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Probability harmonic functions.

Optional Stopping Theorem.

Martingale Convergence T heorem.
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Conditional expectation.

Consider a probability space (€2,F,P) and a random variable
X e F.

Let G C F be a smaller o-algebra.
Definition. Conditional expectation FE[X]|G] is a unique func-
tion from 2 to R satisfying:

1. FE[X|G] is G-measurable

2. [ E[X|G] dP(w) = [ X dP(w) forall Aeg
A A

The existence and uniqueness of FE[X]|G] comes from the
Radon-Nikodym theorem.

Lemma. If X €G, Y(w) € L1(,P), and X(w)-Y(w) € LY(2, P),
then

E[X - Y|G] = X - E[Y]|]]
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Conditional expectation.

Consider a probability space (€2,F,P) and a random variable
X e F.

Lemma. If GC F, then E[E[X|G]] = E[X]

Let G1 C Go C F be smaller sub-o-algebras.

Lemma.
E[E[X|G2] | G1] = E[X|G]

Proof. For any A € G; C Go,

/ E[E[X|G2] | 61](w) dP(w) = / E[X|G2](w) dP(w)

A A

:/X(w) dP(w)Z/E[Xgl](w) dP(w)
A A

[]
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Filtration.

Definition. Consider an arbitrary linear ordered set T: A
sequence of sub-o-algebras {Filier of F is said to be a
filtration if

FsCF as. Vs<t €T

Example. Consider a sequence of random variables X, Xo,...

on (2,F,P), and let F, = o(X1,X>5,...,X,) is the smallest
o-algebra such that X1, X»,...,X,, are F,-measurable. Then
Fn is the smallest filtration that X,, is adapted to, i.e. X, € F.,.

Important: When filtration F,, is not mentioned in defining
the martingale, submartingale, or supermartingale,

Fn=0(X1,X0,...,Xp)

Definition. Consider a filtration {F,}. A sequence of random
variables X1,X»,... € L1(Q,P) adaptedto F, (i.e. X, € Fn)
is said to be a martingale with respect to {F,} if

EXp41 | Fal =X as. Vn>1
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Martingales.

Definition. Consider a filtration {F,}. A sequence of random
variables X1,X»,... € L1(Q2,P) adaptedto F, (i.e. X, € Fn)
is said to be a martingale with respect to {F,} if

EXpt1 | Fal = Xn as. Vn>1

Example. Let ¢&1,&,... be independent L}(2,P) random
variables such that

Elg]=0 VjeN
Now, let X, =& +...4+&,. Then
E[Xpt1 | Fol = ElXn+6nv1 | Ful = X+ Ent1 | Ful = Xn+HE[41] = X

as &,4+1 is independent of F,. Specifically, Vm € N s.t.
1 <m <n, and any Borel A e B,

/ E[£n+1 ‘ fn] (W) dP(w) - / fn-l-l(w) dp(w) - E[én-l—l'leGA]
Xt (A)

XM (A)

7

= E[gn—l—l]'E[leeA] = / E[£n+1] dP(w)

XM (A)
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Martingales.

Definition. Consider a filtration {F,}. A sequence of random
variables Xi1,Xo,... € L'(Q,P) adapted to F, (i.e. X, € Fn)
is said to be a martingale with respect to {F,} if

E[Xn—|—1 | Fol=Xn as. Vn>1

Definition. Consider a filtration {F,}. A sequence of random
variables Xi,X»5,... € LY(Q,P) adapted to F, is said to be
a supermartingale with respect to {F,} if

EXpy1 | Fal <X as. Yn>1

Definition. Consider a filtration {F,}. A sequence of random
variables Xi,X»,... € L'(Q2,P) adapted to F, is said to be
a submartingale with respect to {F,} if

E[Xn_|_1 | Fnl > X a.s. VYn>1

All these definitions can be extended to an arbitrary linear or-
dered set T: Consider a filtration {Fi}ier. A sequence of ran-
dom variables {X:}icr adapted to F; is said to be a martingale
if

EX: | F]l=Xs as. Vs<t €T
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Probability harmonic functions.

Consider a sequence of random variables X, Xo,... with asso-
ciated o-algebras F, = o(X1,X2,...,X5).

Definition. A function h(xz) is said to be a probability har-
monic function if M; = h(X;) is a martingale sequence.

