Multidimensional

Lambert-Euler inversion and
 vector-multiplicative
 coalescent processes

Yevgeniy Kovchegov
Oregon State University

Joint work with
Peter T. Otto
Willamette University

Lambert-Euler inversion.

In his 1783 work L. Euler considered the following transcendental equation entailed from 1758 work of J. H. Lambert

$$
\begin{equation*}
x^{\alpha}-x^{\beta}=(\alpha-\beta) v x^{\alpha+\beta} . \tag{1}
\end{equation*}
$$

Letting $\alpha \rightarrow \beta$ in (1), Euler obtained

$$
\begin{equation*}
\ln x=v x^{\beta} . \tag{2}
\end{equation*}
$$

Next, Euler set $y=x^{\beta}$ and $u=\beta v$ in (2), obtaining

$$
\begin{equation*}
\frac{\ln y}{y}=u . \tag{3}
\end{equation*}
$$

Letting $y=e^{w}$, equation (3) yields

$$
\begin{equation*}
w e^{-w}=u \tag{4}
\end{equation*}
$$

Equation (4) gave rise to the Lambert W function, and in particular the function $W_{0}(x)$ for $-e^{-1} \leq x<0$.

Lambert-Euler inversion.

$$
w e^{-w}=u
$$

Denote $R_{0}=(0,1), \bar{R}_{0}=(0,1]$, and $R_{1}=(1, \infty)$.
For $0<u<e^{-1}$ there are exactly two solutions: one in R_{0} and one in R_{1}. For $u=e^{-1}, w=1$ is the only solution.
For $0<u \leq e^{-1}$ there is exactly one solution w in \bar{R}_{0}.

Lambert-Euler inversion yields
$x(t):=\min \left\{x>0: x e^{-x}=t e^{-t}\right\}, t>0$, with range $\bar{R}_{0}=(0,1]$.
In 1960, $x(t)$ was used by P. Erdős and A. Rényi in random graphs, showing formation of giant cluster.

In 1962, $x(t)$ was used by J. B. McLeod in the analysis of Smoluchowski coagulation equations with multiplicative kernel, observing gelation phenomenon.

Multidimensional Lambert-Euler inversion.

For a given nonnegative irreducible symmetric matrix $V \in \mathbb{R}^{k \times k}$ and a vector $\mathbf{u} \in(0, \infty)^{k}$, we show that, if the systems

$$
y_{j} \exp \left\{-\mathbf{e}_{j}^{\top} V \mathbf{y}\right\}=u_{j} \quad j=1, \ldots, k
$$

has at least one solution, it must have a minimal solution y^{*}, where the minimum is achieved in all coordinates y_{j} simultaneously.

Moreover, such y^{*} is the unique solution satisfying $\rho\left(V D\left[y_{j}^{*}\right]\right) \leq 1$, where $D\left[y_{j}^{*}\right]=\operatorname{diag}\left(y_{j}^{*}\right)$ is the diagonal matrix with entries y_{j}^{*} and ρ denotes the spectral radius.

Multidimensional Lambert-Euler inversion.

Notations:

- $V \in \mathbb{R}^{k \times k}$ is a nonnegative irreducible symmetric matrix;
- For $\mathbf{x} \in \mathbb{R}^{k}$ with coordinates $x_{j}, D\left[x_{j}\right]=\operatorname{diag}\left(x_{j}\right)$;
- $\rho(M)$ denotes the spectral radius of matrix M;
- For a given vector $\mathbf{z} \in(0, \infty)^{k}$, consider

$$
\begin{aligned}
& R_{0}=\left\{\mathbf{z} \in(0, \infty)^{k}: \rho\left(V D\left[z_{j}\right]\right)<1\right\} \\
& \bar{R}_{0}=\left\{\mathbf{z} \in(0, \infty)^{k}: \rho\left(V D\left[z_{j}\right]\right) \leq 1\right\}
\end{aligned}
$$

and

$$
R_{1}=\left\{\mathbf{z} \in(0, \infty)^{k}: \rho\left(V D\left[z_{j}\right]\right)>1\right\}
$$

Multidimensional Lambert-Euler inversion.

$$
\begin{aligned}
& \bar{R}_{0}=\left\{\mathbf{z} \in(0, \infty)^{k}: \rho\left(V D\left[z_{j}\right]\right) \leq 1\right\} \\
& R_{1}=\left\{\mathbf{z} \in(0, \infty)^{k}: \rho\left(V D\left[z_{j}\right]\right)>1\right\}
\end{aligned}
$$

