

for any i ě 1 and k “ 2, 3, . . . with c “ 1{p1 ´ qq and
a “ pc´ 1qpc1{pc´1q

´ 1q. Moreover, the Horton exponent is
given by RB “ p1´ qq´1{q . These results provide an alterna-
tive, and probably more robust, way of estimating the parame-
ter q from observations, by inverting RB and Ti,j . Recall that
the parameter q combines the two key seismicity exponents,
q “ α{b, so its robust estimation has immediate practical im-
plications for analysis of seismicity. The above expressions
also may help evaluating deviations of the observed process
from a pure IGW.

The proposed IGW modeling framework can readily in-
clude a spatial component, by assigning offspring locations ac-
cording to a space kernel centered at the parent (e.g., Ogata
1988, 1998, 1999). A fuller space-time model will be devel-
oped in a follow-up study.
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APPENDIX A: DEPTH DISTRIBUTION OF IGW
TREES

Consider the generating function (8) of an IGW tree with off-
spring distribution tqku and recall the definition of a compos-

ite generating function Qk of (13). Let D´1 “ 0 and

Dk “
k
ÿ

j“0

dj for k “ 0, 1, ...

ThenDk “ QpDk´1q and therefore, Dk “ Qk`1p0q. Hence,

dk “ Dk ´Dk´1 “ Qk`1p0q ´Qkp0q

“ Q
`

Qkp0q
˘

´Qkp0q “ p1´ rqq
`

1´Qkp0q
˘1{q

.

APPENDIX B: SIZE DISTRIBUTION OF IGW TREES

Recall that vn, n “ 1, 2, ..., denotes the probability that a ran-
dom IGW tree has n vertices. Let Vk be the distribution of
the total size of k independent trees, that is the sum of k inde-
pendent identically distributed random variables with common
distribution tvnu:

Vk “ v ˚ ... ˚ v
loooomoooon

k times

.

Observe that since the number of vertices equals 1 plus the
number of vertices in all subtrees branching from the root, we
have

vn`1 “

8
ÿ

k“n

qk Vkpnq.

Therefore, the generating function vpzq “
8
ř

n“1

znvn satisfies

vpzq “ z Q pvpzqq

“ z
´

vpzq ` p1´ rqq p1´ vpzqq1{q
¯

. (B.1)

Letting v “ vpzq and w “ p1 ´ rqqzp1 ´ zq´1, we find
w “ vp1´ vq´1{q. Next, we find vpzq by inverting the func-
tion wpvq. The Lagrange Inversion Theorem (Abramowitz &
Stegun 1964) states that

vpzq “
8
ÿ

k“1

dk´1

dvk´1

ˆ

v

wpvq

˙k
wk

k!
.

Since

dk´1

dvk´1

ˆ

v

wpvq

˙k

“
dk´1

dvk´1
p1´ vqk{q

“ p´1qk´1
pk{qqpk{q ´ 1q . . . pk{q ´ k ` 2q

“ p´1qk´1 Γpk{q ` 1q

Γpk{q ´ k ` 2q
,

the Lagrange Inversion Theorem implies

vpzq “
8
ÿ

k“1

p´1qk´1 Γpk{q ` 1q

Γ
`

1´q
q
k ` 2

˘

wk

k!
, (B.2)

where

wk “ p1´ rqkqk
zk

p1´ zqk

“ p1´ rqkqk
8
ÿ

n“k

˜

n´ 1

k ´ 1

¸

zn. (B.3)
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Substituting (B.3) into (B.2) yields the following expression
for vpzq:

8
ÿ

k“1

8
ÿ

n“k

p´1qk´1

˜

n´ 1

k ´ 1

¸

Γpk{q ` 1q

k! Γ
`

1´q
q
k ` 2

˘ p1´ rqkqkzn

“

8
ÿ

n“1

zn
n
ÿ

k“1

p´1qk´1

˜

n´ 1

k ´ 1

¸

Γpk{q ` 1q

k! Γ
`

1´q
q
k ` 2

˘ p1´ rqkqk.

This implies the identity (15), as vpzq “
8
ř

n“1

zn vn.

APPENDIX C: TAIL OF THE IGW TREE SIZE
DISTRIBUTION

Here we find the asymptotic expression for the tail of the IGW
tree size distribution

un “
8
ÿ

k“n`1

vk, n “ 0, 1, . . . .

