Random Self-Similar Trees

Random Trees and Their

Applications: Metric Trees

Yevgeniy Kovchegov
Oregon State University

collaboration with
Ilya Zaliapin of U. Nevada, Reno
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What is similar between the following
two dynamics 7?7
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Model #1. Ballistic annihilation: A4+ A — 0O
e Y. Elskens and H. L. Frisch, Phys. Rev. A (1985)
e £E. Ben-Naim and S. Redner, PRL (1993)

e R. A. Blythe, M. R. Evans, and Y. Kafri, PRL (2000)
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Model #1. Ballistic annihilation: A4+ A — 0O
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STOP!!!
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Model #2. Extreme values.
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Model #2. Extreme values.

Wl
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Model #2. Extreme values.
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Model #2. Extreme values.
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Tree pruning
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Tree pruning: YK and 1. Zaliapin (2018)
arXiv:1707.01984

Model #1. Ballistic annihilation: A4+ A — 0O
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Tree pruning: YK and 1. Zaliapin (2018)
arXiv:1707.01984
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Random Self-Similar Trees 38

Level-set tree of a function.

(a) Function X, (b) Tree LEVEL(X)

Function X; (panel a) with a finite number of local extrema and
its level-set tree level(X) (panel b).
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.

>I/X'<\
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Trees.

Lpiane - Space of finite unlabeled rooted reduced binary
trees with edge lengths and planar embedding.

The space Lpane includes the empty tree ¢ = {p}
comprised of a root vertex p and no edges.

d(x,y): the length of the minimal path within T be-
tween x and y.

The length of a tree T is the sum of the lengths of
its edges:

#T
length(T) = Z ;.
i=1

The height of a tree T is the maximal distance be-
tween the root and a vertex:

height(T) = 1gl<a£&<T d(vi, p).
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Partial ordering.

A v
e /

x,T

(a) Descendant tree (b) Isometry

Consider a tree T' € Lpjane and a point z € T'. Let A, 7
denote all points of T' descendant to z, including =x.
Then A, r is itself a tree in Lpjane With root at z.
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Partial ordering. Let (71,d) and (15,d) be two met-
ric rooted trees, and let p; denote the root of T3.

A v
/

x,T

(a) Descendant tree (b) Isometry

f:(Th,d) — (1»,d) is an isometry if Image[f] C Ay,ym
and \V/CU,y € T, d(f(m)af(y)) — d($7y>
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Partial ordering.

A v
e /

x,T

(a) Descendant tree (b) Isometry

Partial order: Ty <X 1% if and only if 4 an isometry
f:(T1,d) — (1>, 4d).
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Generalized dynamical pruning.

Consider a monotone non-decreasing

¢ Lplane — R_l_a
i.e. o(T1) < p(T2) whenever T1 <X T5.
Generalized dynamical pruning operator

St(p, T) : Lpjane — Lpiane
induced by ¢ at any ¢t > O:

Si(p,T) :=,0U{513€T\,0 ; go(Ax,T) Zt}.

S cuts all subtrees A, for which the value of ¢ is
below threshold t. Here,

Ss(T) = Su(T)

whenever s > t.
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Example: Tree height.

Recall:  Si(¢,T) := pU {az eT\p 1 ¢(Dpr) > t}.

Let the function ¢(T) equal the height of T

o(T) = height(T).
Continuous semigroup property: S;o0S8; = S35 for
any t,s > 0.

It coincides with the tree erasure Neveu (1986).

Neveu (1986): established invariance of a critical
and sub-critical binary Galton-Watson processes with
i.i.d. exponential edge lengths with respect to the
tree erasure.
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Example: Total tree length.

Recall:  Si(¢,T) i= pU {a: eT\p : o(Dyr) > t}.

Let the function ¢(T) equal the total lengths of T
o(T) = length(T).

NoO semigroup property!

In this case the pruning operator &; coincides with the
potential dynamics of 1D ballistic annihilation

YK and 1. Zaliapin (2018) - arXiv:1707.01984
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Example: Horton pruning.

Let
p(T) = k(T) — 1,

where the Horton-Strahler order k(T') is the minimal
number of Horton prunings R (cutting the tree leaves
and applying series reduction) necessary to eliminate
all points in tree T except p.

Burd, Waymire, and Winn 2000.

