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Lambert-Euler inversion.

In his 1783 work L. Euler considered the following
transcendental equation entailed from 1758 work of
J. H. Lambert

xα − xβ = (α− β)vxα+β. (1)

Letting α→ β in (1), Euler obtained

lnx = vxβ. (2)

Next, Euler set y = xβ and u = βv in (2), obtaining

ln y

y
= u. (3)

Letting y = ew, equation (3) yields

we−w = u. (4)

Equation (4) gave rise to the Lambert W function,
and in particular the function W0(x) for −e−1 ≤ x < 0.
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Lambert-Euler inversion.

we−w = u

Denote R0 = (0,1), R0 = (0,1], and R1 = (1,∞).

For 0 < u < e−1 there are exactly two solutions: one
in R0 and one in R1. For u = e−1, w = 1 is the only
solution.

For 0 < u ≤ e−1 there is exactly one solution w in R0.
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Lambert-Euler inversion yields

x(t) := min{x > 0 : xe−x = te−t}, t > 0, with range R0 = (0,1].

In 1960, x(t) was used by P. Erdős and A. Rényi in
random graphs, showing formation of giant cluster.

In 1962, x(t) was used by J. B. McLeod in the analy-
sis of Smoluchowski coagulation equations with mul-
tiplicative kernel, observing gelation phenomenon.
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Multidimensional Lambert-Euler inversion.

For a given nonnegative irreducible symmetric matrix

V ∈ Rk×k and a vector u ∈ (0,∞)k, we show that, if

the systems

yj exp
{
− eTj V y

}
= uj j = 1, . . . , k,

has at least one solution, it must have a minimal
solution y∗, where the minimum is achieved in all co-
ordinates yj simultaneously.

Moreover, such y∗ is the unique solution satisfying
ρ
(
V D[y∗j ]

)
≤ 1, where D[y∗j ] = diag(y∗j) is the diagonal

matrix with entries y∗j and ρ denotes the spectral ra-
dius.
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Multidimensional Lambert-Euler inversion.

Notations:

• V ∈ Rk×k is a nonnegative irreducible symmetric matrix;

• For x ∈ Rk with coordinates xj, D[xj] = diag(xj);

• ρ(M) denotes the spectral radius of matrix M ;

• For a given vector z ∈ (0,∞)k, consider

R0 =
{
z ∈ (0,∞)k : ρ (V D[zj]) < 1

}
R0 =

{
z ∈ (0,∞)k : ρ (V D[zj]) ≤ 1

}
and

R1 =
{
z ∈ (0,∞)k : ρ (V D[zj]) > 1

}
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Multidimensional Lambert-Euler inversion.

R0 =
{
z ∈ (0,∞)k : ρ (V D[zj]) ≤ 1

}
R1 =

{
z ∈ (0,∞)k : ρ (V D[zj]) > 1

}
Theorem (YK and P.T. Otto, 2021). For any

given z ∈ (0,∞)k, there exists unique y ∈ R0 such

that

yj exp
{
− eTj V y

}
= zj exp

{
− eTj V z

}
j = 1, . . . , k.

Moreover, if z ∈ R0, then y = z. If z ∈ R1, then y < z
(yi < zi ∀i), i.e., y is the smallest solution.
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Vector-Multiplicative Coalescent Process.

Consider k types of particles, 1, . . . , k.

Let α = (α1, α2, . . . , αk)T be a column vector, where

αi ≥ 0 are reals satisfying
k∑
i=1

αi > 0.

Let matrix V =
(
vi,j
)

be nonnegative, irreducible, and
symmetric.

Vector-multiplicative coalescent process:

• The process begins with
k∑
i=1

αin+ o(
√
n) singletons

distributed between the k types so that for each i =
1, . . . , k, there are αin+ o(

√
n) particles of type i.

• A particle of type i bonds with a particle of type j
with the intensity (rate) vi,j/n. The bonds are formed
independently.
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Vector-Multiplicative Coalescent Process.

• Each cluster of weight x bonds together x1, . . . , xk
particles of corresponding types 1, . . . , k.

• Clusters with weight vectors x and y would coalesce
into a cluster of weight x + y with rate K(x,y)/n,
where

K(x,y) = xTV y.

