MTH 664 Lectures 16, 17, & 18

Yevgeniy Kovchegov Oregon State University

Topics:

- Statistical independence.
- Laws of large numbers (LLN).
- Borel-Cantelli Lemma.
- Kolmogorov's Maximal Inequality.

MTH 664

Modes of convergence.

Let (Ω, \mathcal{F}, P) be a probability space, and X_1, X_2, \ldots, X are random variables over (Ω, \mathcal{F}) .

• We say that X_n converges to X P-almost everywhere (P-a.e.) if

$$P\left\{\omega\in\Omega:\ \limsup_{n o\infty}|X_n(\omega)-X(\omega)|>0
ight\}=0$$

Since P is a probability measure, we can also say that X_n converges to X P-almost surely (P-a.s.).

• Given p > 0. We say that X_n converges to X in $L^p(\Omega, \mathcal{F}, P)$ if

$$\lim_{n \to \infty} ||X_n - X||_{L^p} = \lim_{n \to \infty} \left(E[|X_n - X|^p] \right)^{1/p} = 0$$

• We say that X_n converges to X in probability (or in P-measure) if for all $\epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

MTH 664

Modes of convergence.

Lemma. $X_n \to X$ *P*-almost surely if and only if

$$P(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}) = 0$$

for any $\epsilon > 0$.

Theorem. (a). Either almost sure convergence or L^p -convergence implies convergence in probability.

- **(b).** Conversely, if $Y_n := \sup_{j: j \ge n} |X_j| \to 0$ in probability, then $X_n \to 0$ P-almost surely.
- (c). If $X_n \to 0$ in probability and $|X_n| \le Y$ (*P*-a.s.) for some $Y \in L^p(\Omega, \mathcal{F}, P)$, then $X_n \to 0$ in L^p .

Statistical independence.

Consider a probability space (Ω, \mathcal{F}, P) .

• Events A and B in (Ω, \mathcal{F}) are **independent** if

$$P(A \cap B) = P(A)P(B)$$

Thus, if P(B) > 0, P(A|B) = P(A).

- Two σ -algebras $\mathcal{G}_1 \subseteq \mathcal{F}$ and $\mathcal{G}_2 \subseteq \mathcal{F}$ are said to be **independent** if all pairs of events $A \in \mathcal{G}_1$ and $B \in \mathcal{G}_2$ are independent.
- Random variables X_1, \ldots, X_n are **independent** if $X_1^{-1}(A_1), \ldots, X_n^{-1}(A_n)$ are independent for all Borel $A_1, \ldots, A_n \in \mathcal{B}$.
- ullet Equivalently, X_1,\ldots,X_n are independent random variables if

$$P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{j=1}^n P(X_j \in B_j) \quad \forall B_1, \dots, B_n \in \mathcal{B}$$

So, the distribution of $X=(X_1,\ldots,X_n)$ is a product measure $\mu_1\times\ldots\times\mu_n$

Statistical independence.

• X_1, \ldots, X_n are **independent** if and only if

$$E[\phi_1(X_1)\cdot\ldots\cdot\phi_n(X_n)]=E[\phi_1(X_1)]\cdot\ldots\cdot E[\phi_n(X_n)]$$

for all Borel measurable $\{\phi_i\}$.

ullet X and Y in $L^2(\Omega,P)$ are said to be **uncorrelated** if their covariance

$$Cov(X,Y) = E\left[(X - E[X])(Y - E[Y])\right] = 0$$

- If X and Y in $L^2(\Omega, P)$ are independent, they are uncorrelated.
- ullet If X_1,\ldots,X_n are pairwise uncorrelated, then

$$Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n)$$

Kolmogorov Extension Theorem.

Kolmogorov Extension Theorem. For each $n \in \mathbb{N}$ let μ_n be a probability measure over $(\mathbb{R}^n, \mathcal{B}^n)$. And let $\{\mu_n\}$ be **consistent**, i.e. for any $n \in \mathbb{N}$ and $\forall A_1, \ldots, A_n \in \mathcal{B}$,

$$\mu_{n+1}(A_1 \times \ldots \times A_n \times \mathbb{R}) = \mu_n(A_1 \times \ldots \times A_n)$$

Then there is a unique probability measure π on $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}^{\mathbb{N}})$ such that for any $n \in \mathbb{N}$ and $\forall A_1, \ldots, A_n \in \mathcal{B}$,

$$\pi(A_1 \times \ldots \times A_n \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \ldots) = \mu_n(A_1 \times \ldots \times A_n)$$

Independent identically distributed (i.i.d.) random variables. If X_1, X_2, \ldots, X_n are independent identically distributed random variables, each with probability distribution μ , then (X_1, \ldots, X_n) is distributed according probability measure

$$\mu_n = \mu \times \ldots \times \mu$$

over $(\mathbb{R}^n, \mathcal{B}^n)$.

