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What is similar between the following

two dynamics ?
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Model #1. Ballistic annihilation: A+A −→ 0

• Y. Elskens and H. L. Frisch, Phys. Rev. A (1985)

• E. Ben-Naim and S. Redner, PRL (1993)

• R. A. Blythe, M. R. Evans, and Y. Kafri, PRL (2000)
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STOP!!!
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Model #2. Extreme values.
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Model #2. Extreme values.
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Model #2. Extreme values.
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Model #2. Extreme values.
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Tree pruning
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Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 28

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 29

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 30

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 31

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 32

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 33

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 34

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 35

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0



Random Self-Similar Trees 36

Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984
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Tree pruning: YK and I. Zaliapin (2018)

arXiv:1707.01984

Model #1. Ballistic annihilation: A+A −→ 0
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Level-set tree of a function.

(a) Function Xt (b) Tree LEVEL(X) 

Function Xt (panel a) with a finite number of local extrema and
its level-set tree level(X) (panel b).
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.



Random Self-Similar Trees 40

Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Tree pruning: Zaliapin and YK, (2012)

Model #2. Extreme values.
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Trees.

Lplane - space of finite unlabeled rooted reduced binary
trees with edge lengths and planar embedding.

The space Lplane includes the empty tree φ = {ρ}
comprised of a root vertex ρ and no edges.

d(x, y): the length of the minimal path within T be-
tween x and y.

The length of a tree T is the sum of the lengths of
its edges:

length(T ) =
#T∑
i=1

li.

The height of a tree T is the maximal distance be-
tween the root and a vertex:

height(T ) = max
1≤i≤#T

d(vi, ρ).
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Partial ordering.

ρ
1

T
1

T
2

Δ
x,T

x

T

(b) Isometry(a) Descendant tree

Consider a tree T ∈ Lplane and a point x ∈ T . Let ∆x,T

denote all points of T descendant to x, including x.
Then ∆x,T is itself a tree in Lplane with root at x.
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Partial ordering. Let (T1, d) and (T2, d) be two met-

ric rooted trees, and let ρ1 denote the root of T1.

ρ
1

T
1

T
2

Δ
x,T

x

T

(b) Isometry(a) Descendant tree

f : (T1, d)→ (T2, d) is an isometry if Image[f ] ⊆∆f(ρ1),T2

and ∀x, y ∈ T1, d
(
f(x), f(y)

)
= d(x, y).
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Partial ordering.

ρ
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(b) Isometry(a) Descendant tree

Partial order: T1 � T2 if and only if ∃ an isometry
f : (T1, d)→ (T2, d).
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Generalized dynamical pruning.

Consider a monotone non-decreasing

ϕ : Lplane → R+,

i.e. ϕ(T1) ≤ ϕ(T2) whenever T1 � T2.

Generalized dynamical pruning operator

St(ϕ, T ) : Lplane → Lplane

induced by ϕ at any t ≥ 0:

St(ϕ, T ) := ρ ∪
{
x ∈ T \ ρ : ϕ

(
∆x,T

)
≥ t
}
.

St cuts all subtrees ∆x,T for which the value of ϕ is
below threshold t. Here,

Ss(T ) � St(T )

whenever s ≥ t.
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Example: Tree height.

Recall: St(ϕ, T ) := ρ ∪
{
x ∈ T \ ρ : ϕ

(
∆x,T

)
≥ t
}
.

Let the function ϕ(T ) equal the height of T :

ϕ(T ) = height(T ).

Continuous semigroup property: St ◦ Ss = St+s for
any t, s ≥ 0.

It coincides with the tree erasure Neveu (1986).

Neveu (1986): established invariance of a critical
and sub-critical binary Galton-Watson processes with
i.i.d. exponential edge lengths with respect to the
tree erasure.
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Example: Total tree length.

Recall: St(ϕ, T ) := ρ ∪
{
x ∈ T \ ρ : ϕ

(
∆x,T

)
≥ t
}
.

Let the function ϕ(T ) equal the total lengths of T :

ϕ(T ) = length(T ).

No semigroup property!

In this case the pruning operator St coincides with the
potential dynamics of 1D ballistic annihilation

YK and I. Zaliapin (2018) - arXiv:1707.01984
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Example: Horton pruning.

Let

ϕ(T ) = k(T )− 1,

where the Horton-Strahler order k(T ) is the minimal
number of Horton prunings R (cutting the tree leaves
and applying series reduction) necessary to eliminate
all points in tree T except ρ.
Burd, Waymire, and Winn 2000.

Here,

St = Rbtc.