Theorem (YK and P. T. Otto, 2021). For any given $\mathbf{z} \in(0, \infty)^{k}$, there exists unique $\mathbf{y} \in \bar{R}_{0}$ such that
$y_{j} \exp \left\{-\mathbf{e}_{j}^{\top} V \mathbf{y}\right\}=z_{j} \exp \left\{-\mathbf{e}_{j}^{\top} V \mathbf{z}\right\} \quad j=1, \ldots, k$.
Moreover, if $\mathbf{z} \in \bar{R}_{0}$, then $\mathbf{y}=\mathrm{z}$. If $\mathrm{z} \in R_{1}$, then $\mathbf{y}<\mathrm{z}$ ($y_{i}<z_{i} \forall i$), i.e., \mathbf{y} is the smallest solution.

Vector-Multiplicative Coalescent Process.

Consider k types of particles, $1, \ldots, k$.
Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)^{\top}$ be a column vector, where $\alpha_{i} \geq 0$ are reals satisfying $\sum_{i=1}^{k} \alpha_{i}>0$.

Let matrix $V=\left(v_{i, j}\right)$ be nonnegative, irreducible, and symmetric.

Vector-multiplicative coalescent process:

- The process begins with $\sum_{i=1}^{k} \alpha_{i} n+o(\sqrt{n})$ singletons distributed between the k types so that for each $i=$ $1, \ldots, k$, there are $\alpha_{i} n+o(\sqrt{n})$ particles of type i.
- A particle of type i bonds with a particle of type j with the intensity (rate) $v_{i, j} / n$. The bonds are formed independently.

Vector-Multiplicative Coalescent Process.

- Each cluster of weight x bonds together x_{1}, \ldots, x_{k} particles of corresponding types $1, \ldots, k$.
- Clusters with weight vectors x and y would coalesce into a cluster of weight $\mathrm{x}+\mathrm{y}$ with rate $K(\mathrm{x}, \mathrm{y}) / n$, where

$$
K(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\top} V \mathrm{y} .
$$

Hydrodynamic limit as $n \rightarrow \infty$:
For $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{\top}$ let $\zeta_{\mathbf{x}}(t)$ denote the relative (to n) number of clusters bonding together particles into a cluster with x_{i} particles of type i for all i.

$$
\frac{d}{d t} \zeta_{\mathbf{x}}(t)=-\zeta_{\mathbf{x}}(t)\left(\mathbf{x}^{\top} V \boldsymbol{\alpha}\right)+\frac{1}{2} \sum_{\mathbf{y}, \mathbf{z}: \mathbf{y}+\mathbf{z}=\mathbf{x}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) \zeta_{\mathbf{y}}(t) \zeta_{\mathbf{z}}(t), \quad \zeta_{\mathbf{x}}(0)=\sum_{i=1}^{k} \alpha_{i} \delta_{\mathbf{e}_{i}, \mathbf{x}}
$$

Abel's binomial theorem: a variation.

$$
y^{-1}(x+y+n)^{n}=\sum_{k=0}^{n}\binom{n}{k}(x+k)^{k}(y+n-k)^{n-k-1}
$$

Swap x with y, and k with $n-k$. Then,

$$
x^{-1}(x+y+n)^{n}=\sum_{k=0}^{n}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k}
$$

Add the two formulas together:

$$
\left(x^{-1}+y^{-1}\right)(x+y+n)^{n}=\sum_{k=0}^{n}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k-1}(x+y+n)
$$

Thus,

$$
\left(x^{-1}+y^{-1}\right)(x+y+n)^{n-1}=\sum_{k=0}^{n}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k-1}
$$

Abel's binomial theorem: a variation.

$$
\left(x^{-1}+y^{-1}\right)(x+y+n)^{n-1}=\sum_{k=0}^{n}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k-1}
$$

Therefore,

$$
\begin{gathered}
\left(x^{-1}+y^{-1}\right)(x+y+n)^{n-1}-x^{-1}(y+n)^{n-1}-y^{-1}(x+n)^{n-1} \\
=\sum_{k=1}^{n-1}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k-1}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}=\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \sum_{k=1}^{n-1}\binom{n}{k}(x+k)^{k-1}(y+n-k)^{n-k-1} \\
= & \lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{(x+y+n)^{n-1}-(y+n)^{n-1}}{x}+\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{(x+y+n)^{n-1}-(x+n)^{n-1}}{y}
\end{aligned}
$$