The Kolmogorov Extension Theorem implies the existence of $\pi = \mu \times \mu \times \ldots$ on $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}^{\mathbb{N}})$ in which case X_1, X_2, \ldots is a sequence of i.i.d. random variables.

Laws of Large Numbers (WLLN vs. SLLN).

Let $X_1, X_2, ...$ be independent identically distributed (i.i.d.) random variables on a probability space (Ω, \mathcal{F}, P) with finite mean

$$\rho = E[X_j] < \infty$$
 Let $S_n = X_1 + \ldots + X_n$.

The Weak Law of Large Numbers (Khinchin, 1929).

If X_1, X_2, \ldots are in $L^1(\Omega, P)$, then, as $n \to \infty$,

$$\frac{S_n}{n} \longrightarrow \rho$$
 in $L^1(\Omega, P)$,

and hence, in probability, i.e., $P\left(\left|\frac{S_n}{n}-\rho\right|\geq\epsilon\right)\to 0$.

The Strong Law of Large Numbers (Kolmogorov, 1933). If $X_1, X_2, ...$ are in $L^1(\Omega, P)$, then, as $n \to \infty$,

$$\lim_{n \to \infty} \frac{S_n}{n} = \rho \qquad P - a.s.$$

Strong Law of Large Numbers.

The proof of the Strong Law of Large Numbers (SLLN) utilizes the following two probabilistic results, important on their own.

The Borel-Cantelli Lemma. Consider a probability space (Ω, \mathcal{F}, P) and a collection of events $\{A_n\}_{n=1,2,...}$ in \mathcal{F} .

- If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $\sum_{n=1}^{\infty} \mathbf{1}_{A_n} < \infty$ P a.s.
- If A_1,A_2,\ldots are pairwise independent and $\sum_{n=1}^{\infty}P(A_n)=\infty$ then $\sum_{n=1}^{\infty}\mathbf{1}_{A_n}=\infty$ P-a.s.

Kolmogorov's Maximal Inequality. Let $S_n = X_1 + ... + X_n$. If $X_1, X_2, ...$ are independent random variables in $L^2(\Omega, P)$, then $\forall \lambda > 0$ and any $n \in \mathbb{N}$,

$$P\bigg(\max_{1 \le k \le n} \Big| S_k - E[S_k] \Big| \ge \lambda\bigg) \le \frac{Var(S_n)}{\lambda^2}$$

The Borel-Cantelli Lemma.

The Borel-Cantelli Lemma. Consider a probability space (Ω, \mathcal{F}, P) and a collection of events $\{A_n\}_{n=1,2,...}$ in \mathcal{F} .

(a) If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
 then $\sum_{n=1}^{\infty} \mathbf{1}_{A_n} < \infty$ $P - a.s.$

Proof. By the Monotone Convergence Theorem,

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} E[\mathbf{1}_{A_n}] = \lim_{N \to \infty} E\left[\sum_{n=1}^{N} \mathbf{1}_{A_n}\right] = E\left[\lim_{N \to \infty} \sum_{n=1}^{N} \mathbf{1}_{A_n}\right] = E\left[\sum_{n=1}^{\infty} \mathbf{1}_{A_n}\right] < \infty$$

Hence, $\sum_{n=1}^{\infty} \mathbf{1}_{A_n} \in L^1(\Omega, P)$ and therefore

$$\sum_{n=1}^{\infty} \mathbf{1}_{A_n} < \infty \quad P - a.s.$$

The Borel-Cantelli Lemma. (b) If $A_1, A_2, ...$ are pairwise independent and $\sum_{n=1}^{\infty} P(A_n) = \infty$ then $\sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty$ P - a.s.

