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Critical Tokunaga model.

Critical Tokunaga Trees (aka Critical Tokunaga Model)
is a one-parametric family of random trees that can be
defined either as a continuous-time Multi-type Branch-
ing Process or as a Random Attachment Model (RAM).

In the RAM, we use Poisson attachment construction
within exponential segments. This ensures that the
link lengths have exponential distribution and the at-
tachment of streams of lower orders to a given stream
of a larger order is done in uniform random fashion.

The Critical Tokunaga Trees is a sub-family of a
much larger family of random trees, called Hierarchi-
cal Branching Processes. Critical Tokunaga Model in-
cludes the celebrated Shreve’s random topology model
(c = 2).
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The Random Attachment Model (RAM).

Next, we construct Critical Tokunaga model as a RAM.

For a given c > 1, consider a discrete time Markov tree process{
ΥK

}
K∈N

such that each ΥK is distributed as a tree of Horton-

Strahler order K.

Let XK = N1[ΥK] (number of leaves) and YK = length(ΥK).

• Υ1 is I-shaped tree of order one, with X1 = 1 and Y1
d∼ Exp(γ).

• Conditioned on ΥK, tree ΥK+1 is obtained as follows:

(i) Attach new leaf edges to ΥK at the points sampled with a
homogeneous Poisson point process with intensity γ(c− 1) along
the carrier space ΥK.

(ii) Attach a pair of new leaf edges to each of the leaves in ΥK.

The lengths of all the newly attached leaf edges are independent
exponential random variables with parameter γcK.
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Horton’s laws for stream numbers and magni-

tudes.

• Let Ni[K] denote the mean number of streams of
order i in a basin of order K.

• Let Mi denote the mean magnitude (number of
upstream sources) of a stream of order i.

In Critical Tokunaga Model, the following Horton’s
laws hold:

lim
K→∞

Ni[K]

Ni+1[K]
= RB for any i, and lim

i→∞

Mi+1

Mi
= RM ,

where RB = RM = 2c.

Moreover,

NK−j+1[K] = N1[j] = Mj =
Rj
B +RB − 2

2(RB − 1)
for 1 ≤ j ≤ K.
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Other relevant Horton laws.

• Let Lj denote the mean length of a stream of
order j.

Horton’s law for the stream lengths:

LjR
−j
L =

1

cγ
<∞ with RL = c.

• Let Λk denote the mean length of the longest
stream in a basin of order k.

Horton’s law for the length of the longest stream:

lim
k→∞

ΛkR
−k
Λ = Const. <∞ with RΛ = c.
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Fractal dimension and Hack’s law.

Fractal dimension for Critical Tokunaga Tree: Con-
sider the limiting tree in RAM. Then,

d = max{1,d0}, where d0 =
logRB
logRL

=
log(2c)

log c
.

• Assume the local contributing area Ai of a link
of order i (area that contributes to the link directly,
and not via its descendants) is a function of the link
length.

Hack’s law for the Critical Tokunaga Tree:

Λi ∼ Const.×
(
Ai

)h
, where h = d−1 =

logRL
logRB

=
log c

log(2c)
.
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Critical Tokunaga Model closely fits observations.

(A) (B)

(C) (D)

Critical Tokunaga (c = 2.3) fit to the Horton laws in Beaver
creek, KY.
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RAM for simulations.

The trees are generated by the critical Tokunaga process with
c = 2.3 and Horton-Strahler order K = 5. The line width is
proportional to the contributing area. The figure accurately
represents the tree combinatorial structure; the edge lengths
are scaled for a better planar embedding. Notice that the RAM
generates trees with no planar embedding.
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Fractal dimension and Hack’s exponent.

(A) (B)

Fractal dimension d (panel A) and Hack’s exponent h = d−1

(panel B) of a self-similar RAM (aka Hierarchical Branching
Process) in the limit of infinite size as a function of the Horton’s
exponents RB and RL. Selected levels of d and h are shown by
marked black lines. Green thick lines correspond to the Critical
Tokunaga Model for which RB = 2RL. Blue dots depict the
pairs (RB, RL) estimated in nine real river basins.
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Other important properties of Critical Tokunaga

Model.

Tokunaga self-similarity:

Ti,j = Tj−i with Tk = a ck−1, a = c− 1.

Horton prune-invariance, criticality, coordination, time-
invariance, identically distributed link lengths, and iden-
tically distributed local contributing areas.

This class is surprisingly rich, extending from perfect
binary trees (c = 1) to the famous Shreve’s random
topology model (c = 2) to the structures reminiscent
of the observed river networks (c ≈ 2.3) and beyond.

Critical Tokunaga model is merely a subclass of a
much broader family of self-similar trees. However,
the observed stream networks cluster around RB = 2RL.
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Critical Tokunaga process.

Critical Tokunaga Processes satisfy a number of self-
similarity and invariance properties as observed in mul-
tiple publications, e.g.

• Y. K., Ilya Zaliapin, and Efi Foufoula-Georgiou ,
“Critical Tokunaga model for river networks” Physical
Review E Vol. 105 (2022), 014301

• Y. K., Ilya Zaliapin, and Efi Foufoula-Georgiou ,
“Random Self-Similar Trees: Emergence of Scaling
Laws” Surveys in Geophysics Vol. 43 (2022), 353–
421

• Y. K. and Ilya Zaliapin, “Random Self-Similar Trees:
A mathematical theory of Horton laws” Probability
Surveys Vol. 17 (2020), 1–213


