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Topics:

• Martingales.

• Filtration. Stopping times.

• Probability harmonic functions.

• Optional Stopping Theorem.

• Martingale Convergence Theorem.
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Conditional expectation.

Consider a probability space (Ω,F , P ) and a random variable
X ∈ F.

Let G ⊆ F be a smaller σ-algebra.

Definition. Conditional expectation E[X|G] is a unique func-
tion from Ω to R satisfying:

1. E[X|G] is G-measurable

2.
∫
A

E[X|G] dP (ω) =
∫
A

X dP (ω) for all A ∈ G

The existence and uniqueness of E[X|G] comes from the
Radon-Nikodym theorem.

Lemma. If X ∈ G, Y (ω) ∈ L1(Ω, P ), and X(ω) · Y (ω) ∈ L1(Ω, P ),
then

E[X · Y |G] = X · E[Y |G]
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Conditional expectation.

Consider a probability space (Ω,F , P ) and a random variable
X ∈ F.

Lemma. If G ⊆ F, then E
[
E[X|G]

]
= E[X]

Let G1 ⊆ G2 ⊆ F be smaller sub-σ-algebras.

Lemma.

E
[
E[X|G2] | G1

]
= E[X|G1]

Proof. For any A ∈ G1 ⊆ G2,∫
A

E
[
E[X|G2] | G1

]
(ω) dP (ω) =

∫
A

E[X|G2](ω) dP (ω)

=

∫
A

X(ω) dP (ω) =

∫
A

E[X|G1](ω) dP (ω)
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Filtration.

Definition. Consider an arbitrary linear ordered set T : A
sequence of sub-σ-algebras {Ft}t∈T of F is said to be a
filtration if

Fs ⊆ Ft a.s. ∀s < t ∈ T

Example. Consider a sequence of random variables X1, X2, . . .
on (Ω,F , P ), and let Fn = σ(X1, X2, . . . , Xn) is the smallest
σ-algebra such that X1, X2, . . . , Xn are Fn-measurable. Then
Fn is the smallest filtration that Xn is adapted to, i.e. Xn ∈ Fn.

Important: When filtration Fn is not mentioned in defining
the martingale, submartingale, or supermartingale,

Fn = σ(X1, X2, . . . , Xn)

Definition. Consider a filtration {Fn}. A sequence of random
variables X1, X2, . . . ∈ L1(Ω, P ) adapted to Fn (i.e. Xn ∈ Fn )
is said to be a martingale with respect to {Fn} if

E[Xn+1 | Fn] = Xn a.s. ∀n > 1
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Martingales.

Definition. Consider a filtration {Fn}. A sequence of random
variables X1, X2, . . . ∈ L1(Ω, P ) adapted to Fn (i.e. Xn ∈ Fn )
is said to be a martingale with respect to {Fn} if

E[Xn+1 | Fn] = Xn a.s. ∀n > 1

Example. Let ξ1, ξ2, . . . be independent L1(Ω, P ) random
variables such that

E[ξj] = 0 ∀j ∈ N
Now, let Xn = ξ1 + . . . + ξn. Then

E[Xn+1 | Fn] = E[Xn+ξn+1 | Fn] = Xn+E[ξn+1 | Fn] = Xn+E[ξn+1] = Xn

as ξn+1 is independent of Fn. Specifically, ∀m ∈ N s.t.
1 ≤ m ≤ n, and any Borel A ∈ B,∫

X−1
m (A)

E[ξn+1 | Fn](ω) dP (ω) =

∫
X−1

m (A)

ξn+1(ω) dP (ω) = E[ξn+1·1Xm∈A]

= E[ξn+1]·E[1Xm∈A] =

∫
X−1

m (A)

E[ξn+1] dP (ω)
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Martingales.