Example. Random walk on Z. Take p € (0,1) , and let
£1,&2,... Dbei.i.d. Bernoulli random variables such that

¢ = +1  with probability p
77 -1  with probability g =1 —p

If p= % the random walk X, = Xo+&1+...+&, isa martingale.

Suppose p # %, then X, = Xo+&1+...4&, is not a martingale.
We need a probability harmonic function h(xz) such that
M, = h(X,) is a martingale. For this, we solve

arriving at h(z) = A - (g)x + B for any choice of constants A
and B.
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Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set T: A
sequence of sub-o-algebras {Fi}ier of F is said to be a
filtration if

FsCF as. Vs<t €T

Example. Consider a sequence of random variables X, Xo,...
on (2,F,P), and let F, = o(X1,X>5,...,X,). Then F, is a
filtration.

Definition. Consider an arbitrary linear ordered set 7T, and a
filtration {Fi}ier. A random variable 7 is a stopping time if for
any t > 0,

{r<t}eF

In other words knowing the trajectory of the process up to time
m is sufficient to determine whether {r <t} occurred.
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Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set 7T, and a
filtration {Fi}ier. A random variable 7 is a stopping time if for
any t > 0,

{TSt}E]‘—t

In other words knowing the trajectory of the process up to time
m is sufficient to determine whether {r <t} occurred.

For every stopping time 7+ we associate a stopped o-algebra
Fr CF defined as

Fr={AecF : An{r<t}eFR Wt}

Observe that if {F,} is a filtration, and if Xi,X5,... is a
sequence of random variables adapted to F,, and 7+ is a
stopping time w.r.t. {F,}, then

[e.e]
X, = ZXj 1,—; €F:
j=1
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Filtration. Stopping time.

For every stopping time 7+ we associate a stopped o-algebra
Fr CF defined as

Fr={AeF : An{r<tleFR Wt}

Lemma. Suppose 71 and 7 are two stopping times w.r.t.
Fn such that P(r1 <m) =1, then

Frn © Fry

Proof. Take A € F., then Vi,
AN{m <t} =An{n <t}n{m <t} P —a.s.

and therefore AnN{m <t}eF as both An{m <t} and
{2 <t} arein F.

[]



MTH 664 11

Filtration. Stopping time.

For every stopping time T we associate a stopped o-algebra
Fr C F defined as

F={AcF : An{r<t}eF vt}

Lemma. Suppose 7 is a stopping time w.r.t. F,, such that
T < K a.s. for some integer K > 0. Then, if the sequence
{X:} is a martingale,

E[Xk | 7] = X,

Proof. Take A € F., then

K K
/ Xg(w) dP(w) = Y / Xk (w) dP(w) =Y / E[Xk]F)(w) dP(w)

A I=0 An{r=4} I=0 An(r=4}

K K
_ Z / X;(w) dP(w) = Z / X (w) dP(w) = /XT(W) dP(w)

I=0 pr\{r=4} I=0 An(r=4} A

[]
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Optional Stopping Theorem.

Doob’'s Optional Stopping Theorem. Consider a seguence
of random variables Xi,Xo,... on (,F,P), and let F, =
o(X1,X2,...,X,). Suppose 71 and m» are two stopping times
w.r.t. F, such that either of the following conditions is satis-
fied:

(d) P(n<m<K)=1 forsome K >0

(b) P(ri<m<oo)=1 and S= sup |Xk’ c LY(Q, P)
0<k<ms
Then, if the sequence {X:} is a martingale,
E[XTz ‘ fn] = Xn

Similarly, if the sequence {X;} isasupermartingale, E[X,, | F] < X,
and if the sequence {X:} is asubmartingale, E[X,, | Fr] > X.,.

Proof. (part (a)) Suppose P(m1 <1 < K) =1 for some integer
K > 0. Then

lenggng
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Optional Stopping Theorem.

Proof. (part (a@)) Suppose P(rp < m» < K) = 1 for some
integer K > 0. Then

Fr C Fr, C Fk
and
E[X.|Fn] = E|E[Xk|Fn] | Fr| = B[Xk|Fr] = X5,
[]

Proof. (part (b)) Suppose {X:} is a martingale. For K > 0O,
consider a stopped process Y; = X x. Then, 77 =71 AK and
5 = ™ AN K are both bounded stopping times, as in part (a),
and

E [YT;
Therefore

E[X7'2 ‘ -7:71] + E[(XK - XTz) ) 17’2>K ‘ -7'—71] — X7'1 ) 17’1§K + Xk - 17‘1>K

fo] — Y;'f <~ E[YT2 | le] — YTl
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Optional Stopping Theorem.

