Tokunaga self-similarity arises naturally from time invariance

Yevgeniy Kovchegov
Oregon State University

joint work with
Ilya Zaliapin of U. Nevada Reno
Horton–Strahler ordering.

The **Horton–Strahler ordering** of the vertices of a finite rooted labeled binary tree is performed in a hierarchical fashion, from leaves to the root:

(i) each leaf has order $r(\text{leaf}) = 1$;

(ii) when both children, c_1, c_2, of a parent vertex p have orders i and j, the vertex p is assigned order

$$r = \left\lfloor \log_2(2^i + 2^j) \right\rfloor = \begin{cases} \max\{i, j\} & \text{if } i \neq j \\ i + 1 & \text{if } i = j \end{cases}$$
Horton-Strahler ordering and Tokunaga indexing.

Example: (a) Horton-Strahler ordering
(b) Tokunaga indexing.

Two order-2 branches are depicted by heavy lines in both panels. The Horton-Strahler orders refer, interchangeably, to the tree nodes or to their parent links. The Tokunaga indices refer to entire branches, and not to individual vertices.
Horton pruning of a tree mod series reduction

The order of the tree is $k(T) = 3$ with $N_1 = 10$, $N_2 = 3$, $N_3 = 1$, and $N_{1,2} = 3$, $N_{1,3} = 1$, $N_{2,3} = 1$.
Tree self-similarity

N_j – the number of branches of order j

N_{ij}, $i < j$ – the number of side branches of order $\{ij\}$, i.e. instances when an order-i branch merges with an order-j branch in a finite tree T.

The average number of branches of order i in a single branch of order j can be traced with

$$T_{ij} = \frac{\mathbb{E}[N_{ij}]}{\mathbb{E}[N_j]}$$

Tree self-similarity: $T_{ij} = T_{j-i}$ for a sequence $\{T_k\}_{k \geq 1}$.

Tokunaga self-similarity: $T_k = ac^{k-1}$, $k \geq 1$, $a, c > 0$.
Geometric branching process

\[X \overset{d}{=} \text{Geom}(r) \text{ if } \text{Prob}(X = k) = r(1 - r)^k, \ k = 0, 1, \ldots \]

Given a non-negative sequence \(\{T_k\}_{k \geq 1} \). Let

\[S_K := 1 + T_1 + \cdots + T_K \]

for \(K \geq 0 \) by assuming \(T_0 = 0 \).

Geometric branching process:

- Markovian, where the numbers of side branches are independent.
- The number \(m_{j,i} \) of side branches of order \(i < j \) in a branch of order \(j \) is distributed as

\[m_{j,i} \overset{d}{=} \text{Geom}\left(\left[1 + T_{j-i}\right]^{-1}\right). \]

Thus, \(E[m_{j,i}] = T_{j-i} \).
- Branches of order 1 have no side branches.
Geometric branching process

- Markovian, where the numbers of side branches are independent.

- The number $m_{j,i}$ of side branches of order $i < j$ in a branch of order j is distributed as

$$m_{j,i} \overset{d}{=} \text{Geom} \left([1 + T_{j-i}]^{-1} \right).$$

Thus, $\mathbb{E}[m_{j,i}] = T_{j-i}$.

- Branches of order 1 have no side branches.

The independence of branches implies $\mathbb{E}[N_{ij}] = \mathbb{E}[N_j] \mathbb{E}[m_{j,i}]$ and hence

$$T_{ij} = \frac{\mathbb{E}[N_{ij}]}{\mathbb{E}[N_j]} = \frac{\mathbb{E}[N_j] \mathbb{E}[m_{j,i}]}{\mathbb{E}[N_j]} = T_{j-i}.$$
Geometric branching process: formally

(i) The process starts with \(\text{ord}(T) - 1 \overset{d}{=} \text{Geom}(p) \).

(ii) At every time instant \(s > 0 \), each population member of order \(K \) terminates with probability \(S_{K-1}^{-1} \), independently of other members.

At termination, a member of order \(K > 1 \) produces two offspring of order \((K-1)\); and a member of order \(K = 1 \) leaves no offsprings.

(iii) A population member of order \(K \) survives (with probability \(1 - S_{K-1}^{-1} \), and produces a single offspring (side branch) of order \(i \) (\(1 \leq i < K \)) drawn from the distribution

\[
p_{K,i} = \frac{T_{K-i}}{T_1 + \cdots + T_{K-1}}.
\]
Geometric branching process

Properties:

• The geometric branching process with \(p = 1/2 \) and \(T_k = 2^{k-1} \) is the critical binary Galton-Watson tree.

• **Prune invariance:** Given an arbitrary sequence \(\{T_k \geq 0\}_{k \geq 1} \) and \(0 < p < 1 \), the probability measure for the geometric branching process is invariant with respect to Horton pruning.

• **Easy to simulate.** Generation of geometric trees for arbitrary parameters \((p, \{T_k\}) \) is easily implemented on a computer.

