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Lambert-Euler inversion.

In his 1783 work L. Euler considered the following
transcendental equation entailed from 1758 work of
J. H. Lambert

% — 28 = (o — B)oz®TP. (1)
Letting o — 8 in (1), Euler obtained
Inz = vz’. (2)

Next, Euler set y = zf and « = Bv in (2), obtaining

In
Y (3)
Yy
Letting y = e%, equation (3) yields
we VY = u. (4)

Equation (4) gave rise to the Lambert W function,
and in particular the function Wp(x) for —e=! < z < 0.
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Lambert-Euler inversion.

Denote Ro = (0,1), Ro = (0,1], and R; = (1,00).

For 0 < u < e~ ! there are exactly two solutions: one
in Rg and one in Ry. For u =e" 1, w =1 is the only
solution.

For 0 < u < e~ ! there is exactly one solution w in Rp.
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Lambert-Euler inversion yields
z(t) ;= min{zx >0 : ze®=te '}, t >0, with range Ry = (0,1].
In 1960, z(t) was used by P. Erd6s and A. Rényi in

random graphs, showing formation of giant cluster.

In 1962, z(t) was used by J. B. McLeod in the analy-
sis of Smoluchowski coagulation equations with mul-
tiplicative kernel, observing gelation phenomenon.
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Multidimensional Lambert-Euler inversion.

For a given nonnegative irreducible symmetric matrix
V € R*¥** and a vector u € (0,00)*, we show that, if

the systems

yjexp{—e;rVy}zuj 7 =1,...,k,

has at least one solution, it must have a minimal
solution y*, where the minimum is achieved in all co-
ordinates y; simultaneously.

Moreover, such y* is the unique solution satisfying
p (VDly:]) < 1, where D[y?] = diag(y?) is the diagonal
matrix with entries y> and p denotes the spectral ra-
dius.
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Multidimensional Lambert-Euler inversion.
Notations:

e V € RF*F js a nonnegative irreducible symmetric matrix;
e For x € R* with coordinates x;, D[z;] = diag(z;);

e p(M) denotes the spectral radius of matrix M;

e For a given vector z € (0,00)*, consider

Ro = {Z € (0,00)": p(VD[z]) < 1}

Ro={z€ (0,00)" : p(VD[z]) <1}
and
R1 = {z € (0,00)": p(VD[z]) > 1}
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Multidimensional Lambert-Euler inversion.

Ro = {z € (0,00)": p(VDl[z]) <1}
R1 = {Z € (0,00)": p(VD[z]) > 1}
Theorem (YK and P.T. Otto, 2021). For any
given z € (0,00)*, there exists unique y € Rp such
that
T T -
yjexp{—eij}zzjexp{—esz} j=1,...,k.

Moreover, if z € Rg, then y =1z. If z € Ry, then y < z
(y; < z; Vi), i.e., y is the smallest solution.
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Vector-Multiplicative Coalescent Process.
Consider k types of particles, 1,...,k.

Let o« = (a1, 00,...,04)" be a column vector, where

k
a; > 0 are reals satisfying >  «; > 0.
=1

Let matrix V = (v;;) be nonnegative, irreducible, and
symmetric.

Vector-multiplicative coalescent process:

k

e The process begins with >  a;n + o(y/n) singletons
=1

distributed between the k£ types so that for each 1 =

1,...,k, there are a;n + o(y/n) particles of type i.

e A particle of type ¢« bonds with a particle of type j
with the intensity (rate) v; ;/n. The bonds are formed
independently.
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Vector-Multiplicative Coalescent Process.

e Each cluster of weight x bonds together z1,..., 2
particles of corresponding types 1,...,k.

e Clusters with weight vectors x and y would coalesce
into a cluster of weight x+y with rate K(x,y)/n,
where

K(x,y) =x'Vy.
Hydrodynamic limit as n — oo:

For x = (x1,22,...,2;)" let ((t) denote the relative
(to n) number of clusters bonding together particles
into a cluster with x; particles of type ¢ for all z.