Discrete semigroup property: St ◦Ss = St+s for any
t, s ∈ N.
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Pruning of a tree mod series reduction
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Exponential critical binary Galton-Watson tree

We say that a random tree T ∈ Lplane is an exponen-
tial critical binary Galton-Watson tree with parameter

λ > 0, and write T
d

= GW(λ), if

(i) shape(T ) is a critical binary Galton-Watson tree;

(ii) the orientation for every pair of siblings in T is
uniformly random and symmetric;

(iii) given shape(T ), the edges of T are sampled as
independent exponential random variables with
parameter λ.
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Exponential critical binary Galton-Watson tree

(a) Tree T  (b) Harris path HT 

The level set tree level(Xt) is an exponential critical
binary Galton-Watson tree GW(λ) if and only if the
rises and falls of Xt, excluding the last fall, are dis-
tributed as independent exponential random variables
with parameter λ/2.

J. Neveu and J. Pitman (1989), J. F. Le Gall (1993)
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Invariance under pruning

Theorem. [YK and I. Zaliapin, 2018]

Let T
d

= GW(λ) be an exponential critical binary Galton-
Watson tree with parameter λ > 0.

Then, for any monotone non-decreasing function ϕ :
Lplane → R+ we have

T t :=
{
St(ϕ, T )|St(ϕ, T ) 6= φ

} d
= GW(λpt

(
λ, ϕ)

)
,

where pt(λ, ϕ) = P(St(ϕ, T ) 6= φ).

That is, the pruned tree T t conditioned on surviving
is an exponential critical binary Galton-Watson tree
with parameter

Et(λ, ϕ) = λpt(λ, ϕ).
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Invariance under pruning

Theorem. [YK and I. Zaliapin, 2018]

(a) If ϕ(T ) equals the total length of T (ϕ = length(T )),
then

Et(λ, ϕ) = λe−λt
[
I0(λt) + I1(λt)

]
.

(b) If ϕ(T ) equals the height of T (ϕ = height(T )),
then

Et(λ, ϕ) =
2λ

λt+ 2
.

(c) If ϕ(T ) + 1 equals the Horton-Strahler order of
the tree T , then

Et(λ, ϕ) = λ2−btc.
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Distributional prune-invariance

Definition. Consider a probability measure µ on Lplane

such that µ(φ) = 0. Let

ν(T ) = µ ◦ S−1
t (T ) = µ

(
S−1
t (T )

)
.

Measure µ is called invariant with respect to the prun-
ing operator St(ϕ, T ) if for any tree T ∈ Lplane we have

µ(T ) = ν(T |T 6= φ).

Also need the invariance of the distribution of edge
lengths in the pruned tree Tt := St(ϕ, T ).

YK and I. Zaliapin, SPA 2019

Open question: finding and classifying all the invari-
ant probability measures µ on Lplane.
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Poisson distributed initial conditions.

Consider the following initial conditions:

• a Poisson point process on R with rate λ/2;

• v(x,0) alternates between the values ±1.

Theorem. [YK and I. Zaliapin, 2018] The ab-
sorbed mass of a random sink at instant t > 0 has
distribution with the p.d.f.

µt(a) = 1(0,2t)(a) ·
λ

2
e−λt

[
I0
(
λ(t− a/2)

)
+ I1

(
λ(t− a/2)

)]
· I0(λa/2)

+ e−λtI0(λt)δ2t(a),

where δ2t denotes Dirac delta function (point mass) at 2t.
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Poisson distributed initial conditions.

Mass accumulation 
with no movement

Movement with 
no mass accumulation

Time, t
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Theorem. [YK and I. Zaliapin, 2018] The mass
of a random sink at instant t > 0 has distribution with
the p.d.f.

µt(a) = 1(0,2t)(a) ·
λ

2
e−λt

[
I0
(
λ(t− a/2)

)
+ I1

(
λ(t− a/2)

)]
· I0(λa/2)

+ e−λtI0(λt)δ2t(a).
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Other generalization of pruning.

•T. Duquesne and M. Winkel (2012) arXiv:1211.2179

There, the requirement for sets

At = {T : ϕ(T ) ≥ t}
to be Borel with respect to a topology induced by the
Gromov-Hausdorff distance leads to semigroup prop-
erty.

In our generalization, when ϕ(T ) = length(T ), the
semigroup is not satisfied.
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Root-Horton law for the Kingman’s coalescent

YK & Zaliapin, AIHP (2017):

• Established the root-Horton law for the Kingman’s
coalescent.

• Showed that the tree for Kingman’s coalescent is
combinatorially equivalent to the level-set tree of iid
time series (the two measures are one pruning apart).