Definition. Consider a filtration {Fn}. A sequence of random
variables X1, X2, . . . ∈ L1(Ω, P ) adapted to Fn (i.e. Xn ∈ Fn )
is said to be a martingale with respect to {Fn} if

E[Xn+1 | Fn] = Xn a.s. ∀n > 1

Definition. Consider a filtration {Fn}. A sequence of random
variables X1, X2, . . . ∈ L1(Ω, P ) adapted to Fn is said to be
a supermartingale with respect to {Fn} if

E[Xn+1 | Fn] ≤ Xn a.s. ∀n > 1

Definition. Consider a filtration {Fn}. A sequence of random
variables X1, X2, . . . ∈ L1(Ω, P ) adapted to Fn is said to be
a submartingale with respect to {Fn} if

E[Xn+1 | Fn] ≥ Xn a.s. ∀n > 1

All these definitions can be extended to an arbitrary linear or-
dered set T : Consider a filtration {Ft}t∈T . A sequence of ran-
dom variables {Xt}t∈T adapted to Ft is said to be a martingale
if

E[Xt | Fs] = Xs a.s. ∀s < t ∈ T
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Probability harmonic functions.

Consider a sequence of random variables X1, X2, . . . with asso-
ciated σ-algebras Fn = σ(X1, X2, . . . , Xn).

Definition. A function h(x) is said to be a probability har-
monic function if Mt = h(Xt) is a martingale sequence.

Example. Random walk on Z. Take p ∈ (0,1) , and let
ξ1, ξ2, . . . be i.i.d. Bernoulli random variables such that

ξj =
{

+1 with probability p
−1 with probability q = 1− p

If p = 1
2
, the random walk Xn = X0+ξ1+. . .+ξn is a martingale.

Suppose p 6= 1
2
, then Xn = X0+ξ1+. . .+ξn is not a martingale.

We need a probability harmonic function h(x) such that
Mn = h(Xn) is a martingale. For this, we solve

p · h(Xn + 1) + q · h(Xn − 1) = E[h(Xn+1) | Fn] = h(Xn)

arriving at h(x) = A ·
(

q
p

)x
+ B for any choice of constants A

and B.
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Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set T : A
sequence of sub-σ-algebras {Ft}t∈T of F is said to be a
filtration if

Fs ⊆ Ft a.s. ∀s < t ∈ T

Example. Consider a sequence of random variables X1, X2, . . .
on (Ω,F , P ), and let Fn = σ(X1, X2, . . . , Xn). Then Fn is a
filtration.

Definition. Consider an arbitrary linear ordered set T , and a
filtration {Ft}t∈T . A random variable τ is a stopping time if for
any t ≥ 0,

{τ ≤ t} ∈ Ft

In other words knowing the trajectory of the process up to time
m is sufficient to determine whether {τ ≤ t} occurred.
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Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set T , and a
filtration {Ft}t∈T . A random variable τ is a stopping time if for
any t ≥ 0,

{τ ≤ t} ∈ Ft

In other words knowing the trajectory of the process up to time
m is sufficient to determine whether {τ ≤ t} occurred.

For every stopping time τ we associate a stopped σ-algebra
Fτ ⊆ F defined as

Fτ =
{

A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t
}

Observe that if {Fn} is a filtration, and if X1, X2, . . . is a
sequence of random variables adapted to Fn, and τ is a
stopping time w.r.t. {Fn}, then

Xτ =

∞∑
j=1

Xj · 1τ=j ∈ Fτ
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Filtration. Stopping time.

For every stopping time τ we associate a stopped σ-algebra
Fτ ⊆ F defined as

Fτ =
{

A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t
}

Lemma. Suppose τ1 and τ2 are two stopping times w.r.t.
Fn such that P (τ1 ≤ τ2) = 1 , then

Fτ1 ⊆ Fτ2

Proof. Take A ∈ Fτ1, then ∀t,

A ∩ {τ2 ≤ t} = A ∩ {τ1 ≤ t} ∩ {τ2 ≤ t} P − a.s.

and therefore A ∩ {τ2 ≤ t} ∈ Ft as both A ∩ {τ1 ≤ t} and
{τ2 ≤ t} are in Ft.
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Filtration. Stopping time.