Proof. (part (b)) Suppose {X:} is a martingale. For K > 0O,
consider a stopped process Y; = X x. Then, 77 =71 AK and
75 = 72 A K are both bounded stopping times, as in part (a),
and

E[YTQ* | fo] - Y'Tik < E[YTQ | -7'—7'1] - YT1
Therefore
E[XTQ ‘ le] + E[(XK - XTQ) B PN ‘ ]:71] = Xn - ln<k + Xk - 1: >k,

where VA e F.,
/E[(XK—XTQ)-L»K | Frnl(w) dP(w) = /(Xx(w)—Xm(w))-lmK(w) dP(w) — 0
A A
uniformly (in A) as K — oo by the DCT as

2 Xk(@) = Xn(@)] < S@) = sup |Xu(w)| €L, P)
2 0<k<ms
Finally,
Xl + Xk 1,5k — X, in LY(Q,P)
as
E[‘XK|'17'1>K] < E[S'17'1>K] — 0
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Optional Stopping Theorem.

Example. Random walk on Z. Take p € (0,1) , and let
£1,€2,... Dbei.i.d. Bernoulli random variables such that

¢ = +1  with probability p
77 -1  with probability g =1 —p

Consider integers 0 < zg < M. Let Xg = 2o and X, =
Xo+ & + ...+ &,. Then, the first hitting time

r=min{t>0 : X, =0 or X;= M}
is a stopping time w.r.t. filtration F, = o(X1,X>,...,X,).
We want to find P(X, = M).

If p= % the random walk X, = Xo+4+&1+...4&, is a martingale,
and by part (b) of the Optional Stopping Theorem,

P(X,=M)="2
M
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Optional Stopping Theorem.

Example. Random walk on Z. Take p € (0,1) , and let
£1,€2,... Dbei.i.d. Bernoulli random variables such that

¢ = +1  with probability p
77 =1  with probability g=1—p

Consider integers 0 < g < M. Let Xo = zo and X, =
Xo+ &+ ...+ &.. Then, the first hitting time

szin{t>O:Xt=O or Xf:]\/[}
is a stopping time w.r.t. filtration F, = (X1, X>2,...,X5).
We want to find P(X, = M).

If p# % then X, =Xo+& +...+&, is not a martingale, but
M, = h(X,) is a martingale when h(z) = A- (%)qu + B for any
choice of constants A and B. Then, taking A # 0, by part
(b) of the Optional Stopping Theorem,

)"

h(zo) —h(0) _ 1~ (
A= h(©) ~ 1 _ (1)"

P(X, = M) =

B (VIR
N—
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Martingale Convergence T heorem.
Jensen’s inequality: If ¢ is a convex function, then

Ele(X)|6] > ¢(EIX|G])  as.

Proposition. If X, is a submartingale w.r.t. F, and ¢ is
an non-decreasing convex function with E[|¢(X,)| < oo for all
n, then ¢(X,) is a submartingale w.r.t. F,.

Proof. By Jensen’s inequality,

Elp(Xot)IF] > ¢(ElXn1lFal) > o(X0)  as.



MTH 664 18

Martingale Convergence T heorem.

Suppose X, is a submartingale:

E[Xn41 | Ful 2 X0 a.s.

Vn > 1

Let a<b and let Ng = —1,
N2k+1 = iﬂf{n > Nop @ X, < a} k=20,1,...,
Nop. = il’]f{n > Nop_1 . Xp > b} k=12,

Then N; are stopping times,

{Nok—1 <n < Nogt ={Nojp—1 <n—1}N{Nopy <n—1}° € Fr1
and

1 if Nop_1 <n< Ny, forsomek>1
Hn = {O otherwise € Fn-1

Such time intervals [Ngk_l,NQk] are called upcrossings.

Let U, =sup{k : Ny, <n} denote the number of upcrossings
by time n.
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Martingale Convergence T heorem.
H, = 1 if Ngk_.l <n< Ny, forsomek>1 c Fo
O otherwise

Such time intervals [N%_l,NQk] are called upcrossings.

Let U, =sup{k : Ny, <n} denote the number of upcrossings
by time n.

