Invariant Galton-Watson trees

 \cap

Yevgeniy Kovchegov Oregon State University

Joint work with Ilya Zaliapin (University Nevada Reno)

Combinatorial trees.

 ${\mathcal T}$ - space of finite unlabeled rooted reduced trees.

Empty tree $\phi = \{\rho\}$ comprised of a root vertex ρ and no edges.

 $\mathcal{T}^{|}$ - subspace of \mathcal{T} containing ϕ and all the trees in \mathcal{T} with a stem (ρ has exactly one offspring).

Horton pruning and Horton-Strahler order

Horton pruning $\mathcal{R} : \mathcal{T}^{|} \to \mathcal{T}^{|}$ is an onto function whose value $\mathcal{R}(T)$ for a tree $T \neq \phi$ is obtained by removing the leaves and their parental edges from T, followed by series reduction. We also set $\mathcal{R}(\phi) = \phi$.

Horton-Strahler order: $\operatorname{ord}(T) = \min \{k \ge 0 : \mathcal{R}^k(T) = \phi\}.$

Horton-Strahler order

Horton-Strahler order: $\operatorname{ord}(T) = \min \{k \ge 0 : \mathcal{R}^k(T) = \phi\}.$

Side-branching.

Horton Law : $\frac{N_{j-1}}{N_j} \approx R$ Tokunaga self-similarity : $T_{i,j} = \frac{N_{i,j}}{N_j} \approx a c^{j-i-1}$

Horton laws. Side-branching. Tokunaga indices.

For $T \in \mathcal{T}^{|}$, let

 $N_i[T]$ = number of order *i* branches in *T*

Let $\mathcal{N}_j[K] = E_K[N_j[T]]$ be the expected number of order *j* branches in a random tree *T* conditioned on $\operatorname{ord}(T) = K$.

Horton law: there exists Horton exponent R such that

$$\lim_{K \to \infty} \frac{\mathcal{N}_j[K]}{\mathcal{N}_1[K]} = R^{1-j}$$

For i < j, let

 $N_{i,j}[T] =$ number of order *i* side-branches of order *j* branches in *T* Let $\mathcal{N}_{i,j}[K] = E_K[N_{i,j}[T]]$ be the expected number of order *i* side-branches of order *j* branches in *T* conditioned on $\operatorname{ord}(T) = K$.

Tokunaga self-similarity: there exists Tokunaga indices a > 0and c > 0 such that

$$T_{i,j}[K] = \frac{\mathcal{N}_{i,j}[K]}{\mathcal{N}_j[K]} = T_{j-i}, \text{ where } T_k = a c^{k-1}.$$

Reference: YK and I. Zaliapin, Probability Surveys (2020)

Critical binary Galton-Watson tree.

Let T be a critical binary Galton-Watson tree: $T \stackrel{d}{\sim} \mathcal{GW}(q_0 = q_2 = 1/2)$

• P. Flajolet, J.-C. Raoult, and J. Vuillemin, TCS (1979)

 $\mathsf{E}\left[\mathsf{ord}(T) \mid N_1[T] = n\right] = \log_4 n + D\left(\log_4 n\right) + o(1), \quad \text{as} \quad n \to \infty,$

where $D(\cdot)$ is a particular explicitly derived continuous periodic function of period one. This is a precursor of Horton law with R = 4:

$$\mathcal{N}_1[K] \asymp R^K \iff \lim_{K \to \infty} \frac{\mathcal{N}_j[K]}{\mathcal{N}_1[K]} = \lim_{K \to \infty} \frac{\mathcal{N}_1[K-j+1]}{\mathcal{N}_1[K]} = R^{1-j}$$

• G. A. Burd, E. C. Waymire, R. D. Winn, *Bernoulli* (2000) Tokunaga sequence $T_k = 2^{k-1}$, i.e., Tokunaga self-similarity holds with (a, c) = (1, 2). Horton law $\lim_{K \to \infty} \frac{N_j[K]}{N_1[K]} = R^{1-j}$ holds with exponent R = 4.

