MTH 664 Lectures 24 - 27

Yevgeniy Kovchegov Oregon State University

Topics:

- Martingales.
- Filtration. Stopping times.
- Probability harmonic functions.
- Optional Stopping Theorem.
- Martingale Convergence Theorem.

Conditional expectation.

Consider a probability space (Ω, \mathcal{F}, P) and a random variable $X \in \mathcal{F}$.

Let $\mathcal{G} \subseteq \mathcal{F}$ be a smaller σ -algebra.

Definition. Conditional expectation $E[X|\mathcal{G}]$ is a unique function from Ω to \mathbb{R} satisfying:

- 1. $E[X|\mathcal{G}]$ is \mathcal{G} -measurable
- 2. $\int_A E[X|\mathcal{G}] \ dP(\omega) = \int_A X \ dP(\omega) \text{ for all } A \in \mathcal{G}$

The existence and uniqueness of $E[X|\mathcal{G}]$ comes from the Radon-Nikodym theorem.

Lemma. If $X \in \mathcal{G}$, $Y(\omega) \in L^1(\Omega, P)$, and $X(\omega) \cdot Y(\omega) \in L^1(\Omega, P)$, then

$$E[X \cdot Y|\mathcal{G}] = X \cdot E[Y|\mathcal{G}]$$

Conditional expectation.

Consider a probability space (Ω, \mathcal{F}, P) and a random variable $X \in \mathcal{F}$.

Lemma. If $\mathcal{G} \subseteq \mathcal{F}$, then $E[E[X|\mathcal{G}]] = E[X]$

Let $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$ be smaller sub- σ -algebras.

Lemma.

$$E[E[X|\mathcal{G}_2] \mid \mathcal{G}_1] = E[X|\mathcal{G}_1]$$

Proof. For any $A \in \mathcal{G}_1 \subseteq \mathcal{G}_2$,

$$\int_{A} E[E[X|\mathcal{G}_{2}] \mid \mathcal{G}_{1}](\omega) \ dP(\omega) = \int_{A} E[X|\mathcal{G}_{2}](\omega) \ dP(\omega)$$

$$= \int_{A} X(\omega) dP(\omega) = \int_{A} E[X|\mathcal{G}_{1}](\omega) dP(\omega)$$

Filtration.

Definition. Consider an arbitrary linear ordered set T: A sequence of sub- σ -algebras $\{\mathcal{F}_t\}_{t\in T}$ of \mathcal{F} is said to be a filtration if

$$\mathcal{F}_s \subseteq \mathcal{F}_t$$
 a.s. $\forall s < t \in T$

Example. Consider a sequence of random variables X_1, X_2, \ldots on (Ω, \mathcal{F}, P) , and let $\mathcal{F}_n = \sigma(X_1, X_2, \ldots, X_n)$ is the smallest σ -algebra such that X_1, X_2, \ldots, X_n are \mathcal{F}_n -measurable. Then \mathcal{F}_n is the smallest filtration that X_n is adapted to, i.e. $X_n \in \mathcal{F}_n$.

Important: When filtration \mathcal{F}_n is not mentioned in defining the martingale, submartingale, or supermartingale,

$$\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$$

Definition. Consider a filtration $\{\mathcal{F}_n\}$. A sequence of random variables $X_1, X_2, \ldots \in L^1(\Omega, P)$ adapted to \mathcal{F}_n (i.e. $X_n \in \mathcal{F}_n$) is said to be a martingale with respect to $\{\mathcal{F}_n\}$ if

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n \quad a.s. \quad \forall n > 1$$

Martingales.