Abel's binomial theorem: a variation.

$$
\begin{aligned}
\sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}= & \lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{(x+y+n)^{n-1}-(y+n)^{n-1}}{x} \\
& +\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{(x+y+n)^{n-1}-(x+n)^{n-1}}{y} \\
= & 2 \lim _{h \rightarrow 0} \frac{(h+n)^{n-1}-n^{n-1}}{h}=\left.2 \frac{d}{d x} x^{n-1}\right|_{x=n}=2(n-1) n^{n-2}
\end{aligned}
$$

Identity $\sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}=2(n-1) n^{n-2}$ rewrites as

$$
n^{n-2}=\frac{1}{2(n-1)} \sum_{k=1}^{n-1}\binom{n}{k} k(n-k) k^{k-2}(n-k)^{n-k-2} \quad \text { which } \ldots
$$

Minimal spanning trees.

Identity $\sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}=2(n-1) n^{n-2}$ rewrites as

$$
n^{n-2}=\frac{1}{2(n-1)} \sum_{k=1}^{n-1}\binom{n}{k} k(n-k) k^{k-2}(n-k)^{n-k-2}
$$

which has everything to do with spanning trees!
In particular,
$T_{n}=$ the number of spanning trees in a complete graph K_{n} satisfies the following recursion

$$
T_{n}=\frac{1}{2(n-1)} \sum_{k=1}^{n-1}\binom{n}{k} k(n-k) T_{k} T_{n-k}
$$

Thus, $T_{n}=n^{n-2}$

Minimal spanning trees.

$$
T_{n}=n^{n-2} \quad \Rightarrow \quad T_{4}=4^{2}=16
$$

Minimal spanning trees.
Abel's binomial theorem yields

$$
n^{n-2}=\frac{1}{2(n-1)} \sum_{k=1}^{n-1}\binom{n}{k} k(n-k) k^{k-2}(n-k)^{n-k-2}
$$

Equivalently,
$T_{n}=$ the number of spanning trees in a complete graph K_{n} satisfies

$$
T_{n}=\frac{1}{2(n-1)} \sum_{k=1}^{n-1}\binom{n}{k} k(n-k) T_{k} T_{n-k}
$$

implying $T_{n}=n^{n-2}$.

Question: Is there a useful generalization?

Minimal spanning trees.

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{\top}$ be a column vector, where $x_{i} \geq 0$ are integers satisfying $\sum_{i=1}^{k} x_{i}>0$.

Consider a graph $K_{\mathrm{x}}(V)$ equipped with edge weights:

- $K_{\mathrm{x}}(V)$ is a complete graph with $\sum_{i=1}^{k} x_{i}$ vertices partitioned into k kinds;
- For each $i=1, \ldots, k, K_{\mathrm{x}}(V)$ has x_{i} vertices of kind i;
- Let $v_{i, j}=v_{j, i}$ be the weight of each edge connecting a vertex i-th kind to a vertex of j-th kind, and let $V=\left(v_{i, j}\right)$ be the $k \times k$ matrix of weights.

Minimal spanning trees.

Consider a graph $K_{\mathrm{x}}(V)$ equipped with edge weights $V=\left(v_{i, j}\right)$.
If \mathcal{T} is a spanning tree of $K_{\mathrm{x}}(V)$, then the weight of \mathcal{T} is the product of the weights of all of its edges.

Let T_{x} denote the weighted spanning tree enumerator of $K_{\mathrm{x}}(V)$, i.e., T_{x} is the sum of weights of all spanning trees of $K_{\mathrm{x}}(V)$.

Theorem (YK and P. T. Otto, 2021).

$$
T_{\mathbf{x}}=\frac{1}{2\left(\sum_{i=1}^{k} x_{i}-1\right)} \sum_{\mathbf{y}, \mathbf{z} \mathbf{:} \mathbf{y}+\mathbf{z}=\mathbf{x}}\binom{x_{1}}{y_{1}}\binom{x_{2}}{y_{2}} \ldots\binom{x_{k}}{y_{k}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) T_{\mathbf{y}} T_{\mathbf{z}}
$$

Minimal spanning trees.