Notice that the generating functions vpzq and upzq “
8
ř

n“0

un z
n satisfy the following relation

1´ vpzq “

8
ÿ

k“1

p1´ zkq vk “ p1´ zq
8
ÿ

k“1

k´1
ÿ

n“0

zn vk

“ p1´ zq
8
ÿ

n“0

8
ÿ

k“n`1

vk z
n

“ p1´ zq
8
ÿ

n“0

un z
n
“ p1´ zqupzq.

Therefore, by (B.1), we have

p1´ zqvpzq “ p1´ rqq
`

1´ vpzq
˘1{q

“ p1´ rqq p1´ zq1{qupzq1{q.

Thus,

upzq “
1

p1´ zq1´q

`

vpzq
˘q

p1´ rqq qq
,

where

lim
zÑ1´

`

vpzq
˘q

p1´ rqq qq
“

1

p1´ rqq qq
.

Hence, by the Tauberian theorem for power series,

un „
1

p1´ rqq qq Γp1´ qq
n´q

as the sequence un ě 0 is monotone non-increasing.

APPENDIX D: IGW APPROXIMATION TO
EARTHQUAKE BRANCHING PROCESS

This section shows that the combinatorial part of a critical
earthquake branching process with Negative Binomial, Geo-
metric (a special case of Negative Binomial), or Poisson con-
ditional offspring distribution pkpMq is closely approximated
by the IGW. Throughout this section, we suppose

1

2
ă q “

α

b
ă 1

and assume criticality, i.e. R0 “ 1´ q.

D1 Negative Binomial distribution

For a given η ą 0, consider

pkpMq “ PpNi “ k|Mi “Mq

“

˜

k ` η ´ 1

k

¸

py{ηqk

p1` y{ηqk`η
k “ 0, 1, 2, . . .

where y “ R0 10αpM´M0q “ p1´ qq 10αpM´M0q.
For k “ 2, 3, . . . we have

pk “
b

α
R
b{α
0

˜

k ` η ´ 1

k

¸ 8
ż

R0

ηη yk

pη ` yqk`η
y´

α`b
α dy

“
1

q
p1´ qq1{q

˜

k ` η ´ 1

k

¸ 8
ż

1´q

ηη yk´1{q´1

pη ` yqk`η
dy

“ η´1{q 1

q
p1´ qq1{q

˜

k ` η ´ 1

k

¸ 8
ż

p1´qq{η

yk´1{q´1

p1` yqk`η
dy

“ η´1{q 1

q
p1´ qq1{q

˜

k ` η ´ 1

k

¸ 8
ż

0

yk´1{q´1

p1` yqk`η
dy ´ Ek,

with the error term

Ek “ η´1{q 1

q
p1´ qq1{q

˜

k ` η ´ 1

k

¸ p1´qq{η
ż

0

yk´1{q´1

p1` yqk`η
dy

ă η´1{q 1

q
p1´ qq1{q

˜

k ` η ´ 1

k

¸ p1´qq{η
ż

0

yk´1{q´1 dy

“
η´k

kq ´ 1

˜

k ` η ´ 1

k

¸

p1´ qqk. (D.1)

Recall that

Bpx, yq “

8
ż

0

tx´1

p1` tqx`y
dt

and hence
8
ż

0

yk´1{q´1

p1` yqk`η
dy “ B

ˆ

k ´
1

q
, η `

1

q

˙

“
Γpk ´ 1{qqΓpη ` 1{qq

Γpk ` ηq
.

Hence, for k “ 2, 3, . . . we have

pk “ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
´ Ek, (D.2)

where the first term on the right hand side is the IGW offspring
probability qk of (5) and

r “ 1´ p1´ qq1{q´1 Γp2´ 1{qqΓpη ` 1{qq

η1{q Γpηq
. (D.3)

It also can be shown that

p1 “ r ` E1, (D.4)

with

E1 “ pη ` 1qp1´ qq

8
ż

η

w1{q´1
´ 1

p1´ q ` wq3
w dw
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where w “ p1´ qq{y. In particular,

E1 ď

ˆ

1` q
η1{q´1

´ 1

1´ q

˙

η ` 1

ηp2q ´ 1q
p1´ qq2

« p1` ln ηq
η ` 1

ηp2q ´ 1q
p1´ qq2, when q « 1,

Since both branching distributions, pk and qk, add up to one,
we have

p0 “ p1´ rqq ´ E0,

where

E0 “ E1 ´

8
ÿ

k“2

Ek.