• Numerical experiments that suggest stronger Hor-
ton laws: ratio, geometric.
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Root-Horton law for the Kingman’s coalescent.

In YK & Zaliapin, AIHP (2017), we prove the limit law (in
probability) for the asymptotics of the number Nk of branches
of Horton-Strahler order k in Kingman’s N-coalescent process
with constant collision kernel:

Nk = lim
N→∞

Nk/N

We show that

Nk =
1

2

∫ ∞

0

g2
k(x) dx,

where the sequence gk(x) solves:

g′k+1(x)−
g2
k(x)

2
+ gk(x)gk+1(x) = 0, x ≥ 0

with g1(x) = 2/(x+ 2), gk(0) = 0 for k ≥ 2.
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Root-Horton law for the Kingman’s coalescent.

Theorem (YK & Zaliapin, AIHP 2017). The asymptotic
Horton ratios Nk exist and finite and satisfy the convergence

lim
k→∞

(Nk)−
1
k = R

with 2 ≤ R ≤ 4.

Conjecture. The tree associated with Kingman’s coalescent
process is Horton self-similar with

lim
k→∞

Nk
Nk+1

= lim
k→∞

(Nk)−
1
k = R and lim

k→∞
(NkRk) = const.,

where R = 3.043827 . . ..
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Hierarchical Branching Processes.

YK and Zaliapin, SPA (2019): Consider a multi-
type branching process originating from a root of
Horton-Strahler order K with probability pK. For a
given Tokunaga sequence Tk ≥ 0, we have

• Each branch of order j branches out an offspring of
order i < j with rate λjTj−i.

• The branch of order j terminates with rate λj, at
which moment,

(i) the branch of order j ≥ 2 splits into two
branches, each of order j − 1

(ii) the branch of order j = 1 terminates without
leaving offsprings.
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Hierarchical Branching Processes.

Suppose L = lim supk→∞ T
1/k
k <∞.

Let the coordinates of x(s)represent the frequency of
branches of respective orders at time s in a tree.

Initial distribution is x(0) = π :=
∞∑

K=1
pKeK, and

x(s) = eGΛsπ, where Λ = diag
{
λ1, λ2, . . .

}
and

G :=


−1 T1 + 2 T2 T3 . . .
0 −1 T1 + 2 T2 . . .

0 0 −1 T1 + 2 ...
0 0 0 −1 .. .
... ... . . . . . . . . .

 .
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Hierarchical Branching Processes.

Consider the width function at time s ≥ 0

C(s) = 〈1, x(s)〉 = 〈1, eGΛsπ〉.

For µ to be distributionally self-similar under pruning,
need

• {pK} to be geometric: pK = p(1− p)K−1

• the sequence λj to be geometric: λj = γ c−j
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Hierarchical Branching Processes.

Recall:

t̂(z) = −1 + 2z +
∞∑
j=1

zjTj

and w0 = 1/R is the only real root within the radius
of convergence.

Suppose {pK} is geometric with parameter p and
λj = γ c−j, then

x(s) = eGΛsπ = π +
∞∑

m=1

sm

 m∏
j=1

t̂
(
c−j(1− p)

)Λmπ.

The convergence requirement here is that c ≥ 1.

Criticality: pc = 1− c
R

, i.e. C(s) = 〈1, x(s)〉 = 1.
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Hierarchical Branching Processes.

The following two conditions are equivalent.

• The process is colorblue critical, i.e.,

C(t) = 〈1, x(s)〉 = 1 t ≥ 0.

• The process has the time invariance property at crit-
icality: the frequencies of trees in the forest produced
by the process dynamics are time-invariant

x(t) = exp {GΛ t}π = π, where x(0) = π.
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Hierarchical Branching Processes.

pc = 1−
c

R

Observe that for a hierarchical branching process with
λj = λ21−j and Tk = 2k−1, the critical probability is

pc =
1

2
.

Therefore, R = c
1−pc = 4.

Recall that the critical binary Galton-Watson tree
exhibits both Horton and Tokunaga self-similarities
(Burd, Waymire, and Winn, 2000) with parame-
ters R = 4, (a, c) = (1,2) and

Tk = a · ck−1 = 2k−1.
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Critical binary Galton-Watson tree.

Theorem (YK and Zaliapin, SPA 2019). The tree
of a hierarchical branching process with parameters

λj = λ21−j, pK = 2−K, and Tk = 2k−1

for any λ > 0 is equivalent to the critical binary
Galton-Watson tree GW(λ).
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Hierarchical Branching Processes.

• Invariant under pruning (from the leafs).

• Satisfies the time invariance property at criticality.

• Is it self-similar under other types of pruning?