Proof. If $\sum_{n=1}^{\infty} P(A_n) = \infty$, then

$$Var\left(\sum_{n=1}^{N} \mathbf{1}_{A_n}\right) = \sum_{n=1}^{N} Var(\mathbf{1}_{A_n}) = \sum_{n=1}^{N} P(A_n) \cdot \left(1 - P(A_n)\right) \le \sum_{n=1}^{N} P(A_n) = E\left[\sum_{n=1}^{N} \mathbf{1}_{A_n}\right]$$

and by Chebyshev's inequality, for any $\epsilon > 0$,

$$P\left(\left|\sum_{n=1}^{N} \mathbf{1}_{A_n} - E\left[\sum_{n=1}^{N} \mathbf{1}_{A_n}\right]\right| \ge \epsilon E\left[\sum_{n=1}^{N} \mathbf{1}_{A_n}\right]\right) \le \frac{1}{\epsilon^2 E\left[\sum_{n=1}^{N} \mathbf{1}_{A_n}\right]} = \frac{1}{\epsilon^2 \cdot \sum_{n=1}^{N} P(A_n)}$$

Thus $\frac{\sum_{n=1}^{N} \mathbf{1}_{A_n}}{\sum_{n=1}^{N} P(A_n)}$ converges to 1 in probability, and $P\left(\sum_{n=1}^{\infty} \mathbf{1}_{A_n} < \infty\right) = 0.$

Kolmogorov's Maximal Inequality.

Kolmogorov's Maximal Inequality. Let $S_n = X_1 + ... + X_n$. If $X_1, X_2, ...$ are independent random variables in $L^2(\Omega, P)$, then $\forall \lambda > 0$ and any $n \in \mathbb{N}$,

$$P\left(\max_{1\leq k\leq n}\left|S_k - E[S_k]\right| \geq \lambda\right) \leq \frac{Var(S_n)}{\lambda^2}$$

Proof. Assume $E[X_j] = 0$ for all j, as otherwise we can consider $\tilde{X}_j = X_j - E[X_j]$. Thus we need to prove

$$P\bigg(\max_{1 \le k \le n} |S_k| \ge \lambda\bigg) \le \frac{E[S_n^2]}{\lambda^2}$$

Let $A_1 = \{|S_1| \ge \lambda\}$, and for all $k \ge 2$, let $A_k = \{|S_1| < \lambda, \dots, |S_{k-1}| < \lambda, |S_k| \ge \lambda\}$. Since A_1, A_2, \dots are disjoint, and $S_n^2 \ge 2(S_n - S_k)S_k + S_k^2$,

$$E[S_n^2] \geq \sum_{k=1}^n E[S_n^2 \cdot \mathbf{1}_{A_k}] \geq 2 \sum_{k=1}^n E[(S_n - S_k) S_k \cdot \mathbf{1}_{A_k}] + \sum_{k=1}^n E[S_k^2 \cdot \mathbf{1}_{A_k}]$$

Next, since $S_n - S_k$ and $S_k \cdot 1_{A_k}$ are **independent** random variables,

$$E[(S_n - S_k)S_k \cdot \mathbf{1}_{A_k}] = E[(S_n - S_k)] \cdot E[S_k \cdot \mathbf{1}_{A_k}] = 0$$
and $E[S_n^2] \ge \sum_{k=1}^n E[S_k^2 \cdot \mathbf{1}_{A_k}] \ge \lambda^2 \sum_{k=1}^n P(A_k) = \lambda^2 P(\bigcup_{k=1}^n A_k) \square$

The Strong Law of Large Numbers (Kolmogorov, 1933).

Consider i.i.d. X_1, X_2, \ldots , $\rho = E[X_j]$, and let $S_n = X_1 + \ldots + X_n$.

- (a). If X_1, X_2, \ldots are in $L^1(\Omega, P)$, then, as $n \to \infty$, $\lim_{n \to \infty} \frac{S_n}{n} = \rho$ P a.s.
- **(b).** If $P\left(\limsup_{n\to\infty}\frac{|S_n|}{n}<\infty\right)>0$, then X_1,X_2,\ldots are in $L^1(\Omega,P)$.

Proof of part **(b)**. Suppose $E[|X_j|] = \infty$. Now,

$$\limsup_{n\to\infty}\frac{|X_n|}{n}=\limsup_{n\to\infty}\frac{|S_n-S_{n-1}|}{n}\leq \limsup_{n\to\infty}\frac{|S_n|+|S_{n-1}|}{n}\leq 2\cdot \limsup_{n\to\infty}\frac{|S_n|}{n}$$

Next, for any fixed m > 0,

$$E[|X_1|] = \int |x| d\mu(x) \le m \cdot \sum_{n=0}^{\infty} P(|X_1| \ge nm) = m \cdot \sum_{n=0}^{\infty} P(|X_n| \ge nm)$$

So,
$$\sum_{n=0}^{\infty} P\left(\frac{|X_n|}{n} \geq m\right) = \infty$$
, and the Borel-Cantelli Lemma **(b)**

implies
$$\limsup_{n\to\infty}\frac{|X_n|}{n}\geq m$$
 $a.s.$ Thus, as $m\to\infty$, $\limsup_{n\to\infty}\frac{|X_n|}{n}=\infty$ $a.s.$

Hence,
$$\limsup_{n\to\infty} \frac{|X_n|}{n} \le 2 \cdot \limsup_{n\to\infty} \frac{|S_n|}{n}$$
 implies $\limsup_{n\to\infty} \frac{|S_n|}{n} = \infty$ $a.s.$

The Strong Law of Large Numbers (Kolmogorov, 1933).