For every stopping time τ we associate a stopped σ-algebra
Fτ ⊆ F defined as

Fτ =
{

A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t
}

Lemma. Suppose τ is a stopping time w.r.t. Fn such that
τ ≤ K a.s. for some integer K > 0. Then, if the sequence
{Xt} is a martingale,

E[XK | Fτ ] = Xτ

Proof. Take A ∈ Fτ , then∫
A

XK(ω) dP (ω) =

K∑
j=0

∫
A∩{τ=j}

XK(ω) dP (ω) =

K∑
j=0

∫
A∩{τ=j}

E[XK|Fj](ω) dP (ω)

=

K∑
j=0

∫
A∩{τ=j}

Xj(ω) dP (ω) =

K∑
j=0

∫
A∩{τ=j}

Xτ(ω) dP (ω) =

∫
A

Xτ(ω) dP (ω)
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Optional Stopping Theorem.

Doob’s Optional Stopping Theorem. Consider a sequence
of random variables X1, X2, . . . on (Ω,F , P ), and let Fn =
σ(X1, X2, . . . , Xn). Suppose τ1 and τ2 are two stopping times
w.r.t. Fn such that either of the following conditions is satis-
fied:

(a) P (τ1 ≤ τ2 ≤ K) = 1 for some K > 0

(b) P (τ1 ≤ τ2 < ∞) = 1 and S = sup
0≤k≤τ2

∣∣Xk

∣∣ ∈ L1(Ω, P )

Then, if the sequence {Xt} is a martingale,

E[Xτ2 | Fτ1] = Xτ1

Similarly, if the sequence {Xt} is a supermartingale, E[Xτ2 | Fτ1] ≤ Xτ1,
and if the sequence {Xt} is a submartingale, E[Xτ2 | Fτ1] ≥ Xτ1.

Proof. (part (a)) Suppose P (τ1 ≤ τ2 ≤ K) = 1 for some integer
K > 0. Then

Fτ1 ⊆ Fτ2 ⊆ FK
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Optional Stopping Theorem.

Proof. (part (a)) Suppose P (τ1 ≤ τ2 ≤ K) = 1 for some
integer K > 0. Then

Fτ1 ⊆ Fτ2 ⊆ FK

and

E[Xτ2|Fτ1] = E
[
E[XK|Fτ2] | Fτ1

]
= E[XK|Fτ1] = Xτ1

Proof. (part (b)) Suppose {Xt} is a martingale. For K > 0,
consider a stopped process Yt = Xt∧K. Then, τ∗1 = τ1 ∧K and
τ∗2 = τ2 ∧ K are both bounded stopping times, as in part (a),
and

E[Yτ ∗
2
| Fτ ∗

1
] = Yτ ∗

1
⇔ E[Yτ2 | Fτ1] = Yτ1

Therefore

E[Xτ2 | Fτ1] + E[(XK −Xτ2) · 1τ2>K | Fτ1] = Xτ1 · 1τ1≤K + XK · 1τ1>K
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Optional Stopping Theorem.

Proof. (part (b)) Suppose {Xt} is a martingale. For K > 0,
consider a stopped process Yt = Xt∧K. Then, τ∗1 = τ1 ∧K and
τ∗2 = τ2 ∧ K are both bounded stopping times, as in part (a),
and

E[Yτ ∗
2
| Fτ ∗

1
] = Yτ ∗

1
⇔ E[Yτ2 | Fτ1] = Yτ1

Therefore
E[Xτ2 | Fτ1] + E[(XK −Xτ2) · 1τ2>K | Fτ1] = Xτ1 · 1τ1≤K + XK · 1τ1>K,

where ∀A ∈ Fτ1,∫
A

E[(XK−Xτ2)·1τ2>K | Fτ1](ω) dP (ω) =

∫
A

(XK(ω)−Xτ2(ω))·1τ2>K(ω) dP (ω) → 0

uniformly (in A) as K →∞ by the DCT as
1

2
· |XK(ω)−Xτ2(ω)| ≤ S(ω) = sup

0≤k≤τ2

∣∣Xk(ω)
∣∣ ∈ L1(Ω, P )

Finally,
Xτ1 · 1τ1≤K + XK · 1τ1>K → Xτ1 in L1(Ω, P )

as

E[|XK| · 1τ1>K] ≤ E[S · 1τ1>K] → 0
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Optional Stopping Theorem.