Moreover, the following strong Horton law holds: for any $\epsilon > 0$

$$P\left(\left|\frac{N_j[T]}{N_1[T]} - R^{1-j}\right| > \epsilon \mid \operatorname{ord}(T) = K\right) \to 0 \quad \text{as} \quad K \to \infty.$$

Horton prune-invariance

Consider a measure μ on \mathcal{T} (or $\mathcal{T}^{|}$) such that $\mu(\phi) = 0$. Let ν be the pushforward measure, $\nu = \mathcal{R}_*(\mu)$, i.e.,

$$\nu(T) = \mu \circ \mathcal{R}^{-1}(T) = \mu \left(\mathcal{R}^{-1}(T) \right).$$

Measure μ is said to be Horton prune-invariant if for any tree $T \in \mathcal{T}$ (or $\mathcal{T}^{|}$) we have

$$\nu(T | T \neq \phi) = \mu(T).$$

Objective: finding and classifying Horton prune-invariant tree measures.

Attractors

For a tree measure ρ_0 let $\nu_k = \mathcal{R}^k_*(\rho_0)$ denote the pushforward probability measure induced by operator \mathcal{R}^k , i.e.,

 $\nu_k(T) = \rho_0 \circ \mathcal{R}^{-k}(T) = \rho_0 \left(\mathcal{R}^{-k}(T) \right), \text{ and set } \rho_k(T) = \nu_k \left(T \mid T \neq \phi \right).$ If $\lim_{k \to \infty} \rho_k(T) = \rho^*(T) \quad \forall T \in \mathcal{T}$, then measure ρ^* is an attractor.

Objective: finding and classifying attractors.

Pruning Galton-Watson trees

Consider a Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Assume criticality or subcriticality, i.e., $\sum_{k=0}^{\infty} kq_k \leq 1$.

Theorem. [G. A. Burd, E. C. Waymire, R. D. Winn, Bernoulli (2000)]

• Assume finite second moment, i.e., $\sum_{k=0}^{\infty} k^2 q_k < \infty$.

Galton-Watson measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is critical binary Galton-Watson $\mathcal{GW}(q_0 = q_2 = 1/2)$.

• Assume criticality and finite branching, i.e., $|\{k : q_k > 0\}| < \infty$. Let $\rho_0 \equiv \mathcal{GW}(\{q_k\})$, $\nu_k = \mathcal{R}^k_*(\rho_0)$, and set $\rho_k(T) = \nu_k(T | T \neq \phi)$. Then,

$$\lim_{k\to\infty}\rho_k(T)=\rho^*(T)\qquad\forall T\in\mathcal{T},$$

where $\rho^* = \mathcal{GW}(q_0 = q_2 = 1/2)$ is critical binary Galton-Watson measure.

• If $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ is subcritical, then $\rho_k(T)$ converges to a point mass measure, $\rho^* = \mathcal{GW}(q_0 = 1)$.

Pruning Galton-Watson trees

Consider a Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Assume criticality or subcriticality, i.e., $\sum_{k=0}^{\infty} kq_k \leq 1$.

Let $Q(z) = \sum_{m=0}^{\infty} z^m q_m$ denote the generating function.

For $T \stackrel{d}{\sim} \mathcal{GW}(\{q_k\})$ let $\pi_j := P(\operatorname{ord}(T) = j)$, $\sigma_0 = 0 \text{ and } \sigma_j := \sum_{i=1}^j \pi_i \quad \forall j \ge 1$

Lemma. [YK and I. Zaliapin, Bernoulli (2021)]

$$\sigma_j = \underbrace{S \circ \ldots \circ S}_{j \text{ times}}(0), \quad \text{where} \quad S(z) = \frac{Q(z) - zQ'(z)}{1 - Q'(z)}.$$

Pruning Galton-Watson trees

Regularity condition

Many of the results are proven under the following assumption.