Consider i.i.d. X_1, X_2, \ldots , $\rho = E[X_j]$, and let $S_n = X_1 + \ldots + X_n$.

(a). If X_1, X_2, \ldots are in $L^1(\Omega, P)$, then, as $n \to \infty$, $\lim_{n \to \infty} \frac{S_n}{n} = \rho$ P - a.s.

Proof of part (a). Assume $E[X_j] = 0$ for all j, as otherwise we can consider $\tilde{X}_j = X_j - E[X_j]$. We consider two cases, L^2 and general.

 L^2 case. If X_1, X_2, \ldots are in $L^2(\Omega, P)$, then $\sigma^2 = Var(X_j) = E[X_j^2] < \infty$, and by Kolmogorov's Maximal Inequality, for any $\epsilon > 0$,

$$P\left(\max_{1 \le k \le N} |S_k| \ge \epsilon N\right) \le \frac{E[S_N^2]}{\epsilon^2 N^2} = \frac{\sigma^2}{\epsilon^2 N}$$

Next, let $N = 2^n$, then

$$\sum_{n=1}^{\infty} P\left(\max_{1 \le k \le 2^n} |S_k| \ge \epsilon \cdot 2^n\right) \le \sum_{n=1}^{\infty} \frac{\sigma^2}{\epsilon^2 \cdot 2^n} < \infty$$

Borel-Cantelli Lemma $\Longrightarrow \max_{1 \le k \le 2^n} |S_k| < \epsilon \cdot 2^n$ for all but finitely many n's, a.s.

Proof of part (a) (continued). Assume $E[X_j] = 0$ for all j.

 L^2 case. If X_1, X_2, \ldots are in $L^2(\Omega, P)$.

We used Kolmogorov's Maximal Inequality and Borel-Cantelli Lemma to show for any $\epsilon > 0$,

$$\max_{1 \le k \le 2^n} |S_k| < \epsilon \cdot 2^n$$

for all but finitely many n's, a.s. Next we use a **sandwich trick**: For any m there is n s.t. $2^{n-1} < m \le 2^n$ and therefore

$$|S_m| \le \max_{1 \le k \le 2^n} |S_k| < \epsilon \cdot 2^n = 2\epsilon \cdot 2^{n-1} < 2\epsilon m$$

for m large enough, a.s. Then

$$P\left(\bigcap_{M\in\mathbb{N},\ \epsilon=1/M}\left\{\limsup_{m\to\infty}\frac{|S_m|}{m}\leq 2\epsilon\right\}\right)=1$$

proving SLLN for the case when X_1, X_2, \ldots are in $L^2(\Omega, P)$.

For the general case, we use the **truncation** argument.

Proof of part (a) (continued). Assume $E[X_i] = 0$ for all j.

We proved SLLN for the case when X_1, X_2, \ldots are in $L^2(\Omega, P)$.

General case. Suppose X_1, X_2, \ldots are in $L^1(\Omega, P)$. Let

$$\tilde{X}_j = X_j \cdot \mathbf{1}_{|X_j| \le j}$$
 and $\tilde{S}_n = \tilde{X}_1 + \ldots + \tilde{X}_n$

Observe that $\infty > E[|X_j|] \ge \sum_{j=0}^\infty P(|X_j| > j)$, and by the Borel-Cantelli Lemma, $X_j = \tilde{X}_j$ for all but finitely many j, a.s. Thus

$$\left| rac{S_n}{n} - rac{ ilde{S}_n}{n}
ight|
ightarrow \mathsf{0} \quad a.s.$$

Now,

$$\left| E[\tilde{S}_n] \right| = \left| E[\tilde{S}_n - S_n] \right| = \left| \sum_{j=1}^n E[X_j \cdot \mathbf{1}_{|X_j| > j}] \right| \le \sum_{j=1}^n E[|X_1| \cdot \mathbf{1}_{|X_1| > j}] \le E[|X_1| \cdot \min(|X_1|, n)]$$

Thus, by the Monotone Convergence Thmeorem, $\frac{E[S_n]}{n} \to 0$

Hence, we only need to show that $\frac{\tilde{S}_n - E[\tilde{S}_n]}{n} \to 0$ a.s.

