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Mixing times for Glauber dynamics.

Important question: the relationship between the mixing time
and the equilibrium phase transition of the corresponding statis-
tical mechanical models.

• For models that exhibit a continuous phase transition: used
standard path coupling (Bubley and Dyer ’97). There rapid
mixing is proved by showing contraction of the mean coupling
distance between neighboring configurations.

• For models that exhibit a discontinuous phase transition, the
standard path coupling method fails.

Our approach combines aggregate path coupling and large de-
viation theory to determine the mixing times of a large class
of statistical mechanical models, including those that exhibit a
discontinuous phase transition. The aggregate path coupling
method extends the use of the path coupling technique in the
absence of contraction of the mean coupling distances betweenl
neighboring configurations.
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Markov Chain Monte Carlo (MCMC).

Goal: simulating an Ω-valued random variable distributed ac-
cording to a given probability distribution π(z), given a complex
nature of large discrete space Ω.

MCMC: generating a Markov chain {Xt} over Ω, with distribu-
tion µt(z) = P (Xt = z) converging rapidly to its unique station-
ary distribution, π(z).

Metropolis-Hastings algorithm: Consider a connected neigh-
borhood network with points in Ω. Suppose we know the ratios
of π(z′)

π(z)
for any two neighbor points z and z′ on the network.

Let for z and z′ connected by an edge of the network, the tran-
sition probability be set to

p(z, z′) =
1

M
min

{
1,

π(z′)

π(z)

}
for M large enough.
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Gibbs Sampling: Ising Model.

Every vertex v of G = (V,E) is assigned a spin

σ(v) ∈ {−1,+1}
The probability of a configuration σ ∈ {−1,+1}V is

π(σ) =
e−βH(σ)

Z(β)
, where β =

1

T

| | | | |
− • − • − • − • − • −
| | | | |

− • − • − • − • − • −
| | | | |

− • − • − • − • − • −
| | | | |
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Gibbs Sampling: Ising Model.

Every vertex v of G = (V,E) is assigned a spin

σ(v) ∈ {−1,+1}
The probability of a configuration σ ∈ {−1,+1}V is

π(σ) =
e−βH(σ)

Z(β)
, where β =

1

T

| | | | |
− +1 − −1 − −1 − −1 − +1 −

| | | | |
− +1 − −1 − +1 − +1 − −1 −

| | | | |
− +1 − −1 − −1 − +1 − −1 −

| | | | |
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Gibbs Sampling: Ising Model.

∀σ ∈ {−1,+1}V , the Hamiltonian

H(σ) = −
1

2

∑
u,v: u∼v

σ(u)σ(v) = −
∑

edges e=[u,v]

σ(u)σ(v)

and probability of a configuration σ ∈ {−1,+1}V is

π(σ) =
e−βH(σ)

Z(β)
, where β =

1

T

Z(β) =
∑

σ∈{−1,+1}V
e−βH(σ) - normalizing factor.
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Ising Model: local Hamiltonian

H(σ) = −
1

2

∑
u,v: u∼v

σ(u)σ(v) = −
∑

edges e=[u,v]

σ(u)σ(v)

The local Hamiltonian

Hlocal(σ, v) = −
∑

u: u∼v
σ(u)σ(v) .

Observe: conditional probability for σ(v) is given by
Hlocal(σ, v):

H(σ) = Hlocal(σ, v)−
∑

e=[u1,u2]: u1,u2 6=v

σ(u1)σ(u2)
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Gibbs Sampling: Ising Model via Glauber dynam-
ics.

| | | | |
− +1 − −1 − −1 − −1 − +1 −

| | | | |
− +1 − −1 − σ(v) − +1 − −1 −

| | | | |
− +1 − −1 − −1 − +1 − −1 −

| | | | |

Observe: conditional probability for σ(v) is

given by Hlocal(σ, v):

H(σ) = Hlocal(σ, v)−
∑

e=[u1,u2]: u1,u2 6=v

σ(u1)σ(u2)
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Gibbs Sampling: Ising Model via Glauber
dynamics.

