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Mean-field Blume-Capel model

Spin model defined on the complete graph on n vertices. The
spin at site j is denoted by ωj , taking values in Λ = {1, 0,−1}.
The configuration space is the set Λn of sequences
ω = (ω1, ω2, . . . , ωn) with each ωj ∈ Λ.

In terms of a positive parameter K > 0 representing the
interaction strength, the Hamiltonian is defined by

Hn,K (ω) =
n∑

j=1

ω2
j −

K
n

 n∑
j=1

ωj

2

.
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Mean-field Blume-Capel model

For n ∈ N, inverse temperature β > 0, and K > 0, the Gibbs
measure or canonical ensemble for the mean-field B-C model
is the sequence of probability measures

Pn,β,K (B) =
1

Zn(β, K )
·
∫

B
exp[−βHn,K ] dPn

where Pn is the product measure with marginals
ρ = 1

3(δ−1 + δ0 + δ1) and Zn(β, K ) is the partition function

Zn(β, K ) =

∫
Λn

exp[−βHn,K ] dPn

Taking the system size n to infinity, called the “thermodynamic
limit”, yields the equilibrium state of the system.
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Mean-field Blume-Capel model

Absorbing the noninteracting component of the Hamiltonian
into the product measure Pn yields

Pn,β,K (dω) =
1

Z̃n(β, K )
· exp

[
nβK

(
Sn(ω)

n

)2
]

Pn,β(dω).

In this formula Sn(ω) equals the total spin
∑n

j=1 ωj , Pn,β is the
product measure on Λn with marginals

ρβ(dωj) =
1

Z (β)
· exp(−βω2

j ) ρ(dωj),

and Z (β) and Z̃n(β, K ) are the appropriate normalizations.
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Mean-field Blume-Capel model

With respect to the mean-field Blume-Capel model Pn,β,K , Sn/n
satisfies the large deviations principle with speed n and rate
function

Iβ,K (z) = Jβ(z)− βKz2 − inf
y∈R

{Jβ(y)− βKy2}

where

cβ(t) = log
∫

Λ
exp(tω1) ρβ(dω1) = log

(
1 + e−β(et + e−t)

1 + 2e−β

)
and

Jβ(z) = sup
t∈R

{tz − cβ(t)}.
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Mean-field Blume-Capel model

Large deviations principle.

(a) For each closed set C,

lim sup
n→∞

1
n

log Pn,β,K

(
Sn

n
∈ C

)
≤ − inf

z∈C
Iβ,K (z)

(b) For each open set G,

lim inf
n→∞

1
n

log Pn,β,K

(
Sn

n
∈ G

)
≥ − inf

z∈G
Iβ,K (z)

Equilibrium macrostates:

Ẽβ,K = {x ∈ [−1, 1] : Iβ,K (x) = 0}
= {x ∈ [−1, 1] : x is a global min pt of Jβ(x)− βKx2}
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Mean-field Blume-Capel model

Free energy functional:

Gβ,K (x) = βKx2 − cβ(2βKx)

Ẽβ,K = {x ∈ [−1, 1] : x is a global min. point of Gβ,K (x)}

Gβ,K exhibits two distinct behaviors for (a) β ≤ βc = log 4 and
(b) β > βc .
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Mean-field Blume-Capel model

β ≤ βc = log 4

K = K (2)
c (β) second-order, continuous phase transition point

Κ < Κc ( )β
(2)

Κ = Κc ( )β
(2) Κ > Κc ( )β

(2)

Κ >> Κc ( )β
(2)
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Mean-field Blume-Capel model

β > βc = log 4
K = K1(β) metastable critical point
K = K (1)

c (β) discontinuous, first-order phase transition point

Κ Κ (β)<
c1 Κ Κ (β)= 1

ΚΚ (β) <1
< Κ  (β)(1)

c
Κ  (β)(1)Κ =

c
Κ  (β)(1)Κ >
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Mean-field Blume-Capel model

Equilibrium phase diagram

β

K (β)

K (β)
K (β )

1

K

β

c

c

( )
c

c

1

2( )

K (β)2( )

c

single phase

dual phase

single phase

R.S. Ellis, P.T. Otto, and H. Touchette in AAP 2005
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Glauber dynamics for BC model

Choose vertex of underlying complete graph uniformly then
update the spin at the vertex according to Pn,β,K conditioned on
the event that the spins at all other vertices remain unchanged.

Reversible Markov chain with stationary distribution Pn,β,K .
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Mixing time of Markov chains

Total variation distance:

‖µ− ν‖TV = sup
A⊂Ω

|µ(A)− ν(A)| = 1
2

∑
x∈Ω

|µ(x)− ν(x)|

Maximal distance to stationary:

d(t) = max
x∈Ω

‖P t(x , ·)− π‖TV

where P t(x , ·) is the transition probability starting in
configuration x and π is the stationary distribution.