Definition. Consider a filtration $\{\mathcal{F}_n\}$. A sequence of random variables $X_1, X_2, \ldots \in L^1(\Omega, P)$ adapted to \mathcal{F}_n (i.e. $X_n \in \mathcal{F}_n$) is said to be a martingale with respect to $\{\mathcal{F}_n\}$ if

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n \quad a.s. \quad \forall n > 1$$

Example. Let ξ_1, ξ_2, \ldots be independent $L^1(\Omega, P)$ random variables such that

$$E[\xi_j] = 0 \quad \forall j \in \mathbb{N}$$

Now, let $X_n = \xi_1 + \ldots + \xi_n$. Then

$$E[X_{n+1} \mid \mathcal{F}_n] = E[X_n + \xi_{n+1} \mid \mathcal{F}_n] = X_n + E[\xi_{n+1} \mid \mathcal{F}_n] = X_n + E[\xi_{n+1}] = X_n$$
 as ξ_{n+1} is independent of \mathcal{F}_n . Specifically, $\forall m \in \mathbb{N}$ s.t. $1 \leq m \leq n$, and any Borel $A \in \mathcal{B}$,

$$\int_{X_m^{-1}(A)} E[\xi_{n+1} \mid \mathcal{F}_n](\omega) \, dP(\omega) = \int_{X_m^{-1}(A)} \xi_{n+1}(\omega) \, dP(\omega) = E[\xi_{n+1} \cdot \mathbf{1}_{X_m \in A}]$$

$$= E[\xi_{n+1}] \cdot E[\mathbf{1}_{X_m \in A}] = \int_{X_m^{-1}(A)} E[\xi_{n+1}] \, dP(\omega)$$

Martingales.

Definition. Consider a filtration $\{\mathcal{F}_n\}$. A sequence of random variables $X_1, X_2, \ldots \in L^1(\Omega, P)$ adapted to \mathcal{F}_n (i.e. $X_n \in \mathcal{F}_n$) is said to be a martingale with respect to $\{\mathcal{F}_n\}$ if

$$E[X_{n+1} \mid \mathcal{F}_n] = X_n \quad a.s. \quad \forall n > 1$$

Definition. Consider a filtration $\{\mathcal{F}_n\}$. A sequence of random variables $X_1, X_2, \ldots \in L^1(\Omega, P)$ adapted to \mathcal{F}_n is said to be a supermartingale with respect to $\{\mathcal{F}_n\}$ if

$$E[X_{n+1} \mid \mathcal{F}_n] \leq X_n \quad a.s. \quad \forall n > 1$$

Definition. Consider a filtration $\{\mathcal{F}_n\}$. A sequence of random variables $X_1, X_2, \ldots \in L^1(\Omega, P)$ adapted to \mathcal{F}_n is said to be a submartingale with respect to $\{\mathcal{F}_n\}$ if

$$E[X_{n+1} \mid \mathcal{F}_n] \geq X_n \quad a.s. \quad \forall n > 1$$

All these definitions can be extended to an arbitrary linear ordered set T: Consider a filtration $\{\mathcal{F}_t\}_{t\in T}$. A sequence of random variables $\{X_t\}_{t\in T}$ adapted to \mathcal{F}_t is said to be a martingale if

$$E[X_t \mid \mathcal{F}_s] = X_s \quad a.s. \quad \forall s < t \in T$$

Probability harmonic functions.

Consider a sequence of random variables $X_1, X_2, ...$ with associated σ -algebras $\mathcal{F}_n = \sigma(X_1, X_2, ..., X_n)$.

Definition. A function h(x) is said to be a probability harmonic function if $M_t = h(X_t)$ is a martingale sequence.

Example. Random walk on \mathbb{Z} . Take $p \in (0,1)$, and let ξ_1, ξ_2, \ldots be i.i.d. Bernoulli random variables such that

$$\xi_j = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } q = 1 - p \end{cases}$$

If $p = \frac{1}{2}$, the random walk $X_n = X_0 + \xi_1 + ... + \xi_n$ is a martingale.

Suppose $p \neq \frac{1}{2}$, then $X_n = X_0 + \xi_1 + \ldots + \xi_n$ is not a martingale. We need a **probability harmonic function** h(x) such that $M_n = h(X_n)$ is a martingale. For this, we solve

$$p \cdot h(X_n + 1) + q \cdot h(X_n - 1) = E[h(X_{n+1}) \mid \mathcal{F}_n] = h(X_n)$$

arriving at $h(x) = A \cdot \left(\frac{q}{p}\right)^x + B$ for any choice of constants A and B.

Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set T: A sequence of sub- σ -algebras $\{\mathcal{F}_t\}_{t\in T}$ of \mathcal{F} is said to be a filtration if

$$\mathcal{F}_s \subseteq \mathcal{F}_t$$
 a.s. $\forall s < t \in T$

Example. Consider a sequence of random variables $X_1, X_2, ...$ on (Ω, \mathcal{F}, P) , and let $\mathcal{F}_n = \sigma(X_1, X_2, ..., X_n)$. Then \mathcal{F}_n is a filtration.

Definition. Consider an arbitrary linear ordered set T, and a filtration $\{\mathcal{F}_t\}_{t\in T}$. A random variable τ is a stopping time if for any $t\geq 0$,

$$\{\tau \leq t\} \in \mathcal{F}_t$$

In other words knowing the trajectory of the process up to time m is sufficient to determine whether $\{\tau \leq t\}$ occurred.

Filtration. Stopping time.

Definition. Consider an arbitrary linear ordered set T, and a filtration $\{\mathcal{F}_t\}_{t\in T}$. A random variable τ is a stopping time if for any t>0,

$$\{\tau \leq t\} \in \mathcal{F}_t$$

In other words knowing the trajectory of the process up to time m is sufficient to determine whether $\{\tau \leq t\}$ occurred.

For every stopping time au we associate a stopped σ -algebra $\mathcal{F}_{ au} \subset \mathcal{F}$ defined as

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F} : A \cap \{ \tau \leq t \} \in \mathcal{F}_{t} \quad \forall t \right\}$$

Observe that if $\{\mathcal{F}_n\}$ is a filtration, and if X_1, X_2, \ldots is a sequence of random variables adapted to \mathcal{F}_n , and τ is a stopping time w.r.t. $\{\mathcal{F}_n\}$, then

$$X_{\tau} = \sum_{j=1}^{\infty} X_j \cdot \mathbf{1}_{\tau=j} \in \mathcal{F}_{\tau}$$

MTH 664

Filtration. Stopping time.

For every stopping time $\ au$ we associate a stopped σ -algebra $\mathcal{F}_{\tau}\subseteq\mathcal{F}$ defined as

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \quad \forall t \right\}$$

Lemma. Suppose τ_1 and τ_2 are two stopping times w.r.t. \mathcal{F}_n such that $P(\tau_1 \leq \tau_2) = 1$, then

$$\mathcal{F}_{ au_1} \subseteq \mathcal{F}_{ au_2}$$

Proof. Take $A \in \mathcal{F}_{\tau_1}$, then $\forall t$,

$$A \cap \{\tau_2 \le t\} = A \cap \{\tau_1 \le t\} \cap \{\tau_2 \le t\}$$
 $P - a.s.$

and therefore $A \cap \{\tau_2 \leq t\} \in \mathcal{F}_t$ as both $A \cap \{\tau_1 \leq t\}$ and $\{\tau_2 \leq t\}$ are in \mathcal{F}_t .

Filtration. Stopping time.

For every stopping time au we associate a stopped σ -algebra $\mathcal{F}_{ au} \subset \mathcal{F}$ defined as

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \quad \forall t \right\}$$

Lemma. Suppose τ is a stopping time w.r.t. \mathcal{F}_n such that $\tau \leq K$ a.s. for some integer K > 0. Then, if the sequence $\{X_t\}$ is a martingale,

$$E[X_K \mid \mathcal{F}_{\tau}] = X_{\tau}$$

Proof. Take $A \in \mathcal{F}_{\tau}$, then

$$\int_{A} X_{K}(\omega) dP(\omega) = \sum_{j=0}^{K} \int_{A \cap \{\tau=j\}} X_{K}(\omega) dP(\omega) = \sum_{j=0}^{K} \int_{A \cap \{\tau=j\}} E[X_{K}|\mathcal{F}_{j}](\omega) dP(\omega)$$

$$= \sum_{j=0}^{K} \int_{A \cap \{\tau=j\}} X_j(\omega) dP(\omega) = \sum_{j=0}^{K} \int_{A \cap \{\tau=j\}} X_{\tau}(\omega) dP(\omega) = \int_{A} X_{\tau}(\omega) dP(\omega)$$

Optional Stopping Theorem.