The Upcrossing Inequality. If {X,},=01,.. iSa submartingale,
then

(b—a) - E[U,] < E[(Xn - )] - E[(Xo - a)*]
Proof. Observe that Y, = a+(X,—a)T is also a submartingale,

and it upcrosses [a,b] the same number of times as X, does,
and therefore

(b=a) - Un < (H-Y)n =Y Hpn (Yo~ Y1)
m=1

as (H-Y), adds up the upcrossings Y (Noi) —Y(Noip_1) >b—a of Y.
Finally, (b—a)-E[Ud] < B[(H - Y)n] < E[Ya = Yo] = E[(Xa —a)¥] - E[(Xo — a)*]
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Martingale Convergence T heorem.

Proof. Observe that Y, = a+(X,—a)t is also a submartingale,
and it upcrosses [a,b] the same number of times as X, does,

and therefore

(b—a) Uy < (H-Y)n= ZHm-(Ym—Ym_l)
m=1

as (H-Y), adds up the upcrossings Y (Noi) —Y(Nop_1) >b—a of Y.
Finally, (b—a)-E[Ua] < B[(H - Y)n] < E[Ya = Yo] = E[(Xa —a)¥] - E[(Xo — a)*]
as H, € F,-1 and

ElYs = Yol = BI(H - Y)al = E | Y (1 = Hn) - (Y = Yin-1)

m=1

— E Z(l—Hm)-E[Ym—Ym_llfm_l] >0

m=1
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Martingale Convergence T heorem.

The Martingale Convergence Theorem. Suppose X, is a
submartingale such that

sup E[X 1] < oo
Then, as n — oo,
X, — X a.s.
where X € L1(Q, P).
Proof. From the Upcrossing Inequality, Va < b,
(b—a) E[U,] < E|(Xn—a)t] = B[(Xo - a)T]

and, as (z—a)T <zt 4+ |al,
E|[Xf] + lal

b—a

Thus, since sup, E[X;] < oo, and since U, is an increasing
sequence,

EUn] <

U,TU, where E[U] <o and U< > a.s.
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Martingale Convergence T heorem.
Proof. From the Upcrossing Inequality, Va < b,
(b—a)- E[Ua] < E[(Xa—a)t] = E[(Xo - a)*]
and, as (z—a)T <zt 4 |al,
E|[X] +lal
b—a

E[U] <
Thus, since suan[Xf{] < oo, and since U, is an increasing

sequence,
U,TU, where E[U] <> and U< > a.s.

Thus
P( U {Iimiann<a<b<Iimsuan} ):o

n—oo n— 00
a,beQ
and therefore

liminf X, =Ilimsup X,, a.s.

n—oo n—00
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Martingale Convergence T heorem.

Proof. (continued)
liminf X,, = limsup X,, a.s.

n—oo n— 00

Finally, we need to show that X = Ilim X,, isin L(,P).

n—oo

By Fatou’'s Lemma,
E[XT] < liminfE[X]] < o
Now, since X, is a submartingale,
E[X,] = E[X;F]-E[X,] < E[X]] - E[X0],
and by Fatou’'s Lemma,
E[X7] < liminfE[X,;] < supE[X]] - E[Xo] < oo

n—00 n
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Polya’s Urn. o
®

Polya's Urn

We begin with Rp red marbles and Gg green marbles in the
urn, at time ¢t = 0. At each iteration, a marble is selected from
the urn, uniformly at random. Then the marble is returned to
the urn, and D marbles of the same color as the selected marble
are added into the urn.

Let R, and (G, denote respectively the number of red and
green marbles after n iterations. Then the fraction of the red

marbles at time n,
Ry,

P = R+ G

is a martingale:

_ R.,+D Bo R, Gn R,
- R, +G.+DR,+G, R,+G.+DR,+G, R.,+G.

E[Pn-l—l ‘ Fal Pn
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Polya’s Urn. @
@

Polya's Urn

The fraction of the red marbles at time n,

Pr = R+ G

is a martingale:

R.+ D Bn R, Gn Ry
R,+Gn+D R,+Gy R,+Gn+D R,+Gn R,+Gn
Thus, by the Martingale Convergence Theorem,

Pn — Poo a.s.

Here one can show that p. is a beta random variable with
parameters (Ro+ D,Go+ D) and density function

P

E[Pn—l—l ‘ }—n] =

1
f(z) = gfotP-1(q _ g)GotD-1 0<z<1
B(Ro + D,Go + D)