Mixing time: Given ε > 0

tmix(ε) = min{t : d(t) ≤ ε}

Rapid vs. slow mixing
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Path coupling method

Let {(X , Y )} be a coupling of P(x , ·) and P(y , ·) for which
X0 = x and Y0 = y . Then

‖P(x , ·)− P(y , ·)‖TV ≤ Px ,y (X 6= Y )

Define a metric ρ on the space of configurations and let
(x = x0, x1, . . . , xr = y) be a minimal path joining configurations
x and y such that each pair of configurations (xj−1, xj) are
neighbors with respect to ρ. Then

Px ,y (X 6= Y ) ≤ Ex ,y [ρ(X , Y )] ≤
n∑

j=1

Exj−1,xj [ρ(Xj−1, Xj)]
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Path coupling method

Suppose the state space Ω of a Markov chain is the vertex set
of a graph with path metric ρ. Suppose that for each edge
{σ, τ} there exists a coupling (X , Y ) of the distributions P(σ, ·)
and P(τ, ·) such that

Eσ,τ [ρ(X , Y )] ≤ ρ(σ, τ)e−α for some α > 0

Then

tmix(ε) ≤
⌈
− log(ε) + log(diam(Ω))

α

⌉
.

Contraction is required for ALL pairs of neighboring
configurations.
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Mean coupling distance for BC dynamics

Path metric ρ on Ωn = {−1, 0, 1}n is defined by

ρ(σ, τ) =
n∑

j=1

1{σj 6= τj}

For a coupling (X , Y ) of one step of the Glauber dynamics of
the BC model starting in neighboring configurations σ and τ ,
asymptotically as n →∞,

Eσ,τ [ρ(X , Y )] ≈ n − 1
n

+
(n − 1)

n

»
c′β

„
2βK

Sn(τ)

n

«
− c′β

„
2βK

Sn(σ)

n

«–
≈ n − 1

n
+

(n − 1)

n
2βK

»
Sn(τ)

n
− Sn(σ)

n

–
c′′β

„
2βK

Sn(σ)

n

«
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Behavior of c′β

Kc (β)(2)

β < βc
β > βc_
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Rapid mixing for β ≤ βc

Eσ,τ [ρ(X , Y )] ≈ n − 1
n

+
(n − 1)

n
2βK

»
Sn(τ)

n
− Sn(σ)

n

–
c′′β

„
2βK

Sn(σ)

n

«
Contraction of mean coupling distance between neighboring configurations σ
and τ if

c′′β

„
2βK

Sn(σ)

n

«
<

1
2βK

For β ≤ βc = log 4,

c′′β

„
2βK

Sn(σ)

n

«
< c′′β (0) =

1

2βK (2)
c (β)

Rapid mixing when K < K (2)
c (β).
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Rapid mixing for β > βc

Aggregate path coupling
Let (σ = x0, x1, . . . , xr = τ) be a path connecting σ to τ and monotone
increasing in ρ such that (xi−1, xi) are neighboring configurations.

Eσ,τ [ρ(X , Y )] ≤
rX

i=1

Exi−1,xi [ρ(Xi−1, Xi)]

=
(n − 1)

n
ρ(σ, τ)

+
(n − 1)

n

»
c′β

„
2βK

n
Sn(τ)

«
− c′β

„
2βK

n
Sn(σ)

«–
Assume Sn(σ)/n ∼ 0.

Eσ,τ [ρ(X , Y )] ≤ K
K1(β)

»
Sn(τ)− Sn(σ)

n

–
≤ ρ(σ, τ)

»
1− 1

n

„
1− K

K1(β)

«–



university-logo

Rapid mixing for β > βc

Let (X , Y ) be a coupling of one step of the Glauber dynamics of
the BC model that begin in configurations σ and τ , not
necessarily neighbors.
Suppose β > βc and K < K1(β). Then for any α ∈

(
0, K1(β)−K

K1(β)

)
there exists an ε > 0 such that, asymptotically as n →∞,

Eσ,τ [ρ(X , Y )] ≤ e−α/nρ(σ, τ)

whenever |Sn(σ)| < εn.
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Rapid mixing for β > βc

For β > βc and K < K1(β)

Pn,β,K{Sn/n ∈ dx} =⇒ δ0 as n →∞.

For Y0
dist
= Pn,β,K ,

‖P t(X0, ·)− Pn,β,K‖TV ≤ P{Xt 6= Yt}
= P{ρ(Xt , Yt) ≥ 1}
≤ E[ρ(Xt , Yt)]

≤ e−αt/nE[ρ(X0, Y0)] + ntPn,β,K{|Sn/n| ≥ ε}
≤ ne−αt/n + ntPn,β,K{|Sn/n| ≥ ε}

Rapid mixing when K < K1(β).
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Slow mixing

Bottleneck ratio (Cheeger constant) argument.