Assumption 1. The following limit exists:

$$S'(1) = \lim_{x \to 1^{-}} \frac{1 - S(x)}{1 - x} \quad \Leftrightarrow \quad \lim_{x \to 1^{-}} \frac{Q(x) - x}{(1 - x)(1 - Q'(x))} = 1 - S'(1)$$

Proposition. [YK and I. Zaliapin, *Bernoulli* (2021)] If $\mathcal{GW}(\{q_k\})$ is a subcritical Galton-Watson measure with $q_1 = 0$, then Assumption 1 holds with S'(1) = 0.

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$. If

$$\mathsf{E}[X^2] = \sum_{k=0}^{\infty} k^2 q_k < \infty \qquad \text{where} \quad X \stackrel{d}{\sim} \{q_k\},$$

then Assumption 1 holds with $S'(1) = \frac{1}{2}$.

Regularity condition

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ and infinite second moment, i.e., $\sum_{k=0}^{\infty} k^2 q_k = \infty$. Let $X \stackrel{d}{\sim} \{q_k\}$. If the limit

$$\Lambda = \lim_{k \to \infty} \frac{k}{E[X \mid X \ge k]} = \lim_{k \to \infty} \frac{k \sum_{m=k}^{\infty} q_m}{\sum_{m=k}^{\infty} m q_m}$$

exists, then Assumption 1 holds with $S'(1) = \Lambda$.

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson process $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ and offspring distribution $\{q_k\}$ of Zipf type:

 $q_k \sim Ck^{-(\alpha+1)}$ with $\alpha \in (1,2]$ and C > 0.

Then Assumption 1 holds with $S'(1) = \Lambda = \frac{\alpha - 1}{\alpha}$.

Invariant Galton-Watson measures

For a given $q \in [1/2, 1)$, a critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ is said to be the invariant Galton-Watson (IGW) measure with parameter q and denoted by $\mathcal{IGW}(q)$ if its generating function is given by

$$Q(z) = z + q(1-z)^{1/q}.$$

Branching probabilities: $q_0 = q$, $q_1 = 0$, $q_2 = (1 - q)/2q$, and

$$q_k = rac{1-q}{k! \, q} \prod_{i=2}^{k-1} (i-1/q) \quad (k \ge 3).$$

Here, if q = 1/2, then the distribution is critical binary, i.e., $\mathcal{GW}(q_0 = q_2 = 1/2)$.

If $q \in (1/2, 1)$, the distribution is of Zipf type with

$$q_k = \frac{(1-q)\Gamma(k-1/q)}{q\Gamma(2-1/q)\,k!} \sim Ck^{-(1+q)/q}, \text{ where } C = \frac{1-q}{q\,\Gamma(2-1/q)}.$$

Invariant Galton-Watson measures

Recall

$$S(z) = \frac{Q(z) - zQ'(z)}{1 - Q'(z)}.$$

Assumption 1. The following limit exists:

$$S'(1) = \lim_{x \to 1^{-}} \frac{1 - S(x)}{1 - x} \quad \Leftrightarrow \quad \lim_{x \to 1^{-}} \frac{Q(x) - x}{(1 - x)(1 - Q'(x))} = 1 - S'(1)$$

Horton prune-invariance: for $\nu(T) = \mu(\mathcal{R}^{-1}(T))$,

 $\nu(T | T \neq \phi) = \mu(T).$

Theorem. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical or subcritical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ with $q_1 = 0$ that satisfies Assumption 1. Then, measure $\mathcal{GW}(\{q_k\})$ is Horton prune-invariant if and only if it is $\mathcal{IGW}(q_0)$.