| | | | |
− +1 − −1 − −1 − −1 − +1 −

| | | | |
− +1 − −1 − ? − +1 − −1 −

| | | | |
− +1 − −1 − −1 − +1 − −1 −

| | | | |

Randomly pick v ∈ G, erase the spin σ(v).
Choose σ+ or σ−:

Prob(σ → σ+) = e
−βH(σ+)

e−βH(σ−)+e
−βH(σ+)

= e
−βHlocal(σ+,v)

e−βHlocal(σ−,v)+e
−βHlocal(σ+,v)= e−2β

e−2β+e2β .
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Glauber dynamics: Rapid mixing.

Glauber dynamics - a random walk on state
space S (here {−1,+1}V ) s.t. needed π is
stationary w.r.t. Glauber dynamics.

In high temperatures (i.e. β = 1
T small enough)

it takes O(n logn) iterations to get “ε-close”
to π. Here |V | = n.

Need: maxv∈V deg(v) · tanh(β) < 1

Thus the Glauber dynamics is a fast way to
generate π. It is an important example of
Gibbs sampling.
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Close enough distribution and mixing time.

What is “ε-close” to π? Start with σ0:
| | | | |

− +1 − +1 − +1 − +1 − +1 −
| | | | |

− +1 − +1 − +1 − −1 − −1 −
| | | | |

− −1 − −1 − −1 − −1 − −1 −
| | | | |

If Pt(σ) is the probability distribution after t
iterations, the total variation distance

‖Pt−π‖TV =
1

2

∑
σ∈{−1,+1}V

|Pt(σ)−π(σ)| ≤ ε .
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Mixing Times.

Total variation distance between two distributions µ and ν:

‖µ− ν‖TV = sup
A⊂Ω
|µ(A)− ν(A)| =

1

2

∑
x∈Ω

|µ(x)− ν(x)|

Maximal distance to stationary:

d(t) = max
x∈Ω
‖P t(x, ·)− π‖TV

where P t(x, ·) is the transition probability starting iat x and π is
its stationary distribution.

Definition. Given ε > 0, the mixing time of the Markov chain
is defined by

tmix(ε) = min{t : d(t) ≤ ε}

Mixing times categorized into two groups:

• rapid mixing = polynomial growth w.r.t. system size
• slow mixing = exponential growth w.r.t. system size
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Coupling Method.

Ω - sample space, {p(i, j)}i,j∈Ω - transition probabilities

Construct process (Xt, Yt) on Ω×Ω such that
Xt is a {p(i, j)}-Markov chain and Yt is a {p(i, j)}-Markov chain.

Once Xt = Yt, let Xt+1 = Yt+1, Xt+2 = Yt+2, . . ..

Coupling time: τc = min{t : Xt = Yt}.

Successful coupling: P (τc <∞) = 1



Path Coupling and Aggregate Path Coupling 13

Mixing Times, Coupling and Path Coupling.

Coupling Inequality. Let (Xt, Yt) be a coupling of a
Markov chain where Yt is distributed by the stationary
distribution π. The coupling time of the Markov
chain is defined by

τc := min{t : Xt = Yt}.
Then, for all initial states x,

‖P t(x, ·)− π‖TV ≤ P (Xt 6= Yt) = P (τc > t)

and thus

τmix(ε) ≤
E[τc]

ε

Thus

τmix(ε) = O(E[τc])
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Path coupling method

Let {(X,Y )} be a coupling of P (x, ·) and P (y, ·) for
which X0 = x and Y0 = y. Then

‖P (x, ·)− P (y, ·)‖TV ≤ Px,y(X 6= Y )

Define a metric ρ on the space of configurations and
let (x = x0, x1, . . . , xr = y) be a minimal path joining
configurations x and y such that each pair of con-
figurations (xj−1, xj) are neighbors with respect to ρ.
Then