May facilitate the analysis in a range of simulation-heavy problems, from structure and transport on river networks to phylogenetic trees.
Time shift operator S advances the process time by unity. It can be applied to individual trees and forests.

A consecutive applications of d time shifts to a tree T is equivalent to removing the vertices/edges at depth less than d from the root.
Difference equation for the state vector

Let $x_i(s), i \geq 1$, denote the average number of vertices of order i at time s in a geometric branching process, and

$$x(s) = (x_1(s), x_2(s), \ldots)^T$$

be the state vector. Then

$$x(s + 1) - x(s) = GS^{-1}x(s),$$

where $x(0) = \pi := \sum_{K=1}^{\infty} p(1 - p)^{K-1}e_K,$

$$G := \begin{bmatrix} -1 & T_1 + 2 & T_2 & T_3 & \cdots \\ 0 & -1 & T_1 + 2 & T_2 & \cdots \\ 0 & 0 & -1 & T_1 + 2 & \cdots \\ 0 & 0 & 0 & -1 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}, \quad \text{and} \quad S = \text{diag}\{S_0, S_1, \ldots\}.$$
Time invariance

Geometric branching process is time invariant if and only if the state vector $x(s)$ is invariant with respect to a unit time shift S:

$$x(s) = x(0) \equiv \pi \quad \forall s \iff GS^{-1}\pi = 0.$$
Time invariance

Geometric branching process is time invariant if and only if the state vector $x(s)$ is invariant with respect to a unit time shift S:

$$x(s) = x(0) \equiv \pi \quad \forall s \iff GS^{-1}\pi = 0.$$

Theorem (YK and I. Zaliapin, Chaos 2018). A geometric branching process is time invariant if and only if

$$p = 1/2 \quad \text{and} \quad T_k = (c - 1)c^{k-1} \quad \text{for} \ c \geq 1.$$

We will call this a critical Tokunaga process, and the respective trees – critical Tokunaga trees.
Time invariance

Recall that $S_0 = 1$, and for $K \geq 1$,

$$S_K := 1 + T_1 + \cdots + T_K$$

First, we established the following.

Lemma 1. A geometric branching process is time invariant if and only if $p = 1/2$ and the sequence $\{T_k\}$ solves the following (nonlinear) system of equations:

$$\frac{S_0}{S_k} = \sum_{i=1}^{\infty} 2^{-i} \frac{S_i}{S_{k+i}}$$

for all $k \geq 1$.
Time invariance

Let $a_k = S_k / S_{k+1} \leq 1$ for all $k \geq 0$. Then, for any $i \geq 0$ and any $k > 0$ we have $S_i / S_{k+i} = a_i a_{i+1} \ldots a_{i+k-1}$. The system

$$\frac{S_0}{S_k} = \sum_{i=1}^{\infty} 2^{-i} \frac{S_i}{S_{k+i}} \quad \text{for all } k \geq 1$$

rewrites in terms of a_i as

$$\frac{1}{2} a_1 + \frac{1}{4} a_2 + \frac{1}{8} a_3 + \ldots = a_0,$$

$$\frac{1}{2} a_1 a_2 + \frac{1}{4} a_2 a_3 + \frac{1}{8} a_3 a_4 + \ldots = a_0 a_1,$$

$$\frac{1}{2} a_1 a_2 a_3 + \frac{1}{4} a_2 a_3 a_4 + \frac{1}{8} a_3 a_4 a_5 + \ldots = a_0 a_1 a_2,$$

and so on ...
Time invariance

Lemma 1. A geometric branching process is time invariant if and only if $p = 1/2$ and the sequence $\{T_k\}$ solves the following (nonlinear) system of equations:

$$\frac{S_0}{S_k} = \sum_{i=1}^{\infty} 2^{-i} \frac{S_i}{S_{k+i}} \quad \text{for all } k \geq 1.$$

Lemma 2. The system

$$\sum_{j=1}^{\infty} \frac{1}{2^j} \prod_{k=j}^{n+j-1} a_k = \prod_{k=0}^{n-1} a_k, \quad \text{for all } n \in \mathbb{N}$$

with $a_0 = \frac{1}{c}$ ($c > 0$) has a unique solution $a_0 = a_1 = a_2 = \ldots = 1/c$.

Once established, Lemma 1 and Lemma 2 imply our main result (Theorem).
• **Zaliapin and YK (CSF 2012):** Extreme values and level-set trees of time series via Horton pruning.

• **YK and Zaliapin (Fractals 2016):** Tree self-similarity with \(\lim_{j \to \infty} \sup T_j^{1/j} < \infty \) implies (strong) Horton law.

• **YK and I. Zaliapin (2017) arXiv:1608.05032**
 A novel multi-type branching processes is considered: the Hierarchical Branching Processes.

 Generalized dynamical pruning with applications in continuum ballistic annihilation.

• **YK and I. Zaliapin (Chaos 2018):** This talk.