Attraction property of critical Galton-Watson trees

Theorem. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$. Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ denote the pushforward probability measure induced by operator \mathcal{R}^k , i.e.,

 $\nu_k(T) = \rho_0 \circ \mathcal{R}^{-k}(T) = \rho_0 \left(\mathcal{R}^{-k}(T) \right), \text{ and set } \rho_k(T) = \nu_k \left(T \mid T \neq \phi \right).$

Suppose Assumption 1 is satisfied. Then,

 $\lim_{k\to\infty}\rho_k(T)=\rho^*(T),$

where ρ^* denotes $\mathcal{IGW}(q)$ with q = 1 - S'(1).

Finally, if $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ is subcritical, then $\rho_k(T)$ converges to a point mass measure, $\mathcal{GW}(q_0=1)$.

Attraction property of critical Galton-Watson trees

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$, with offspring distribution q_k of Zipf type:

 $q_k \sim Ck^{-(\alpha+1)}$ with $\alpha \in (1,2]$ and C > 0.

Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ and $\rho_k(T) = \nu_k(T \mid T \neq \phi)$.

Then, $\lim_{k\to\infty} \rho_k(T) = \rho^*(T)$, where ρ^* is $\mathcal{IGW}(q)$ with $q = \frac{1}{\alpha}$.

Corollary. [YK and I. Zaliapin, *Bernoulli* (2021)] Consider a critical Galton-Watson measure $\rho_0 \equiv \mathcal{GW}(\{q_k\})$ with $q_1 = 0$ such that $\sum_{k=2}^{\infty} k^2 q_k < \infty$.

Let $\nu_k = \mathcal{R}^k_*(\rho_0)$ and $\rho_k(T) = \nu_k(T \mid T \neq \phi)$.

Then, $\lim_{k\to\infty} \rho_k(T) = \rho^*(T)$, where ρ^* is $\mathcal{IGW}(1/2)$ (critical binary).

A gift from anonymous referee

This is an example of Horton prune-invariant critical Galton-Watson measure $\mathcal{GW}(\{q_k\})$ for which Assumption 1 does not hold.

Let
$$q_0 \in (1/2, 1)$$
, $q_1 = 0$, and

$$q_m = \frac{1}{m!A} \sum_{n \in \mathbb{Z}} B^n \rho^{nm} e^{-\rho^n} \qquad m = 2, 3, \dots,$$

where $\rho = 1 - q_0$, parameter $B \in ((1 - q_0)^{-1}, (1 - q_0)^{-2})$ is found by solving

$$\sum_{n \in \mathbb{Z}} B^n \left(1 - \rho^{n+1} - (1 + \rho^n - \rho^{n+1}) e^{-\rho^n} \right) = 0, \quad \text{and} \quad A = \sum_{n \in \mathbb{Z}} B^n \rho^n \left(1 - e^{-\rho^n} \right).$$

Tokunaga coefficients and Horton law.

Lemma. [YK and I. Zaliapin, *Bernoulli* (2021)] For a given $q \in [1/2, 1)$, consider an invariant Galton-Watson measure $\mathcal{IGW}(q)$. Then, its Tokunaga coefficients are

 $T_{i,j}^{o} = rac{\mathcal{N}_{i,j}^{o}[K]}{\mathcal{N}_{j}[K]} = T_{j-i}^{o}, \quad ext{ where } T_{k}^{o} = c^{k-1} \ (k \ge 1) \quad ext{ with } c = rac{1}{1-q}.$

Additionally, $\pi_i = P(\operatorname{ord}(T) = j) = q c^{1-i}$, and the strong Horton law $\lim_{K \to \infty} \frac{\mathcal{N}_k[K]}{\mathcal{N}_1[K]} = R^{1-k}$ holds with Horton exponent

$$R = c^{c/(c-1)} = (1-q)^{-1/q}.$$

Critical binary: since $\mathcal{IGW}(1/2) = \mathcal{GW}(q_0 = q_2 = 1/2)$, for q = 1/2, we have

$$c = 2, \quad \pi_i = 2^{-i}, \quad T_k = 2^{k-1}, \quad \text{and} \quad R = 4.$$