Consider a graph $K_{\mathrm{x}}(V)$ equipped with edge weights $V=\left(v_{i, j}\right)$. Let T_{x} denote the weighted spanning tree enumerator of $K_{\mathbf{x}}(V)$.
Theorem (YK and P. T. Otto, 2021).

$$
T_{\mathrm{x}}=\frac{1}{2\left(\sum_{i=1}^{k} x_{i}-1\right)} \sum_{\mathrm{y}, \mathrm{z}: \mathbf{y}+\mathbf{z}=\mathbf{x}}\binom{x_{1}}{y_{1}}\binom{x_{2}}{y_{2}} \cdots\binom{x_{k}}{y_{k}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) T_{\mathbf{y}} T_{\mathbf{z}}
$$

Example. Let $k=1, \mathrm{x}=x_{1}=n$, and $V=v_{1,1}=1$. Then,
$T_{n}=$ the number of spanning trees in a complete graph K_{n} and

$$
T_{n}=\frac{1}{2(n-1)} \sum_{m=1}^{n-1}\binom{n}{m} m(n-m) T_{m} T_{n-m}
$$

Question: Is there a general expression for $T_{\mathrm{x}}=T_{\mathrm{x}}(V)$?
Consider a complete graph K_{k} consisting of vertices $\{1, \ldots, k\}$ with weights $w_{i, j}=w_{j, i} \geq 0$ assigned to its edges $[i, j]$, let the weight $W(\mathcal{T})$ of a spanning tree \mathcal{T} be the product of the weights of all of its edges.

Denote $\tau\left(K_{k}, w_{i, j}\right)=\sum_{\mathcal{T}} W(\mathcal{T})$ denote the weighted spanning tree enumerator, i.e., the sum of weights of all spanning trees in K_{k}.

Theorem (YK and P. T. Otto, 2021).

$$
T_{\mathbf{x}}(V)=\frac{\tau\left(K_{k}, x_{i} x_{j} v_{i, j}\right)}{\mathrm{x}^{1}}(V \mathbf{x})^{\mathrm{x}-1}
$$

Notation: for vectors \mathbf{a}, \mathbf{b} in \mathbb{R}^{k} let $\mathbf{a}^{\mathbf{b}}=a_{1}^{b_{1}} a_{2}^{b_{2}} \ldots a_{k}^{b_{k}}$ Also, $\mathbf{1}=(1, \ldots, 1)^{\top}$ and $\mathbf{x}^{1}=\prod_{i=1}^{k} x_{i}$.

Vector-Multiplicative Coalescent Process.

$$
\frac{d}{d t} \zeta_{\mathbf{x}}(t)=-\zeta_{\mathbf{x}}(t)\left(\mathbf{x}^{\top} V \boldsymbol{\alpha}\right)+\frac{1}{2} \sum_{\mathbf{y}, \mathrm{z}: \mathbf{y}+\mathrm{z}=\mathrm{x}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) \zeta_{\mathbf{y}}(t) \zeta_{\mathrm{z}}(t), \quad \zeta_{\mathbf{x}}(0)=\sum_{i=1}^{k} \alpha_{i} \delta_{\mathrm{e}_{i}, \mathrm{x}}
$$

Solution: Plug in

$$
\zeta_{\mathbf{x}}(t)=\boldsymbol{\alpha}^{\mathrm{x}} \frac{T_{\mathbf{x}}}{\mathrm{x}!} e^{-\left(\mathbf{x}^{\top} V \alpha\right) t} t^{x_{1}+\ldots+x_{k}-1}, \quad \text { where } \mathbf{x}!=\prod_{i=1}^{k} x_{i}!
$$

obtaining

$$
T_{\mathrm{x}}=\frac{1}{2\left(\sum_{i=1}^{k} x_{i}-1\right)} \sum_{\mathbf{y}, \mathbf{z}: \mathbf{y}+\mathbf{z}=\mathbf{x}}\binom{x_{1}}{y_{1}}\binom{x_{2}}{y_{2}} \ldots\binom{x_{k}}{y_{k}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) T_{\mathbf{y}} T_{\mathbf{z}}
$$

Thus,

$$
T_{\mathbf{x}}(V)=\frac{\tau\left(K_{k}, x_{i} x_{j} v_{i, j}\right)}{\mathbf{x}^{1}}(V \mathbf{x})^{\mathrm{x}-1}
$$

Vector-Multiplicative Coalescent Process.