The total variation distance between distributions tpku and
tqku with q “ α

b
and r in (D.3) equals δppk, qkq “ E1. For

example, when η “ 1 (Geometric offspring distribution) and
q “ 0.92, we have E1 “ 0.0144223 . . ..

Next, we establish a similar approximation result assum-
ing that parameter η depends on the productivity y. Suppose
that η “ ηpyq is a decreasing function converging rapidly to
η0 ą 1, so that η is indistinguishable from η0 for y ě y0,
where y0 is sufficiently small. Then, for k “ 2, 3, . . . , we
have

pk “
b

α
R
b{α
0

8
ż

R0

˜

k ` η ´ 1

k

¸

ηη yk

pη ` yqk`η
y´

α`b
α dy

«
1

q
R

1{q
0

˜

k ` η0 ´ 1

k

¸ 8
ż

y0

ηη00 yk´1{q´1

pη0 ` yqk`η0
dy

“
1

q
R

1{q
0

˜

k ` η0 ´ 1

k

¸ 8
ż

y0{η0

yk´1{q´1

p1` yqk`η0
dy

«
1

q
R

1{q
0

˜

k ` η0 ´ 1

k

¸ 8
ż

0

yk´1{q´1

p1` yqk`η0
dy

“ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
“ qk

with

r “ 1´R
1{q
0

Γp2´ 1{qqΓpη ` 1{qq

p1´ qqη
1{q
0 Γpηq

.

D2 Poisson distribution

Consider

pkpMq “
1

k!
yke´y k “ 0, 1, 2, . . .

where y “ R0 10αpM´M0q “ p1´ qq 10αpM´M0q.
If q “ α

b
is sufficiently close to 1, or k “ 2, 3, . . . we

have

pk “
b

α
R
b{α
0

8
ż

R0

1

k!
yke´y y´

α`b
α dy

“
1

q
p1´ qq1{q

1

k!

8
ż

1´q

e´yyk´1{q´1 dy

“
1

q
p1´ qq1{q

1

k!

8
ż

0

e´yyk´1{q´1 dy ´ Ek,

where the error term

Ek “
1

q
p1´ qq1{q

1

k!

1´q
ż

0

e´yyk´1{q´1 dy

ă
1

q
p1´ qq1{q

1

k!

1´q
ż

0

yk´1{q´1 dy

“
1

k! q
p1´ qqk. (D.5)

Therefore, from

Γpxq “

8
ż

0

e´ttx´1 dt,

we obtain

pk “
1

q
p1´ qq1{q

1

k!

8
ż

0

e´yyk´1{q´1 dy ´ Ek

“
1

q
p1´ qq1{q

Γpk ´ 1{qq

k!
´ Ek

“ p1´ qq1{q´1Γp2´ 1{qq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
´ Ek.

Hence, for k “ 2, 3, . . .,

pk “ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
´ Ek, (D.6)

where the first term in the right hand side equals to the IGW
offspring probability qk and

r “ 1´ p1´ qq1{q´1Γp2´ 1{qq. (D.7)

It also can be shown that

p1 “ 1´ p1´ qq1{q´1Γp2´ 1{qq ` E1,

where the error term

E1 “

1´q
ż

0

e´y
“

p1´ qq1{q´1y1´1{q
´ 1

‰

dy

ă

1´q
ż

0

“

p1´ qq1{q´1y1´1{q
´ 1

‰

dy

“
1

2q ´ 1
p1´ qq2. (D.8)

Since both branching distributions, pk and qk, add up to one,
we have

p0 “ p1´ rqq ´ E0,
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where

E0 “ E1 ´

8
ÿ

k“2

Ek

ă
1

2q ´ 1
p1´ qq2 ´

1

q

`

1´ p2´ qqeq´1
˘

. (D.9)

The total variation distance between distributions tpku and
tqku with q “ α

b
and r in (D.7) equals

δppk, qkq “ E1

“ eq´1
´ 1` p1´ qq1{q´1

1´q
ż

0

e´yy1´1{q dy.

For example, when q “ 0.92, the total variation distance
equals E1 “ 0.0074761 . . ..