Proof of part (a) (continued). Assume $E[X_j] = 0$ for all j. We let $\tilde{X}_j = X_j \cdot \mathbf{1}_{|X_i| \le j}$ and $\tilde{S}_n = \tilde{X}_1 + \ldots + \tilde{X}_n$.

Now, by the Kolmogorov's Maximal Inequality (with independent but not necessarily i.i.d. \tilde{X}_i 's),

$$P\left(\max_{1\leq k\leq N} \left| \tilde{S}_k - E[\tilde{S}_k] \right| \geq \epsilon N \right) \leq \frac{Var(\tilde{S}_N)}{\epsilon^2 N^2} = \frac{Var(\tilde{X}_1) + \dots + Var(\tilde{X}_N)}{\epsilon^2 N^2}$$
$$\leq \frac{E[\tilde{X}_1^2] + \dots + E[\tilde{X}_N^2]}{\epsilon^2 N^2} = \sum_{j=1}^N \frac{E[X_1^2 \cdot \mathbf{1}_{|X_1| \leq j}]}{\epsilon^2 N^2}$$

and, summing up over $N = 2^n$,

$$\begin{split} \sum_{n=1}^{\infty} P\bigg(\max_{1 \leq k \leq 2^n} \left| \tilde{S}_k - E[\tilde{S}_k] \right| &\geq \epsilon \cdot 2^n \bigg) \leq \sum_{n=1}^{\infty} \sum_{j=1}^{2^n} \frac{E[X_1^2 \cdot \mathbf{1}_{|X_1| \leq j}]}{\epsilon^2 2^{2n}} \\ &= \frac{1}{\epsilon^2} \sum_{j=1}^{\infty} \left(E[X_1^2 \cdot \mathbf{1}_{|X_1| \leq j}] \cdot \sum_{n: \ 2^n \geq j} 2^{-2n} \right) \leq \frac{16}{3\epsilon^2} \sum_{j=1}^{\infty} \frac{E[X_1^2 \cdot \mathbf{1}_{|X_1| \leq j}]}{j^2} \\ &= \frac{16}{3\epsilon^2} E\left[X_1^2 \cdot \sum_{j: \ j \geq |X_1|} \frac{1}{j^2} \right] \quad \text{as} \quad \sum_{n=\lfloor \log_2 j \rfloor}^{\infty} 2^{-2n} \leq \frac{4^{2-\log_2 j}}{3}. \end{split}$$

Proof of part (a) (continued). Assume $E[X_j] = 0$ for all j. We let $\tilde{X}_j = X_j \cdot \mathbf{1}_{|X_j| \leq j}$ and $\tilde{S}_n = \tilde{X}_1 + \ldots + \tilde{X}_n$, and showed

$$\sum_{n=1}^{\infty} P\left(\max_{1 \leq k \leq 2^n} \left| \tilde{S}_k - E[\tilde{S}_k] \right| \geq \epsilon \cdot 2^n \right) \leq \frac{16}{3\epsilon^2} E\left[X_1^2 \cdot \sum_{j: \ j \geq |X_1|} \frac{1}{j^2} \right] \leq \frac{32}{3\epsilon^2} E[|X_1|] < \infty$$

as $x \cdot \sum_{j: j > x} \frac{1}{j^2} \le 2$ for all x > 0.

Thus, by the Borel-Cantelli Lemma, for any $\epsilon > 0$,

$$\max_{1 \le k \le 2^n} \left| \tilde{S}_k - E[\tilde{S}_k] \right| < \epsilon \cdot 2^n$$

for all but finitely many n's, a.s. Next we use a **sandwich trick**: For any m there is n s.t. $2^{n-1} < m \le 2^n$ and therefore

$$\left| \tilde{S}_m - E[\tilde{S}_m] \right| \le \max_{1 \le k \le 2^n} \left| \tilde{S}_k - E[\tilde{S}_k] \right| < \epsilon \cdot 2^n = 2\epsilon \cdot 2^{n-1} < 2\epsilon m$$

for m large enough, a.s. Then

$$P\left(\bigcap_{M\in\mathbb{N},\ \epsilon=1/M}\left\{\limsup_{m\to\infty}\frac{\left|\tilde{S}_m-E[\tilde{S}_m]\right|}{m}\leq 2\epsilon\right\}\right)=1$$

proving SLLN for the case when X_1, X_2, \ldots are in $L^1(\Omega, P)$. \square