%Cx(t) = G()(x"Va) + Y (y'VE)G () G(D), (0) —Zaz eux

y z.y+z=x =1
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Abel’s binomial theorem: a variation.

n

y M (r+y+n) = Z (Z) (4 k)*(y +n — k)rk1

k=0
Swap z with y, and k with n — k. Then,

e @ry+n) =) ()@ R k)

k=0
Add the two formulas together:

n

@y D@y +n)t =) () @+ 0+ n = k) @tyn)

k=0
Thus,

n

@y D@y +n) Tt =)0 (1) @+ Ry e — k)

k=0
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Abel’s binomial theorem: a variation.

n

(z 4y Dax+y+n)? :Z (Z) (x + k) 1y +n— k) k1

k=0
Therefore,
@ty D@ +y+n)" e Ay @ )

-1

=3 (H)@+rn " y+n—pmt

=1

3

I

Hence,
n—1 n n—1 n
k—1 n—k—1 __ |; k—1 n—k—1
()2 =yt = tim S () Gt k) (yn—k)
k=1 y—0 k=1
n—1 n—1 n—1 n—1
:”n%(a:—l—y—l—n) (y+n) _|_”n%(£€+y—|—n) (z 4+ n)
T— T T— Y

y—0 y—0
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Abel’s binomial theorem: a variation.

(z+y+n)" - (y+n)" !

S
=

(Z) K1(n — k)" 51 = |im

k=1 538 v
i @y~ @ )
xz—0 Y
y—0
n—1 _ . n—1
P G ) o4 — o 12,
h—0 h dx

r=—n

n—1
Identity Z (Z) K ln—E)" 1 =2(n—-1)n""? rewrites as
k=1

n—1
1 n
n—2 k—2 n—k—2 :
:—g k(n—k) k — k which...
" 2(n — 1)k:1(k) (n—Fk) (n )
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Minimal spanning trees.

Identity Z (Z) Kil(n — k)" 1 =2(n—1)n""? rewrites as

k=1
1 n—1
n—2 __ n k—2 n—k—2
mE m;(k)“n — R R n = E)

which has everything to do with spanning trees!
In particular,

T, = the number of spanning trees in a complete graph K,
satisfies the following recursion

=1 _ nz (Z)k(n R T T, &
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Minimal spanning trees.

T, = n" 2

Y
e
I
N
N
|
(Y
(@)}

>

>0
D> > D>
D> > D>
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Minimal spanning trees.

Abel’s binomial theorem vields

s 1 n—1 n - o
n 2——2(n_1);<k>k(n—kz)kk 2 (g — k)2

Equivalently,

T, = the number of spanning trees in a complete graph K,

satisfies
1 n—t n
T, = ( )k T T,
2(n—1) ;::1 e (n ) T k
n—2

implying 1, = n"~.

Question: Is there a useful generalization?
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Minimal spanning trees.

Let x = (21,20,...,25)' be a column vector, where
k

x; > 0 are integers satisfying > z; > 0.
i=1

Consider a graph Kx(V) equipped with edge weights:
k
o K«(V) is a complete graph with )~ x; vertices par-

=1
titioned into k£ kinds;

eForeachi=1,...,k, Kx(V) has x; vertices of kind 1;

o Let v;;, = v;; be the weight of each edge connecting
a vertex :-th kind to a vertex of j-th kind, and let
V = (vi;) be the k x k matrix of weights.
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Minimal spanning trees.

Consider a graph Kx(V) equipped with edge weights
V — (’Ui,j).

If 7 is a spanning tree of Kx(V), then the weight of
T is the product of the weights of all of its edges.

Let 7% denote the weighted spanning tree enumerator
of Kx(V), i.e., Tx is the sum of weights of all span-
ning trees of Kx(V).

Theorem (YK and P. T. Otto, 2021).

he s Y () (e

k
2 (Z T — 1) y,zy+z=x Y17 2y2 Yk
=1
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Minimal spanning trees.

Consider a graph Kx(V) equipped with edge weights
V = (vi;). Let Ty denote the weighted spanning tree
enumerator of Ky(V).