Px,y(X 6= Y ) ≤ Ex,y[ρ(X,Y )] ≤
n∑

j=1

Exj−1,xj[ρ(Xj−1, Xj)]
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Path coupling method

Suppose the state space Ω of a Markov chain is the
vertex set of a graph with path metric ρ. Suppose
that for each edge {σ, τ} there exists a coupling (X,Y )
of the distributions P (σ, ·) and P (τ, ·) such that

Eσ,τ [ρ(X,Y )] ≤ ρ(σ, τ)e−α for some α > 0

Then

tmix(ε) ≤
⌈
− log(ε) + log(diam(Ω))

α

⌉
.

Contraction is required for ALL pairs of neighboring

configurations.
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Mean-field Blume-Capel model

Spin model defined on the complete graph on n ver-
tices. The spin at site j is denoted by ωj, taking
values in Λ = {1,0,−1}. The configuration space is
the set Λn of sequences ω = (ω1, ω2, . . . , ωn) with each
ωj ∈ Λ.

In terms of a positive parameter K > 0 representing
the interaction strength, the Hamiltonian is defined
by

Hn,K(ω) =
n∑

j=1

ω2
j −

K

n

 n∑
j=1

ωj

2

.
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Mean-field Blume-Capel model

For n ∈ N, inverse temperature β > 0, and K > 0, the
Gibbs measure or canonical ensemble for the mean-
field B-C model is the sequence of probability mea-
sures

Pn,β,K(B) =
1

Zn(β,K)
·
∫
B

exp[−βHn,K] dPn

where Pn is the product measure with marginals ρ =
1
3
(δ−1 + δ0 + δ1) and Zn(β,K) is the partition function

Zn(β,K) =

∫
Λn

exp[−βHn,K] dPn

Taking the system size n to infinity, called the “ther-

modynamic limit”, yields the equilibrium state of the

system.
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Mean-field Blume-Capel model

Absorbing the noninteracting component of the Hamil-
tonian into the product measure Pn yields

Pn,β,K(dω) =
1

Z̃n(β,K)
· exp

[
nβK

(
Sn(ω)

n

)2
]
Pn,β(dω).

In this formula Sn(ω) equals the total spin
∑n

j=1 ωj,
Pn,β is the product measure on Λn with marginals

ρβ(dωj) =
1

Z(β)
· exp(−βω2

j ) ρ(dωj),

and Z(β) and Z̃n(β,K) are the appropriate normaliza-
tions.
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Mean-field Blume-Capel model

With respect to the mean-field Blume-Capel model
Pn,β,K, Sn/n satisfies the large deviations principle with
speed n and rate function

Iβ,K(z) = Jβ(z)− βKz2 − inf
y∈R
{Jβ(y)− βKy2}

where

cβ(t) = log

∫
Λ

exp(tω1) ρβ(dω1) = log

(
1 + e−β(et + e−t)

1 + 2e−β

)
and

Jβ(z) = sup
t∈R
{tz − cβ(t)}.
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Mean-field Blume-Capel model

Large deviations principle.

(a) For each closed set C,

lim sup
n→∞

1

n
logPn,β,K

(
Sn

n
∈ C

)
≤ − inf

z∈C
Iβ,K(z)

(b) For each open set G,

lim inf
n→∞

1

n
logPn,β,K

(
Sn

n
∈ G

)
≥ − inf

z∈G
Iβ,K(z)

Equilibrium macrostates:

Ẽβ,K = {x ∈ [−1,1] : Iβ,K(x) = 0}
= {x ∈ [−1,1] : x is a global min pt of Jβ(x)− βKx2}
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Mean-field Blume-Capel model

Free energy functional:

Gβ,K(x) = βKx2 − cβ(2βKx)

Ẽβ,K = {x ∈ [−1,1] : x is a global min. point of Gβ,K(x)}

Gβ,K exhibits two distinct behaviors for

(a) β ≤ βc = log 4 and (b) β > βc.
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Mean-field Blume-Capel model