Example. Random walk on Z. Take p ∈ (0,1) , and let
ξ1, ξ2, . . . be i.i.d. Bernoulli random variables such that

ξj =
{

+1 with probability p
−1 with probability q = 1− p

Consider integers 0 < x0 < M . Let X0 = x0 and Xn =
X0 + ξ1 + . . . + ξn. Then, the first hitting time

τ = min{t > 0 : Xt = 0 or Xt = M}

is a stopping time w.r.t. filtration Fn = σ(X1, X2, . . . , Xn).

We want to find P (Xτ = M).

If p = 1
2
, the random walk Xn = X0+ξ1+. . .+ξn is a martingale,

and by part (b) of the Optional Stopping Theorem,

P (Xτ = M) =
x0

M
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Optional Stopping Theorem.

Example. Random walk on Z. Take p ∈ (0,1) , and let
ξ1, ξ2, . . . be i.i.d. Bernoulli random variables such that

ξj =
{

+1 with probability p
−1 with probability q = 1− p

Consider integers 0 < x0 < M . Let X0 = x0 and Xn =
X0 + ξ1 + . . . + ξn. Then, the first hitting time

τ = min{t > 0 : Xt = 0 or Xt = M}
is a stopping time w.r.t. filtration Fn = σ(X1, X2, . . . , Xn).

We want to find P (Xτ = M).

If p 6= 1
2
, then Xn = X0 + ξ1 + . . . + ξn is not a martingale, but

Mn = h(Xn) is a martingale when h(x) = A ·
(

q
p

)x
+ B for any

choice of constants A and B. Then, taking A 6= 0, by part
(b) of the Optional Stopping Theorem,

P (Xτ = M) =
h(x0)− h(0)

h(M)− h(0)
=

1−
(

q
p

)x0

1−
(

q
p

)M
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Martingale Convergence Theorem.

Jensen’s inequality: If ϕ is a convex function, then

E[ϕ(X)|G] ≥ ϕ
(
E[X|G]

)
a.s.

Proposition. If Xn is a submartingale w.r.t. Fn and ϕ is
an non-decreasing convex function with E[|ϕ(Xn)| < ∞ for all
n, then ϕ(Xn) is a submartingale w.r.t. Fn.

Proof. By Jensen’s inequality,

E[ϕ(Xn+1)|Fn] ≥ ϕ
(
E[Xn+1|Fn]

)
≥ ϕ(Xn) a.s.
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Martingale Convergence Theorem.

Suppose Xn is a submartingale:

E[Xn+1 | Fn] ≥ Xn a.s. ∀n > 1

Let a < b and let N0 = −1,

N2k+1 = inf{n > N2k : Xn ≤ a} k = 0,1, . . . ,

N2k = inf{n > N2k−1 : Xn ≥ b} k = 1,2, . . .

Then Nj are stopping times,

{N2k−1 < n ≤ N2k} = {N2k−1 ≤ n− 1} ∩ {N2k ≤ n− 1}c ∈ Fn−1

and

Hn =
{

1 if N2k−1 < n ≤ N2k for some k ≥ 1
0 otherwise

∈ Fn−1

Such time intervals
[
N2k−1, N2k

]
are called upcrossings.

Let Un = sup{k : N2k ≤ n} denote the number of upcrossings
by time n.
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Martingale Convergence Theorem.

Hn =
{

1 if N2k−1 < n ≤ N2k for some k ≥ 1
0 otherwise

∈ Fn−1

Such time intervals
[
N2k−1, N2k

]
are called upcrossings.

Let Un = sup{k : N2k ≤ n} denote the number of upcrossings
by time n.

The Upcrossing Inequality. If {Xn}n=0,1,... is a submartingale,
then

(b− a) · E[Un] ≤ E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
Proof. Observe that Yn = a+(Xn−a)+ is also a submartingale,
and it upcrosses [a, b] the same number of times as Xn does,
and therefore

(b− a) · Un ≤ (H · Y )n =

n∑
m=1

Hm · (Ym − Ym−1)

as (H·Y )n adds up the upcrossings Y (N2k)− Y (N2k−1) ≥ b− a of Y .

Finally, (b− a) · E[Un] ≤ E[(H · Y )n] ≤ E[Yn − Y0] = E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
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Martingale Convergence Theorem.