Hydrodynamic limit as n→∞:

For x = (x1, x2, . . . , xk)T let ζx(t) denote the relative
(to n) number of clusters bonding together particles
into a cluster with xi particles of type i for all i.

d

dt
ζx(t) = −ζx(t)

(
xTVα

)
+

1

2

∑
y,z :y+z=x

(
yTV z

)
ζy(t) ζz(t), ζx(0) =

k∑
i=1

αiδei,x
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Abel’s binomial theorem: a variation.

y−1 (x+ y + n)n =
n∑

k=0

(n
k

)
(x+ k)k(y + n− k)n−k−1

Swap x with y, and k with n− k. Then,

x−1 (x+ y + n)n =
n∑

k=0

(n
k

)
(x+ k)k−1(y + n− k)n−k

Add the two formulas together:

(x−1 + y−1)(x+ y + n)n =
n∑

k=0

(n
k

)
(x+ k)k−1(y + n− k)n−k−1(x+y+n)

Thus,

(x−1 + y−1)(x+ y + n)n−1 =
n∑

k=0

(n
k

)
(x+ k)k−1(y + n− k)n−k−1
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Abel’s binomial theorem: a variation.

(x−1 + y−1)(x+ y + n)n−1 =
n∑

k=0

(n
k

)
(x+ k)k−1(y + n− k)n−k−1

Therefore,

(x−1 + y−1)(x+ y + n)n−1−x−1(y + n)n−1−y−1(x+ n)n−1

=
n−1∑
k=1

(n
k

)
(x+ k)k−1(y + n− k)n−k−1

Hence,

n−1∑
k=1

(n
k

)
kk−1(n− k)n−k−1 = lim

x→0
y→0

n−1∑
k=1

(n
k

)
(x+k)k−1(y+n−k)n−k−1

= lim
x→0
y→0

(x+ y + n)n−1 − (y + n)n−1

x
+lim
x→0
y→0

(x+ y + n)n−1 − (x+ n)n−1

y
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Abel’s binomial theorem: a variation.

n−1∑
k=1

(n
k

)
kk−1(n− k)n−k−1 = lim

x→0
y→0

(x+ y + n)n−1 − (y + n)n−1

x

+ lim
x→0
y→0

(x+ y + n)n−1 − (x+ n)n−1

y

= 2 lim
h→0

(h+ n)n−1 − nn−1

h
= 2

d

dx
xn−1

∣∣∣∣
x=n

= 2(n− 1)nn−2.

Identity
n−1∑
k=1

(n
k

)
kk−1(n− k)n−k−1 = 2(n− 1)nn−2 rewrites as

nn−2 =
1

2(n− 1)

n−1∑
k=1

(n
k

)
k(n−k) kk−2 (n− k)n−k−2 which . . .
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Minimal spanning trees.

Identity
n−1∑
k=1

(n
k

)
kk−1(n− k)n−k−1 = 2(n− 1)nn−2 rewrites as

nn−2 =
1

2(n− 1)

n−1∑
k=1

(n
k

)
k(n− k) kk−2 (n− k)n−k−2

which has everything to do with spanning trees!

In particular,

Tn = the number of spanning trees in a complete graph Kn

satisfies the following recursion

Tn =
1

2(n− 1)

n−1∑
k=1

(n
k

)
k(n− k)Tk Tn−k

Thus, Tn = nn−2
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Minimal spanning trees.

Tn = nn−2 ⇒ T4 = 42 = 16
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Minimal spanning trees.

Abel’s binomial theorem yields

nn−2 =
1

2(n− 1)

n−1∑
k=1

(n
k

)
k(n− k) kk−2 (n− k)n−k−2

Equivalently,

Tn = the number of spanning trees in a complete graph Kn

satisfies

Tn =
1

2(n− 1)

n−1∑
k=1

(n
k

)
k(n− k)Tk Tn−k

implying Tn = nn−2.

Question: Is there a useful generalization?
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Minimal spanning trees.

Let x = (x1, x2, . . . , xk)T be a column vector, where

xi ≥ 0 are integers satisfying
k∑
i=1

xi > 0.

Consider a graph Kx(V ) equipped with edge weights:

• Kx(V ) is a complete graph with
k∑
i=1

xi vertices par-

titioned into k kinds;

• For each i = 1, . . . , k, Kx(V ) has xi vertices of kind i;

• Let vi,j = vj,i be the weight of each edge connecting
a vertex i-th kind to a vertex of j-th kind, and let
V =

(
vi,j
)

be the k × k matrix of weights.
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Minimal spanning trees.

Consider a graph Kx(V ) equipped with edge weights
V =

(
vi,j
)
.

If T is a spanning tree of Kx(V ), then the weight of
T is the product of the weights of all of its edges.

Let Tx denote the weighted spanning tree enumerator
of Kx(V ), i.e., Tx is the sum of weights of all span-
ning trees of Kx(V ).

Theorem (YK and P.T. Otto, 2021).

Tx =
1

2

(
k∑
i=1

xi − 1

) ∑
y,z:y+z=x

(x1

y1

)(x2

y2

)
. . .
(xk
yk

)(
yTV z

)
Ty Tz
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Minimal spanning trees.

Consider a graph Kx(V ) equipped with edge weights
V =

(
vi,j
)
. Let Tx denote the weighted spanning tree

enumerator of Kx(V ).