β ≤ βc = log 4

K = K(2)
c (β) second-order, continuous phase transition point
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Mean-field Blume-Capel model: Equilibrium phase
diagram

R.S. Ellis, P.T. Otto, and H. Touchette in AAP 2005
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Mean-field Blume-Capel model

β > βc = log 4 K = K1(β) metastable critical point

K = K(1)
c (β) discontinuous, first-order phase transition point
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Mean-field Blume-Capel model: Equilibrium phase
diagram

R.S. Ellis, P.T. Otto, and H. Touchette in AAP 2005
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Glauber dynamics for BC model

Choose vertex of underlying complete graph uniformly
then update the spin at the vertex according to Pn,β,K
conditioned on the event that the spins at all other
vertices remain unchanged.

Reversible Markov chain with stationary distribution
Pn,β,K.
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Mean coupling distance for BC dynamics

Path metric ρ on Ωn = {−1,0,1}n is defined by

ρ(σ, τ) =
n∑

j=1

∣∣σj − τj∣∣
For a coupling (X,Y ) of one step of the Glauber dy-
namics of the BC model starting in neighboring con-
figurations σ and τ , asymptotically as n→∞,

Eσ,τ [ρ(X,Y )] ≈
n− 1

n
+

(n− 1)

n

[
c′β

(
2βK

Sn(τ)

n

)
− c′β

(
2βK

Sn(σ)

n

)]
≈

n− 1

n
+

(n− 1)

n
2βK

[
Sn(τ)

n
−
Sn(σ)

n

]
c′′β

(
2βK

Sn(σ)

n

)
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Behavior of c′β
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Rapid mixing for β ≤ βc

Eσ,τ [ρ(X,Y )] ≈ n−1
n

+(n−1)
n

2βK
[
Sn(τ)
n
− Sn(σ)

n

]
c′′β

(
2βK Sn(σ)

n

)
Contraction of mean coupling distance between neigh-
boring configurations σ and τ if

c′′β

(
2βK

Sn(σ)

n

)
<

1

2βK

For β ≤ βc = log 4,

c′′β

(
2βK

Sn(σ)

n

)
< c′′β(0) =

1

2βK(2)
c (β)

Rapid mixing when K < K(2)
c (β).



Path Coupling and Aggregate Path Coupling 30

Behavior of c′β



Path Coupling and Aggregate Path Coupling 31

Rapid mixing for β > βc.

Aggregate path coupling:

Let (σ = x0, x1, . . . , xr = τ) be a path connecting σ
to τ and monotone increasing in ρ such that (xi−1, xi)
are neighboring configurations.

Eσ,τ [ρ(X,Y )] ≤
r∑

i=1
Exi−1,xi[ρ(Xi−1, Xi)]

=
(n− 1)

n
ρ(σ, τ)+

(n− 1)

n

[
c′β

(
2βK

n
Sn(τ)

)
− c′β

(
2βK

n
Sn(σ)

)]
Assume Sn(σ)/n ∼ 0.

Eσ,τ [ρ(X,Y )] ≤
K

K1(β)

[
Sn(τ)− Sn(σ)

n

]
≤ ρ(σ, τ)

[
1−

1

n

(
1−

K

K1(β)

)]
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Rapid mixing for β > βc

Let (X,Y ) be a coupling of one step of the Glauber
dynamics of the BC model that begin in configura-
tions σ and τ , not necessarily neighbors.

Suppose β > βc and K < K1(β). Then for any α ∈(
0, K1(β)−K

K1(β)

)
there exists an ε > 0 such that, asymp-

totically as n→∞,

Eσ,τ [ρ(X,Y )] ≤ e−α/nρ(σ, τ)

whenever |Sn(σ)| < εn.
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Rapid mixing for β > βc

For β > βc and K < K1(β)

Pn,β,K{Sn/n ∈ dx} =⇒ δ0 as n→∞.