Doob's Optional Stopping Theorem. Consider a sequence of random variables X_1, X_2, \ldots on (Ω, \mathcal{F}, P) , and let $\mathcal{F}_n = \sigma(X_1, X_2, \ldots, X_n)$. Suppose τ_1 and τ_2 are two stopping times w.r.t. \mathcal{F}_n such that **either** of the following conditions is satisfied:

(a)
$$P(\tau_1 \le \tau_2 \le K) = 1$$
 for some $K > 0$

(b)
$$P(\tau_1 \le \tau_2 < \infty) = 1$$
 and $S = \sup_{0 \le k \le \tau_2} \left| X_k \right| \in L^1(\Omega, P)$

Then, if the sequence $\{X_t\}$ is a martingale,

$$E[X_{\tau_2} \mid \mathcal{F}_{\tau_1}] = X_{\tau_1}$$

Similarly, if the sequence $\{X_t\}$ is a supermartingale, $E[X_{\tau_2} \mid \mathcal{F}_{\tau_1}] \leq X_{\tau_1}$, and if the sequence $\{X_t\}$ is a submartingale, $E[X_{\tau_2} \mid \mathcal{F}_{\tau_1}] \geq X_{\tau_1}$.

Proof. (part (a)) Suppose $P(\tau_1 \le \tau_2 \le K) = 1$ for some integer K > 0. Then

$$\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2} \subseteq \mathcal{F}_K$$

MTH 664

Optional Stopping Theorem.

Proof. (part **(a)**) Suppose $P(\tau_1 \le \tau_2 \le K) = 1$ for some integer K > 0. Then

$$\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2} \subseteq \mathcal{F}_K$$

and

$$E[X_{\tau_2}|\mathcal{F}_{\tau_1}] = E[E[X_K|\mathcal{F}_{\tau_2}] \mid \mathcal{F}_{\tau_1}] = E[X_K|\mathcal{F}_{\tau_1}] = X_{\tau_1}$$

Proof. (part **(b)**) Suppose $\{X_t\}$ is a martingale. For K>0, consider a stopped process $Y_t=X_{t\wedge K}$. Then, $\tau_1^*=\tau_1\wedge K$ and $\tau_2^*=\tau_2\wedge K$ are both bounded stopping times, as in part **(a)**, and

$$E[Y_{\tau_2^*} \mid \mathcal{F}_{\tau_1^*}] = Y_{\tau_1^*} \quad \Leftrightarrow \quad E[Y_{\tau_2} \mid \mathcal{F}_{\tau_1}] = Y_{\tau_1}$$

Therefore

$$E[X_{\tau_2} \mid \mathcal{F}_{\tau_1}] + E[(X_K - X_{\tau_2}) \cdot \mathbf{1}_{\tau_2 > K} \mid \mathcal{F}_{\tau_1}] = X_{\tau_1} \cdot \mathbf{1}_{\tau_1 \le K} + X_K \cdot \mathbf{1}_{\tau_1 > K}$$

Optional Stopping Theorem.

Proof. (part **(b)**) Suppose $\{X_t\}$ is a martingale. For K>0, consider a stopped process $Y_t=X_{t\wedge K}$. Then, $\tau_1^*=\tau_1\wedge K$ and $\tau_2^*=\tau_2\wedge K$ are both bounded stopping times, as in part **(a)**, and

$$E[Y_{\tau_2^*} \mid \mathcal{F}_{\tau_1^*}] = Y_{\tau_1^*} \quad \Leftrightarrow \quad E[Y_{\tau_2} \mid \mathcal{F}_{\tau_1}] = Y_{\tau_1}$$