Theorem (YK and P. T. Otto, 2021).

— 1 S (Z) (z) o (;j:) (yTvz) T, T,

k
2 (Zizl Ly — 1) V,z.y+z=x

Example. Let £ =1, x=z1=mn,and V =v11 = 1.
Then,

T, = the number of spanning trees in a complete graph K,

and

n—1
T, = 2(%_1) zzjl (m)m(n —m) Ty Thm
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Question: Is there a general expression for Tx = Tx(V)?

Consider a complete graph K consisting of vertices
{1,...,k} with weights w;; = w;; > 0 assigned to its
edges [i, j], let the weight W (T) of a spanning tree T
be the product of the weights of all of its edges.

Denote 7(Kj,w;;) = > W(T) denote the weighted
T

spanning tree enumerator, i.e., the sum of weights of
all spanning trees in K.

Theorem (YK and P. T. Otto, 2021).

T(Kk, :UZ'ZCJ"UZ',J')
Xl

(V) = (Vx)y

Notation: for vectors a,b in R* let a® = afa%...a%

k
Also, 1 =(1,...,1)" and x! = [] ;.
i=1
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Vector-Multiplicative Coalescent Process.

L) = ~6OEVa) +1 Y (VW G0, 60 =3 adex

y z.y+z=x =1

Solution: Plug in
TX —(XTVa)t x1+...+x —1

(x(t) = a* — ™ ¢ where x! = | | x;!
X!

obtaining

1
Ty = 3 Z (ml) ($2> ce
2 <Z T — 1) yayto=x J17 Y2
=1

Thus,

IOEE
Yk

7 (K, Tixvi ;)
1

T.(V) = (Vx)x 1
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Vector-Multiplicative Coalescent Process.

%g‘x(t) = GOV + Z (y'V2) & () Gult), (x(0) —Zaz o0

z.y+z=x =1

Theorem (YK and P. T. Otto, 2021).

1 T( K, T;xi0; .
Cx(t) — —aoX ( ky Lidg Z>J)(VX)X—1 6_(X Va)t t331+---+33k-—1’
x| x1
. b b
where x! = [] z;! and a® =aja%...a}.
i=1

o 7(Kj,w;,;) is computed via Kirchhoff's Weighted
Matrix-Tree Theorem.
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Gelation.
Consider the hydrodynamic limit (x(¢).
Initial total mass: > (x(0)x = a.

The gelation time T, is the time after which the total

mass
ZCX(t)X
begins to dissipate, i.e.,

Tyer = inf {t >0 : ZCX(t)X < a}.

Multidimensional Lambert-Euler inversion is used for
establishing gelation and finding the value of the gela-

tion time
1

Lot = VD)’
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Application in minimal spanning trees.
Let matrix V = (v;;) and vector a be as before.

Let K, denote a graph with vertices divided into k
partitions of respective sizes

ai[n] = can+o(vn), ..., ag[n] = aun + o(v/n),

where, each vertex in the :-th partition is connected
with each vertex in the j-th partition by an edge if and
only if v;; = v;; > 0. Even within an ¢-th partition.

We equip K,[, with edge lengths: each edge e con-
necting a vertex in the :-th partition with a vertex
in the j-th partition has an associated random vari-
able ¢, ~ Beta (1, v; ), distributed on (0, 1) via the beta
probability density function

fij(x) = vi;(1 —x)" 1, O<z<l1.
Random variables /. are sampled independently.
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Application in minimal spanning trees.

Let random variable L, denote the length of the min-
imal spanning tree of Kapn)-

Theorem (YK, P. T. Otto, and A. Yambartsev).
B =Y [
X0

Theorem (YK and P. T. Otto, 2021).
i |

1 —1)! Ky, xixiv; 5 _x
lim E[L,] = Z (x ) lo % 7 (K, zijv "7)(VX)X_1 (XTVa) .
N— 00 |

x| x1

The time of formation of a giant component in G(n, p)

1
np(VD[as])

Pc ~~