For Y0
dist
= Pn,β,K,

‖P t(X0, ·)− Pn,β,K‖TV ≤ P{Xt 6= Yt}
= P{ρ(Xt, Yt) ≥ 1}
≤ E[ρ(Xt, Yt)]

≤ e−αt/nE[ρ(X0, Y0)] + ntPn,β,K{|Sn/n| ≥ ε}
≤ ne−αt/n + ntPn,β,K{|Sn/n| ≥ ε}

Rapid mixing when K < K1(β).
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Slow mixing

Bottleneck ratio (Cheeger constant) argument.

For two configurations ω and τ , define the edge mea-
sure Q as

Q(ω, τ) = Pn,β,K(ω)P (ω, τ) and Q(A,B) =
∑

ω∈A,τ∈B

Q(ω, τ)

Here P (ω, τ) is the transition probability of the Glauber
dynamics of the BC model. The bottleneck ratio of
the set S is defined by

Φ(S) =
Q(S, Sc)

Pn,β,K(S)
and Φ∗ = min

S:Pn,β,K(S)≤1

2

Φ(S)

Then

tmix = tmix(1/4) ≥
1

4Φ∗
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Slow mixing

Suppose Gβ,K has a minimum (either local or global)
point at z̃ > 0. Let z′ be the corresponding local
maximum point of Gβ,K such that 0 ≤ z′ < z̃. Define
the bottleneck set

A =

{
ω : z′ <

Sn(ω)

n
≤ 1

}
The bottleneck set A exists, and thus slow mixing,
for (a) β ≤ βc and K > K(2)

c (β), and (b) β > βc and
K > K1(β).
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Equilibrium structure versus mixing times

Y. K., P.T. Otto, and M. Titus in JSP 2011
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Generalizing Aggregate Path Coupling Method

Configuration space:

Let q be a fixed integer and define Λ = {e1, e2, . . . , eq},
where ek are the q standard basis vectors of Rq, and
ω = (ω1, ω2, . . . , ωn) ∈ Λn.

The magnetization vector (a.k.a empirical measure
or proportion vector):

Ln(ω) = (Ln,1(ω), Ln,2(ω), . . . , Ln,q(ω)),

where the kth component is defined by

Ln,k(ω) =
1

n

n∑
i=1

δ(ωi, e
k)

- proportion of spins in configuration ω.
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Generalizing Aggregate Path Coupling Method

Interaction representation function:

H(z) = H1(z1) +H2(z2) + . . .+Hq(zq)

Example: for the Curie-Weiss-Potts (CWP) model,

H(z) = −
1

2

〈
z, z
〉

= −
1

2
z2

1 −
1

2
z2

2 − . . .−
1

2
z2
q .

Hamiltonian: Hn(ω) = nH(Ln(ω))

Canonical ensemble:

Pn,β(B) =
1

Zn(β)

∫
B

exp [−βHn(ω)] dPn =
1

Zn(β)

∫
B

exp [nβ H (Ln(ω))] dPn

where Pn = ρ×. . .×ρ and Zn(β) =
∫
Λn

exp [−βHn(ω)] dPn.
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Generalizing Aggregate Path Coupling Method

Relative entropy: R(ν|ρ) =
q∑

k=1
νk log

(
νk
ρk

)
Large deviations principle (R.S. Ellis, K. Haven, and
B. Turkington, JSP 2000): The empirical measure Ln
satisfies the LDP with respect to the Gibbs measure
Pn,β with rate function

Iβ(z) = R(z|ρ) + βH(z)− inf
t
{R(t|ρ) + βH(t)}.

Equilibrium macrostates:

Eβ := {ν ∈ P : ν minimizes R(ν|ρ) + βH(ν)}
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Generalizing Aggregate Path Coupling Method

Let ρ be the uniform distribution.

Logarithmic moment generating function of X1:

Γ(z) = log

(
1

q

q∑
k=1

exp{zk}

)

Free energy functional for the Gibbs ensemble Pn,β:

Gβ(z) = β(−H)∗(−∇H(z))− Γ(−β∇H(z)),

where F ∗(z) = supx∈Rq{〈x, z〉−F (x)} denotes Legendre-
Fenchel transform.