Theorem (YK and P.T. Otto, 2021).

Tx =
1

2
(∑k

i=1 xi − 1
) ∑

y,z:y+z=x

(x1

y1

)(x2

y2

)
. . .
(xk
yk

)(
yTV z

)
Ty Tz

Example. Let k = 1, x = x1 = n, and V = v1,1 = 1.
Then,

Tn = the number of spanning trees in a complete graph Kn

and

Tn =
1

2(n− 1)

n−1∑
m=1

(n
m

)
m(n−m)Tm Tn−m
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Question: Is there a general expression for Tx = Tx(V )?

Consider a complete graph Kk consisting of vertices
{1, . . . , k} with weights wi,j = wj,i ≥ 0 assigned to its
edges [i, j], let the weight W (T ) of a spanning tree T
be the product of the weights of all of its edges.

Denote τ(Kk, wi,j) =
∑
T
W (T ) denote the weighted

spanning tree enumerator, i.e., the sum of weights of
all spanning trees in Kk.

Theorem (YK and P.T. Otto, 2021).

Tx(V ) =
τ(Kk, xixjvi,j)

x1
(V x)x−1

Notation: for vectors a,b in Rk let ab = ab1

1 a
b2

2 . . . a
bk
k

Also, 1 = (1, . . . ,1)T and x1 =
k∏
i=1

xi.
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Vector-Multiplicative Coalescent Process.

d

dt
ζx(t) = −ζx(t)

(
xTVα

)
+

1

2

∑
y,z :y+z=x

(
yTV z

)
ζy(t) ζz(t), ζx(0) =

k∑
i=1

αiδei,x

Solution: Plug in

ζx(t) = αx Tx

x!
e−(xTV α)t tx1+...+xk−1, where x! =

k∏
i=1

xi!

obtaining

Tx =
1

2

(
k∑
i=1

xi − 1

) ∑
y,z:y+z=x

(x1

y1

)(x2

y2

)
. . .
(xk
yk

)(
yTV z

)
Ty Tz

Thus,

Tx(V ) =
τ(Kk, xixjvi,j)

x1
(V x)x−1
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Vector-Multiplicative Coalescent Process.

d

dt
ζx(t) = −ζx(t)

(
xTVα

)
+

1

2

∑
y,z :y+z=x

(
yTV z

)
ζy(t) ζz(t), ζx(0) =

k∑
i=1

αiδei,x

Theorem (YK and P.T. Otto, 2021).

ζx(t) =
1

x!
αx τ(Kk, xixjvi,j)

x1
(V x)x−1 e−(xTV α)t tx1+...+xk−1,

where x! =
k∏
i=1

xi! and ab = ab1

1 a
b2

2 . . . a
bk
k .

• τ(Kk, wi,j) is computed via Kirchhoff’s Weighted
Matrix-Tree Theorem.
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Gelation.

Consider the hydrodynamic limit ζx(t).

Initial total mass:
∑

x ζx(0)x = α.

The gelation time Tgel is the time after which the total
mass ∑

x

ζx(t)x

begins to dissipate, i.e.,

Tgel = inf
{
t > 0 :

∑
x

ζx(t)x < α
}
.

Multidimensional Lambert-Euler inversion is used for
establishing gelation and finding the value of the gela-
tion time

Tgel =
1

ρ(V D[αi])
.
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Application in minimal spanning trees.

Let matrix V =
(
vi,j
)

and vector α be as before.

Let Kα[n] denote a graph with vertices divided into k
partitions of respective sizes

α1[n] = α1n+ o(
√
n), . . . , αk[n] = αkn+ o(

√
n),

where, each vertex in the i-th partition is connected
with each vertex in the j-th partition by an edge if and
only if vi,j = vj,i > 0. Even within an i-th partition.

We equip Kα[n] with edge lengths: each edge e con-
necting a vertex in the i-th partition with a vertex
in the j-th partition has an associated random vari-
able `e ∼ Beta (1, vi,j), distributed on (0,1) via the beta
probability density function

fi,j(x) = vi,j(1− x)vi,j−1, 0 < x < 1.

Random variables `e are sampled independently.
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Application in minimal spanning trees.

Let random variable Ln denote the length of the min-
imal spanning tree of Kα[n].

Theorem (YK, P.T. Otto, and A. Yambartsev).

lim
n→∞

E[Ln] =
∑
x

∞∫
0

ζx(t) dt.

Theorem (YK and P.T. Otto, 2021).

lim
n→∞

E[Ln] =
∑
x

(xT1− 1)!

x!
αx τ(Kk, xixjvi,j)

x1
(V x)x−1

(
xTVα

)−xT1
.

The time of formation of a giant component in G(n, p)

pc ∼
1

nρ(V D[αi])
.