$\frac{d}{d t} \zeta_{\mathrm{x}}(t)=-\zeta_{\mathbf{x}}(t)\left(\mathrm{x}^{\top} V \boldsymbol{\alpha}\right)+\frac{1}{2} \sum_{\mathbf{y}, \mathrm{z}: \mathbf{y}+\mathbf{z}=\mathrm{x}}\left(\mathbf{y}^{\top} V \mathbf{z}\right) \zeta_{\mathbf{y}}(t) \zeta_{\mathbf{z}}(t), \quad \zeta_{\mathrm{x}}(0)=\sum_{i=1}^{k} \alpha_{i} \delta_{\mathrm{e}_{i}, \mathrm{x}}$
Theorem (YK and P. T. Otto, 2021).
$\zeta_{\mathbf{x}}(t)=\frac{1}{\mathbf{x}!} \alpha^{\mathrm{x}} \frac{\tau\left(K_{k}, x_{i} x_{j} v_{i, j}\right)}{\mathbf{x}^{1}}(V \mathbf{x})^{\mathrm{x}-1} e^{-\left(\mathbf{x}^{\top} V \alpha\right) t} t^{x_{1}+\ldots+x_{k}-1}$,
where $\mathbf{x}!=\prod_{i=1}^{k} x_{i}!$ and $\mathbf{a}^{\mathbf{b}}=a_{1}^{b_{1}} a_{2}^{b_{2}} \ldots a_{k}^{b_{k}}$.

- $\tau\left(K_{k}, w_{i, j}\right)$ is computed via Kirchhoff's Weighted Matrix-Tree Theorem.

Gelation.

Consider the hydrodynamic limit $\zeta_{\mathrm{x}}(t)$.
Initial total mass: $\sum_{\mathrm{x}} \zeta_{\mathrm{x}}(0) \mathrm{x}=\boldsymbol{\alpha}$.
The gelation time $T_{\text {gel }}$ is the time after which the total mass

$$
\sum_{\mathrm{x}} \zeta_{\mathrm{x}}(t) \mathbf{x}
$$

begins to dissipate, i.e.,

$$
T_{g e l}=\inf \left\{t>0: \sum_{\mathbf{x}} \zeta_{\mathbf{x}}(t) \mathbf{x}<\alpha\right\} .
$$

Multidimensional Lambert-Euler inversion is used for establishing gelation and finding the value of the gelation time

$$
T_{\text {gel }}=\frac{1}{\rho\left(V D\left[\alpha_{i}\right]\right)} .
$$

Application in minimal spanning trees.

Let matrix $V=\left(v_{i, j}\right)$ and vector α be as before.
Let $K_{\alpha[n]}$ denote a graph with vertices divided into k partitions of respective sizes

$$
\alpha_{1}[n]=\alpha_{1} n+o(\sqrt{n}), \ldots, \alpha_{k}[n]=\alpha_{k} n+o(\sqrt{n}),
$$

where, each vertex in the i-th partition is connected with each vertex in the j-th partition by an edge if and only if $v_{i, j}=v_{j, i}>0$. Even within an i-th partition.

We equip $K_{\alpha[n]}$ with edge lengths: each edge e connecting a vertex in the i-th partition with a vertex in the j-th partition has an associated random variable $\ell_{e} \sim \operatorname{Beta}\left(1, v_{i, j}\right)$, distributed on $(0,1)$ via the beta probability density function

$$
f_{i, j}(x)=v_{i, j}(1-x)^{v_{i, j}-1}, \quad 0<x<1 .
$$

Random variables ℓ_{e} are sampled independently.

Application in minimal spanning trees.
Let random variable L_{n} denote the length of the minimal spanning tree of $K_{\alpha[n]}$.
Theorem (YK, P. T. Otto, and A. Yambartsev).

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[L_{n}\right]=\sum_{\mathrm{x}} \int_{0}^{\infty} \zeta_{\mathrm{x}}(t) d t
$$

Theorem (YK and P. T. Otto, 2021).
$\lim _{n \rightarrow \infty} \mathbb{E}\left[L_{n}\right]=\sum_{\mathrm{x}} \frac{\left(\mathrm{x}^{\top} 1-1\right)!}{\mathrm{x}!} \boldsymbol{\alpha}^{\mathrm{x}} \frac{\tau\left(K_{k}, x_{i} x_{j} v_{i, j}\right)}{\mathrm{x}^{1}}(V \mathbf{x})^{\mathrm{x}-1}\left(\mathrm{x}^{\top} V \boldsymbol{\alpha}\right)^{-\mathrm{x}^{\top} 1}$.
The time of formation of a giant component in $G(n, p)$

$$
p_{c} \sim \frac{1}{n \rho\left(V D\left[\alpha_{i}\right]\right)} .
$$