APPENDIX E: EXACT IGW REPRESENTATION OF
EARTHQUAKE BRANCHING PROCESS

This section introduces two conditional offspring distributions
pkpMq that correspond to an exact IGW process. This means
that the unconditional offspring distribution pk of (21) that
corresponds to pkpMq coincides with the IGW offspring dis-
tribution qk of (5). The two distributions considered here are
close to the Negative Binomial and Poisson.

Throughout this section we assume 1{2 ă q “ α{b ă 1
and criticality, i.e. R0 “ 1´ q. We also consider productivity

y “ r0 10αm ą r0 10αm0 “ R0 “ 1´ q,

and a constant r such that 0 ă r ă 1.

E1 Quasi-negative binomial offspring distribution

Consider

pkpMq “
p1´ rqηη`1{q Γpηq

p1´ qq1{q´1Γp2´ 1{qqΓpη ` 1{qq
ˆ

˜

k ` η ´ 1

k

¸

pq ´ 1` yqk´1{q´1

pη ` q ´ 1` yqk`η
y1`1{q (E.1)

for k “ 2, 3, . . .. For all k ě 2, the unconditional offspring
probabilities pk are given by

pk “
b

α
R
b{α
0

p1´ rqηη`1{q Γpηq

p1´ qq1{q´1Γp2´ 1{qqΓpη ` 1{qq
ˆ

˜

k ` η ´ 1

k

¸ 8
ż

R0

pq ´ 1` yqk´1{q´1

pη ` q ´ 1` yqk`η
y1`1{q y´

α`b
α dy

“
p1´ rqp1´ qqηη`1{q Γpηq

q Γp2´ 1{qqΓpη ` 1{qq
ˆ

˜

k ` η ´ 1

k

¸ 8
ż

R0

pq ´ 1` yqk´1{q´1

pη ` q ´ 1` yqk`η
dy

“
p1´ rqp1´ qqΓpηq

q Γp2´ 1{qqΓpη ` 1{qq
ˆ

˜

k ` η ´ 1

k

¸ 8
ż

0

wk´1{q´1

p1` wqk`η
dw

“ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
“ qk,

where we let w “ pq ´ 1` yq{η.
We observe that the distribution (E.1) approaches nega-

tive binomial as q Ñ 1.

E2 Quasi-Poisson offspring distribution

Consider

pkpMq “ p1´ rq
p1´ qq1´1{q

Γp2´ 1{qq
e´y`1´q

ˆ

pq ´ 1` yqk´1{q´1

k!
y1`1{q k “ 2, 3, . . . (E.2)

For all k ě 2 we have

pk “ p1´ rq
p1´ qq1´1{q

Γp2´ 1{qq

b

α
R
b{α
0 ˆ

8
ż

R0

e´y`1´q pq ´ 1` yqk´1{q´1

k!
y1`1{q y´

α`b
α dy

“ p1´ rq
p1´ qq

qΓp2´ 1{qq

8
ż

0

e´w wk´1{q´1 dw

“ p1´ rq
p1´ qqΓpk ´ 1{qq

qΓp2´ 1{qq k!
,

where we let w “ q ´ 1` y.

Observe that we need r to be large enough so that
8
ÿ

k“2

pkpMq “ p1´ rq
p1´ qq1´1{q

Γp2´ 1{qq
ˆ

`

1´ e´y`1´q
pq ` yq

˘

pq ´ 1` yq´1´1{q y1`1{q
ă 1

for all y ą 1 ´ q. In this case, there are multiple choices for
p0pMq and p1pMq such that p0 “ p1´ rqq, p1 “ r, and

p0pMq ` p1pMq “ 1´
8
ÿ

k“2

pkpMq.

APPENDIX F: NEGATIVE BINOMIAL
DISTRIBUTION AS A POISSON WITH GAMMA
INTENSITY

The following result goes back to Greenwood & Yule (1920).
Let the number Ni of offspring of earthquake i be a
Poisson random variable with intensity yΛ, where y “

R010αpMi´M0q. Assume that Λ „ Gammapη, ηq with some
η ą 0. Then, for each integer k ě 0,

pkpMq “ P pNi “ k |Mi “Mq

“

8
ż

0

yk xk

k!
e´yx

1

Γpηq
ηηxη´1e´ηx dx

“
py{ηqk

p1` y{ηqk`η

8
ş

0

pη ` yqk`ηxk`η´1e´pη`yqx dx

k! Γpηq

“
py{ηqk

p1` y{ηqk`η
Γpk ` ηq

k! Γpηq

“

˜

k ` η ´ 1

k

¸

py{ηqk

p1` y{ηqk`η
,
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which is a Negative Binomial distribution with parameters η
and p1` y{ηq´1.