Here,

St — RLtJ

Discrete semigroup property: S;0Ss = S,4 for any
t,s € N.
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Pruning of a tree mod series reduction

<

Series reduction

Series reduction

o

r R(D) RA(T) R(T)
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Exponential critical binary Galton-Watson tree

We say that a random tree T' € Lpane IS an exponen-
tial critical binary Galton-Watson tree with parameter

A >0, and write T = GW()), if
(i) shape(T) is a critical binary Galton-Watson tree;

(ii) the orientation for every pair of siblings in T is
uniformly random and symmetric;

(iii) given shape(T), the edges of T are sampled as
independent exponential random variables with
parameter \.
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Exponential critical binary Galton-Watson tree

A

(a) Tree T (b) Harris path H.
T

The level set tree level(X;) is an exponential critical
binary Galton-Watson tree GW()\) if and only if the
rises and falls of X;, excluding the last fall, are dis-
tributed as independent exponential random variables
with parameter \/2.

J. Neveu and J. Pitman (1989), J. F. Le Gall (1993)
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Invariance under pruning

Theorem. [YK and 1. Zaliapin, 2018]

LetT = GW()) be an exponential critical binary Galton-
Watson tree with parameter A > 0.

Then, for any monotone non-decreasing function ¢ :
£p|ane — R+ we have

T = {Si(, T)ISi(0, T) # ¢} = WO (A, ),

where pt(>‘7 90) — P(St(QO, T) # ¢)

That is, the pruned tree T! conditioned on surviving
IS an exponential critical binary Galton-Watson tree
with parameter

St(>\a 90) — )\pt()\a 90)



Random Self-Similar Trees 55

Invariance under pruning

Theorem. [YK and 1. Zaliapin, 2018]

(a) If o(T) equals the total length of T' (¢ = length(T")),
then

E(N\, @) = Ae M| Tg(\t) + I ()]

(b) If o(T) equals the height of T' (¢ = height(T)),
then
2\

A+ 2

gt()\7 90) —

(c) If o(T) + 1 equals the Horton-Strahler order of
the tree T, then

Ex( N, ) = A2~
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Distributional prune-invariance

Definition. Consider a probability measure p on Lpjane
such that u(¢) = 0. Let

v(T) = po S N (T) = p(s;H(1)).

Measure u is called invariant with respect to the prun-
ing operator S:(p,T) if for any tree T' € Ljjane We have

(T = v(T|T # ¢).

Also need the invariance of the distribution of edge
lengths in the pruned tree T; := Si(p, T).

YK and I. Zaliapin, SPA 2019

Open question: finding and classifying all the invari-
ant probability measures pu on Lpjane.
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Poisson distributed initial conditions.
Consider the following initial conditions:

e a Poisson point process on R with rate \/2;
e v(x,0) alternates between the values +1.

Theorem. [YK and 1. Zaliapin, 2018] The ab-
sorbed mass of a random sink at instant ¢ > 0O has
distribution with the p.d.f.

pia) = Lio.on (a) - ge_)‘t [Io()\(t —a/2)) + L (At — a/z))] Io(Aa/2)

+ e_AtIo()\t)52t(a),
where do; denotes Dirac delta function (point mass) at 2t.
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Poisson distributed initial conditions.

A

8 /
Z
<
=

Mass accumulation

with no movement

\ Movement with
no mass accumulation
hl v, h, Time, ¢

Theorem. [YK and I. Zaliapin, 2018] The mass
of a random sink at instant ¢ > 0 has distribution with

the p.d.f.

(@) = Toan(@) - 2e ™[I (At — a/2)) + (At~ 0/2)) ] - To(Aa/2)
+ G_Atlo()\t)(SQt(a) .
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Other generalization of pruning.

e T. Duquesne and M. Winkel (2012) arXiv:1211.2179

There, the requirement for sets
A =A{T : o(T) =t}

to be Borel with respect to a topology induced by the
Gromov-Hausdorff distance leads to semigroup prop-
erty.

In our generalization, when ¢o(T) = length(T), the
semigroup is not satisfied.
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Root-Horton law for the Kingman’'s coalescent

YK & Zaliapin, AIHP (2017):

e Established the root-Horton law for the Kingman’s
coalescent.

e Showed that the tree for Kingman's coalescent is
combinatorially equivalent to the level-set tree of iid
time series (the two measures are one pruning apart).

e Numerical experiments that suggest stronger Hor-
ton laws: ratio, geometric.
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Root-Horton law for the Kingman’s coalescent.