Then (M. Costeniuc, R.S. Ellis, and H. Touchette JMP 2005)

inf
z∈P
{R(z|ρ) + βH(z)} = inf

z∈Rq
{Gβ(z)}

and, therefore, Eβ = {z ∈ P : z minimizes Gβ(z)}
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Generalizing Aggregate Path Coupling Method

Eβ = {z ∈ P : z minimizes Gβ(z)}

We consider only the single phase region of the
Gibbs ensemble; i.e. values of β where Gβ(z) has a
unique global minimum, at zβ. There,

Pn,β(Ln ∈ dx)→ δzβ as n→∞

For the Curie-Weiss-Potts model, the single phase
region are values of β such that

0 < β < βc :=
2(q − 1)

q − 2
log(q − 1)
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Generalizing Aggregate Path Coupling Method

Glauber dynamics: (i) Select a vertex i uniformly,

(ii) Update the spin at vertex i according to the dis-
tribution Pn,β, conditioned on the event that the spins
at all vertices not equal to i remain unchanged.

For configuration σ = (σ1, σ2, . . . , σn), let σi,ek be the
configuration that agrees with σ at all vertices j 6= i
and s.t. the spin at the vertex i is ek; i.e.

σi,ek = (σ1, σ2, . . . , σi−1, e
k, σi+1, . . . , σn)

Then if the current configuration is σ and vertex i is
selected, the probability the spin at i is updated to
ek, denoted by P (σ → σi,ek), is equal to

P (σ → σi,ek) =
exp

{
− βnH(Ln(σi,ek))

}∑q
`=1 exp

{
− βnH(Ln(σi,e`))

}
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Generalizing Aggregate Path Coupling Method

Let gH,β(z) :=
(
gH,β1 (z), . . . , gH,βq (z)

)
, where

gH,β` (z) =
exp (−β [∂`H](z))
q∑

k=1
exp (−β [∂kH](z))

Main Result (Y.K. and Peter T. Otto, JSP 2015):
Let zβ be the unique equilibrium macrostate. Suppose
∃δ ∈ (0,1) s.t.

inf
π:z→zβ

q∑
k=1

∫
π

∣∣∣〈∇gH,βk (y), dy
〉∣∣∣

‖z − zβ‖1
≤ 1− δ

for all z in P. Then the mixing time of the Glauber
dynamics satisfies

tmix = O(n logn)
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Generalizing Aggregate Path Coupling Method

Application: the generalized Curie-Weiss-Potts model
(GCWP).

In GCWP model (B. Jahnel, C. Külske, E. Rudelli,
and J. Wegener, MPRF 2015), for r ≥ 2,

H(z) = −
1

r

q∑
j=1

zrj

Then gH,βk (z) = e
βzr−1
k

e
βzr−1

1 +...+e
βzr−1
q

. Next, define

βs(q, r) := sup
{
β ≥ 0 : gH,βk (z) < zk for all z ∈ P such that zk ∈ (1/q,1]

}
Corollary (Y.K. and Peter T. Otto, JSP 2015):
If β < βs(q, r), then

tmix = O(n logn).
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Generalizing Aggregate Path Coupling Method

Remark: Rapid mixing region for classical Curie-Weiss-
Potts model (GCWP with r = 2) was first obtained
(among other things) in P. Cuff, J. Ding, O. Louidor,
E. Lubetzy, Y. Peres and A. Sly, JSP 2012.

The rapid mixing region for GCWP was obtained in
Y.K. and Peter T. Otto, JSP 2015 as a few page
Corollary to the Main Result.

Note that

βs(q, r) ≤ βc(q, r)
Here, the region of rapid mixing β < βs(q, r) is where

Gβ(z) = β(−H)∗(−∇H(z))− Γ(−β∇H(z))

has a unique local minimum (=global minimum).