APPENDIX G: CONDITIONAL EQUIVALENCE

Consider a subcritical Galton-Watson process with offspring
distribution tpku and generating function gpzq “

ř

pkz
k. As-

sume that a finite forest generated by this process is observed
and we record the number M of trees in the forest and the to-
tal numberN of vertices. Observe that the maximal branching
number in the observed forest cannot exceedN´M . The pro-
cess that generated this forest cannot be distinguished from a
subcritical Galton-Watson process with a finite offspring dis-
tribution

p̃k “
pk

řN´M
k“1 pk

, k “ 0, . . . , N ´M.

Formally, conditioned on the observed statistics pM,Nq, the
distribution of the forest is the same for the process with off-
spring distributions tpku and tp̃ku.

Next, we construct a critical Galton-Watson process with
the same conditional distribution. For that we fix w ą 1 and
define offspring probabilities

qk “
p̃kw

k

gpwq
, k “ 0, . . . , N ´M, (G.1)

where gpzq “
ř

zkp̃k is the generating function of tp̃ku; it
exists on z P R because of the finiteness of the distribution
support. The offspring probabilities qk are well defined since

N´M
ÿ

k“0

qk “
1

gpwq

N´M
ÿ

k“0

p̃kw
k
“
gpwq

gpwq
“ 1.

LetX be a random variable with probability mass function p̃k.
Then, ErXs ă 1, and the Fortuin-Kasteleyn-Ginibre (FKG)
inequality yields

ErX wX s ´ ErwX sErXs “ CovpX,wXq ą 0

as wx is a strictly increasing function. Hence,

N´M
ÿ

k“0

k qk “
w g1pwq

gpwq
“

ErX wX s

ErwX s
ą ErXs.

Observe that the transformation (G.1) is a multiplicative semi-
group. Specifically, if we denote by Gpwq : P Ñ P the re-
spective transformation on a space P of finite offspring distri-
butions

P “ tpk, k “ 1, . . . ,K :
K
ÿ

k“1

pk “ 1u,

then

Gpw1 ¨ w2q “ Gpw1q ˝Gpw2q.

Thus, the expected progeny in the branching process with
branching probabilities qk

N´M
ÿ

k“0

k qk “

N´M
ř

k“0

k wkp̃k

N´M
ř

k“0

wkp̃k

is a strictly increasing continuous function of w, which con-
verges to N ´M as w Ñ8. Hence, as soon as N ´M ą 1,

that is the forest includes at least one tree with more than 2 ver-
tices, there exists w ą 1 such that the process with offspring

probabilities qk is critical, i.e.,
K
ř

k“0

kqk “ 1.

It is left to establish the conditional equivalence. Fix a
pair pM,Nq such that N ą M and consider the probability
of observing a forest with M trees, N vertices, and offspring
numbers tk1, . . . , kNu such that k1 ` ¨ ¨ ¨ ` kN “ N ´M
in a Galton-Watson process with offspring distribution tqku of
(G.1):

Pptk1, . . . , kNuq “
N
ź

k“1

qki “
wN´M

gpwqN

N
ź

k“1

p̃ki . (G.2)

This probability differs from its counterpart in the process with
offspring distribution tp̃ku by a constant term that depends on
w,M and N . Accordingly, the probabilities conditioned on
pM,Nq coincide.