In YK & Zaliapin, AIHP (2017), we prove the limit law (in
probability) for the asymptotics of the number N, of branches
of Horton-Strahler order k in Kingman's N-coalescent process
with constant collision kernel:

N—o0

We show that

1 (0.0}
0
where the sequence gi(x) solves:
2
9; (z)
91{34—1(35) - k2 + gk:(x)gk:—}—l(fﬁ) =0, 220

with gi1(z) = 2/(x + 2), gx(0) =0 for k > 2.
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Root-Horton law for the Kingman’s coalescent.

Theorem (YK & Zaliapin, AIHP 2017). The asymptotic
Horton ratios N} exist and finite and satisfy the convergence

lim (M) F =R

k—o0

with 2 < R < 4.

Conjecture. The tree associated with Kingman's coalescent
process is Horton self-similar with

lim Ni = lim (J\/'ka)_% =R and lim (N,R") = const.,

k—oco Ng+1 k—o00 k—o00

where R = 3.043827 .. ..
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Hierarchical Branching Processes.

YK and Zaliapin, SPA (2019): Consider a multi-
type branching process originating from a root of
Horton-Strahler order K with probability px. For a
given Tokunaga sequence 1 > 0, we have

e Each branch of order 53 branches out an offspring of
order ¢ < j with rate \;7)_;.

e The branch of order j terminates with rate A;, at
which moment,

(i) the branch of order j > 2 splits into two
branches, each of order 5 — 1

(ii) the branch of order j = 1 terminates without
leaving offsprings.
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Hierarchical Branching Processes.

Suppose L = Ilimsupy_,. Tkl/k < 00

Let the coordinates of z(s)represent the frequency of
branches of respective orders at time s in a tree.

Initial distribution is z(0) =7 := )  pgex, and
K=1

z(s) = eV, where A = diag{Al, Ao, ... }

and
1 Ty 42 > Ts ]
0 -1 Ty 42 T
G = 0 0 —1 T + 2

0 0 0 —1
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Hierarchical Branching Processes.

Consider the width function at time s > 0
C(s) = (1,z(s)) = (1,e% ).

For u to be distributionally self-similar under pruning,
need

e {px} to be geometric: px = p(1 —p)K-1

e the sequence )\; to be geometric: \; =~yc™J
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Hierarchical Branching Processes.

Recall:
((z) =-14+2z4 > 2T,
i=1

and wg = 1/R is the only real root within the radius
of convergence.

Suppose {pk} is geometric with parameter p and
Aj =vc 7, then

o

z(s) = e Z H f(c_j(l —p)) | N
j=1

The convergence requirement here is that ¢ > 1.

Criticality: p.=1—-+ ,i.e. C(s) =(1,2(s)) =
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Hierarchical Branching Processes.
The following two conditions are equivalent.

e [ he process is colorblue critical, i.e.,

C(t)=(1,z(s)) =1 t> 0.

e [ he process has the time invariance property at crit-
icality: the frequencies of trees in the forest produced
by the process dynamics are time-invariant

x(t) = exp{GAt} ™ =, where z(0) = .
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Hierarchical Branching Processes.

pc:]-_E
R

Observe that for a hierarchical branching process with
A; = A2177 and T, = 2F~1, the critical probability is

1
pcza-

Therefore, R = 1_Cp =4,

Recall that the critical binary Galton-Watson tree
exhibits both Horton and Tokunaga self-similarities
(Burd, Waymire, and Winn, 2000) with parame-
ters R=4, (a,¢)=(1,2) and

Tp=a- 1 =21
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Critical binary Galton-Watson tree.

Theorem (YK and Zaliapin, SPA 2019). The tree
of a hierarchical branching process with parameters

Aj = )\21_j, PK = Q_K, and 1T = plt

for any A > 0 is equivalent to the critical binary
Galton-Watson tree GW(\).
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Hierarchical Branching Processes.
e Invariant under pruning (from the leafs).
e Satisfies the time invariance property at criticality.

e Is it self-similar under other types of pruning?