For two configurations ω and τ , define the edge measure Q as

Q(ω, τ) = Pn,β,K (ω)P(ω, τ) and Q(A, B) =
∑

ω∈A,τ∈B

Q(ω, τ)

Here P(ω, τ) is the transition probability of the Glauber dynamics of
the BC model. The bottleneck ratio of the set S is defined by

Φ(S) =
Q(S, Sc)

Pn,β,K (S)
and Φ∗ = min

S:Pn,β,K (S)≤ 1
2

Φ(S)

Then
tmix = tmix(1/4) ≥ 1

4Φ∗
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Slow mixing

Suppose Gβ,K has a minimum (either local or global) point at
z̃ > 0. Let z ′ be the corresponding local maximum point of Gβ,K
such that 0 ≤ z ′ < z̃. Define the bottleneck set

A =

{
ω : z ′ <

Sn(ω)

n
≤ 1

}
The bottleneck set A exists, and thus slow mixing, for (a) β ≤ βc

and K > K (2)
c (β), and (b) β > βc and K > K1(β).
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Equilibrium structure versus mixing times

β

K (β)

K (β)
K (β )

1

K

β

c

c

( )
c

c

1

2( )

K (β)2( )

c

single phase

dual phase

single phase

slow mixing

rapid mixing
slow mixing

Y. K., P.T. Otto, and M. Titus in JSP 2011
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Generalizing

Configuration space:
Let q be a fixed integer and define Λ = {θ1, . . . , θq}, where θi

are any q distinct vectors in Rq and ω = (ω1, ω2, . . . , ωn) ∈ Λn.

Logarithmic moment generating functions:
Let Xi(ω) = ωi be the spin at vertex i . Xi for i = 1, 2, . . . , n are
identically distributed with common distribution ρ. For z ∈ Rq,
define the function

Γ(z) = log

( q∑
i=1

ezi
1
q

)
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Generalizing

Hamiltonian: Hn(ω).

Interaction representation function: For z ∈ Rq, define H(z)
such that

Hn(ω) = nH(Yn(ω))

Canonical ensemble:

Pn,β(B) =
1

Zn(β)

∫
B

exp [−βHn(ω)] dPn =
1

Zn(β)

∫
B

exp [nβ H (Yn(ω))] dPn

where Zn(β) =
∫
Λn exp [−βHn(ω)] dPn.
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Generalizing

Macroscopic quantity:
Yn(ω) = (Yn,1(ω), Yn,2(ω), . . . , Yn,q(ω)).

Large deviations principle: We assume that Yn satisfies the
LDP with respect to prior distribution Pn with rate function I(z).
Then Yn satisfies the LDP with respect to canonical ensemble
Pn,β with rate function

Iβ(z) = I(z)− βH(z)− inf
t
{I(t)− βH(t)}

Equilibrium macrostates:

Eβ := {z : z minimizes I(z)− βH(z)}
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Generalizing

Glauber dynamics: Select a vertex i uniformly and update the
spin at i according to the distribution Pn,β , conditioned to agree
with the spins at all vertices not equal to i .
For a given configuration σ = (σ1, σ2, . . . , σn), denote by σi,θt

the configuration that agrees with σ at all vertices j 6= i and the
spin at the vertex i is θt ; i.e.

σi,θt = (σ1, σ2, . . . , σi−1, θ
t , σi+1, . . . , σn)

Then if the current configuration is σ and vertex i is selected,
the probability the spin at i is updated to θt is equal to

pθt (σ, i) =
enβH(Yn(σi,θt ))∑q

s=1 enβH(Yn(σi,θs ))
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Generalizing

Transition probability in terms of derivative of H: Since the
configurations ω and ωi,θt only differ at a single vertex, we have

H(Yn(ωi,θt ))−H(Yn(ω)) = ∇H(Yn(ω))·[Yn(ωi,θt )−Yn(ω)]+O
(

1
n2

)
Assumption: Yn(ωi,θt )− Yn(ω) = 1

n (θt − ωi)

H(Yn(σi,θt )) = H(Yn(ω)) +
1
n
[
∇H(Yn(ω)) · (θt − ωi)

]
+ O

(
1
n2

)
= H(Yn(ω)) +

1
n

[Dθt H(Yn(ω))− Dωi H(Yn(ω))] + O
(

1
n2

)
= H(Yn(ω)) +

1
n

(Dθt − Dωi ) [H(Yn(ω))] + O
(

1
n2

)
,

where Dµ is the directional derivative w.r.t. µ.
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Generalizing

Then the transition probability pθt (ω, i) has the form

pθt (ω, i) =
eβ(Dθt−Dωi )[H(Yn(ω))]+O

“
1

n2

”
∑q

s=1 eβ(Dθs−Dωi )[H(Yn(ω))]+O
“

1
n2

”

=
eβDθt [H(Yn(ω))]+O

“
1

n2

”
∑q

s=1 eβDθs [H(Yn(ω))]+O
“

1
n2

”

= Dθt Γ(β∇H(Yn(ω))) + O
(

1
n2

)
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Generalizing

pθt (ω, i) = Dθt Γ(β∇H(Yn(ω))) + O
(

1
n2

)
Probability of updating differently: There is a subset M1 of
{1, 2, . . . , q} such that the probability of updating differently is∑
s∈M1

(pλs(ω, k)− pλs(τ, k))

=
∑

s∈M1

(Dθt Γ(β∇H(Yn(ω)))− Dθt Γ(β∇H(Yn(τ)))) + O
(

1
n2

)
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Behavior of c′β for the Blume-Capel

Kc (β)(2)

β < βc
β > βc_