APPENDIX H: AVERAGE SIZE OF AN
AFTERSHOCK SEQUENCE

Consider an earthquake branching process that begins with an
earthquake of magnitude M and condition this process on all
aftershocks having magnitude smaller thanM . There is an av-
erage of R0 10αpM´M0q offspring of the first event, each gen-
erating a subtree of aftershocks. These subtrees are indepen-
dent and identically distributed. In every subtree, the magni-
tudes are exponential random variables, conditioned on being
less thanM . Thus, the average progeny of an event in a subtree
equals

b ln 10

1´ 10´b∆

M
ż

M0

R0 10αpx´M0q 10´bpx´M0q dx

“ R0
b

b´ α

1´ 10´pb´αq∆

1´ 10´b∆
,

where ∆ “M´M0. Therefore, the mean size of each subtree
Ti is equal to

8
ÿ

k“0

ˆ

R0
b

b´ α

1´ 10´pb´αq∆

1´ 10´b∆

˙k

“
1´ 10´b∆

1´R0
b

b´α
`R0

b
b´α

10´pb´αq∆ ´ 10´b∆

Hence, the average size of a tree generated by earthquake of
magnitude M equals

1`R0 10α∆ 1´ 10´b∆

1´R0
b

b´α
`R0

b
b´α

10´pb´αq∆ ´ 10´b∆
.

In a subcritical case, the fraction in the above expression con-
verges to p1 ´ R0b{pb ´ aqq´1 as M increases, and hence
the average cluster size scales as 10αM . In a critical case we
have R0 “

b´α
b

, and the average size of a tree generated by
an earthquake of magnitude M event is

1`R0 10α∆ 1´ 10´b∆

10α∆ ´ 1
10b∆

“ 1`R0
1´ 10´b∆

1´ 10´α∆
10b∆,

which increases as 10bM .
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Assume now that the Utsu scaling (19) only holds for the
sufficiently large magnitudes. For example, assume that

ErNi|Mi “M s “ R0 10αpM´M0q ` C0 10κpM´M0q,

with κ ă α. Assume criticality:

R0
b

b´ α
` C0

b

b´ κ
“ 1.

Then, the average progeny for an event in a subtree equals

b ln 10

1´ 10´b∆

m
ż

m0

`

R0 10α∆x ` C010κ∆x
˘

10´b∆xdx

“ R0
b

b´ α

1´ 10´pb´αq∆

1´ 10´b∆
` C0

b

b´ κ

1´ 10´pb´κq∆

1´ 10´b∆
,

where ∆x “ x´M0. Thus, the mean size of each subtree Ti
equals

8
ÿ

k“0

ˆ

R0
b

b´ α

1´ 10´pb´αq∆

1´ 10´b∆
` C0

b

b´ κ

1´ 10´pb´κq∆

1´ 10´b∆

˙k

“
1´ 10´b∆

R0
b

b´α
10´pb´αq∆ ` C0

b
b´κ

10´pb´κq∆ ´ 10´b∆

Hence, the average size of the tree generated by an earthquake
of magnitude M equals

1`R0
1´ 10´b∆

R0
b

b´α
` C0

b
b´κ

10´pα´κq∆ ´ 10´α∆
10b∆.

This shows that low-magnitude deviations from the Utsu scal-
ing (19) do not affect the general scaling of the average size of
an aftershock sequence, which is still given by 10bM .

APPENDIX I: NEAREST-NEIGHBOR ANALYSIS OF
EARTHQUAKES

Consider a catalog of earthquakes where each event i is char-
acterized by its occurrence time ti, hypocenter xi, and mag-
nitude Mi. The proximity of earthquake j to previous earth-
quake i is asymmetric in time and is formally defined as
(Baiesi & Paczuski 2004; Zaliapin & Ben-Zion 2013a)

ηi,j “

#

ti,j r
df
i,j 10´wMi , ti,j ą 0,

8, ti,j ď 0,
(I.1)

where ti,j “ tj ´ ti is the event intercurrence time, which
is positive if event j occurred after event i; ri,j ě 0 is the
spatial distance between the earthquake hypocenters; df is the
fractal dimension of the hypocentres; and w is the parameter
that introduces exponential weight of the earlier event i by its
magnitude Mi.

The nearest neighbor (parent) for event j is the event i
that minimizes the proximity ηi,j . The events to which event
i is the parent are called offspring of i. The nearest-neighbor
proximity (proximity to the parent) of the event j is denoted
by ηj . Connecting each event to its parent creates a spanning
tree over the examined earthquakes. Removing the weak par-
ent links, defined by the condition ηj ě η0 for a given η0 ą 0,
partitions the spanning tree into individual earthquake clus-
ters. Clusters that consist of a single earthquake are called sin-
gles. We refer to Zaliapin & Ben-Zion (2013a,b) for a detailed
description of the nearest-neighbor methodology.