Proof. Observe that Yn = a+(Xn−a)+ is also a submartingale,
and it upcrosses [a, b] the same number of times as Xn does,
and therefore

(b− a) · Un ≤ (H · Y )n =

n∑
m=1

Hm · (Ym − Ym−1)

as (H·Y )n adds up the upcrossings Y (N2k)− Y (N2k−1) ≥ b− a of Y .

Finally, (b− a) · E[Un] ≤ E[(H · Y )n] ≤ E[Yn − Y0] = E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
as Hn ∈ Fn−1 and

E[Yn − Y0]− E[(H · Y )n] = E

[
n∑

m=1

(1−Hm) · (Ym − Ym−1)

]

= E

[
n∑

m=1

(1−Hm) · E[Ym − Ym−1|Fm−1]

]
≥ 0
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Martingale Convergence Theorem.

The Martingale Convergence Theorem. Suppose Xn is a
submartingale such that

sup
n

E[X+
n ] < ∞

Then, as n →∞,

Xn → X a.s.

where X ∈ L1(Ω, P ).

Proof. From the Upcrossing Inequality, ∀a < b,

(b− a) · E[Un] ≤ E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
and, as (x− a)+ ≤ x+ + |a|,

E[Un] ≤
E

[
X+

n

]
+ |a|

b− a

Thus, since supn E[X+
n ] < ∞, and since Un is an increasing

sequence,

Un ↑ U, where E[U ] < ∞ and U < ∞ a.s.
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Martingale Convergence Theorem.

Proof. From the Upcrossing Inequality, ∀a < b,

(b− a) · E[Un] ≤ E
[
(Xn − a)+

]
− E

[
(X0 − a)+

]
and, as (x− a)+ ≤ x+ + |a|,

E[Un] ≤
E

[
X+

n

]
+ |a|

b− a

Thus, since supn E[X+
n ] < ∞, and since Un is an increasing

sequence,

Un ↑ U, where E[U ] < ∞ and U < ∞ a.s.

Thus

P

( ⋃
a,b∈Q

{
lim inf

n→∞
Xn < a < b < lim sup

n→∞
Xn

} )
= 0

and therefore

lim inf
n→∞

Xn = limsup
n→∞

Xn a.s.
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Martingale Convergence Theorem.

Proof. (continued)

lim inf
n→∞

Xn = limsup
n→∞

Xn a.s.

Finally, we need to show that X = lim
n→∞

Xn is in L1(Ω, P ).

By Fatou’s Lemma,

E[X+] ≤ lim inf
n→∞

E[X+
n ] < ∞

Now, since Xn is a submartingale,

E[X−
n ] = E[X+

n ]− E[Xn] ≤ E[X+
n ]− E[X0],

and by Fatou’s Lemma,

E[X−] ≤ lim inf
n→∞

E[X−
n ] ≤ sup

n
E[X+

n ]− E[X0] < ∞
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Polya’s Urn.

Polya's Urn

We begin with R0 red marbles and G0 green marbles in the
urn, at time t = 0. At each iteration, a marble is selected from
the urn, uniformly at random. Then the marble is returned to
the urn, and D marbles of the same color as the selected marble
are added into the urn.

Let Rn and Gn denote respectively the number of red and
green marbles after n iterations. Then the fraction of the red
marbles at time n,

ρn =
Rn

Rn + Gn
is a martingale:

E[ρn+1 | Fn] =
Rn + D

Rn + Gn + D
·

Rn

Rn + Gn
+

Rn

Rn + Gn + D
·

Gn

Rn + Gn
=

Rn

Rn + Gn
= ρn
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Polya’s Urn.

Polya's Urn

The fraction of the red marbles at time n,

ρn =
Rn

Rn + Gn

is a martingale:

E[ρn+1 | Fn] =
Rn + D

Rn + Gn + D
·

Rn

Rn + Gn
+

Rn

Rn + Gn + D
·

Gn

Rn + Gn
=

Rn

Rn + Gn
= ρn

Thus, by the Martingale Convergence Theorem,

ρn → ρ∞ a.s.

Here one can show that ρ∞ is a beta random variable with
parameters (R0 + D, G0 + D) and density function

f(x) =
1

B
(
R0 + D, G0 + D

) · xR0+D−1(1− x)G0+D−1 0 ≤ x ≤ 1