Therefore

$$E[X_{\tau_2} \mid \mathcal{F}_{\tau_1}] + E[(X_K - X_{\tau_2}) \cdot \mathbf{1}_{\tau_2 > K} \mid \mathcal{F}_{\tau_1}] = X_{\tau_1} \cdot \mathbf{1}_{\tau_1 < K} + X_K \cdot \mathbf{1}_{\tau_1 > K},$$

where $\forall A \in \mathcal{F}_{\tau_1}$,

$$\int_A E[(X_K - X_{\tau_2}) \cdot \mathbf{1}_{\tau_2 > K} \mid \mathcal{F}_{\tau_1}](\omega) \ dP(\omega) = \int_A (X_K(\omega) - X_{\tau_2}(\omega)) \cdot \mathbf{1}_{\tau_2 > K}(\omega) \ dP(\omega) \to 0$$

uniformly (in A) as $K \to \infty$ by the DCT as

$$\frac{1}{2} \cdot |X_K(\omega) - X_{\tau_2}(\omega)| \leq S(\omega) = \sup_{0 \leq k \leq \tau_2} |X_k(\omega)| \in L^1(\Omega, P)$$

Finally,

$$X_{\tau_1} \cdot 1_{\tau_1 \leq K} + X_K \cdot 1_{\tau_1 > K} \rightarrow X_{\tau_1} \quad \text{in} \quad L^1(\Omega, P)$$

as

$$E[|X_K| \cdot \mathbf{1}_{\tau_1 > K}] \leq E[S \cdot \mathbf{1}_{\tau_1 > K}] \rightarrow 0$$

Optional Stopping Theorem.

Example. Random walk on \mathbb{Z} . Take $p \in (0,1)$, and let ξ_1, ξ_2, \ldots be i.i.d. Bernoulli random variables such that

$$\xi_j = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } q = 1-p \end{cases}$$

Consider integers $0 < x_0 < M$. Let $X_0 = x_0$ and $X_n = X_0 + \xi_1 + \ldots + \xi_n$. Then, the first hitting time

$$\tau = \min\{t > 0 : X_t = 0 \text{ or } X_t = M\}$$

is a stopping time w.r.t. filtration $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$.

We want to find $P(X_{\tau} = M)$.

If $p = \frac{1}{2}$, the random walk $X_n = X_0 + \xi_1 + \ldots + \xi_n$ is a martingale, and by part **(b)** of the Optional Stopping Theorem,

$$P(X_{\tau} = M) = \frac{x_0}{M}$$

Optional Stopping Theorem.

Example. Random walk on \mathbb{Z} . Take $p \in (0,1)$, and let ξ_1, ξ_2, \ldots be i.i.d. Bernoulli random variables such that

$$\xi_j = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } q = 1 - p \end{cases}$$

Consider integers $0 < x_0 < M$. Let $X_0 = x_0$ and $X_n = X_0 + \xi_1 + \ldots + \xi_n$. Then, the first hitting time

$$\tau = \min\{t > 0 : X_t = 0 \text{ or } X_t = M\}$$

is a stopping time w.r.t. filtration $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$.

We want to find $P(X_{\tau} = M)$.

If $p \neq \frac{1}{2}$, then $X_n = X_0 + \xi_1 + \ldots + \xi_n$ is not a martingale, but $M_n = h(X_n)$ is a martingale when $h(x) = A \cdot \left(\frac{q}{p}\right)^x + B$ for any choice of constants A and B. Then, taking $A \neq 0$, by part **(b)** of the Optional Stopping Theorem,

$$P(X_{\tau} = M) = \frac{h(x_0) - h(0)}{h(M) - h(0)} = \frac{1 - \left(\frac{q}{p}\right)^{x_0}}{1 - \left(\frac{q}{p}\right)^M}$$

Martingale Convergence Theorem.

Jensen's inequality: If φ is a convex function, then

$$E[\varphi(X)|\mathcal{G}] \geq \varphi(E[X|\mathcal{G}])$$
 a.s

Proposition. If X_n is a submartingale w.r.t. \mathcal{F}_n and φ is an non-decreasing convex function with $E[|\varphi(X_n)| < \infty$ for all n, then $\varphi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n .

Proof. By Jensen's inequality,

$$E[\varphi(X_{n+1})|\mathcal{F}_n] \geq \varphi(E[X_{n+1}|\mathcal{F}_n]) \geq \varphi(X_n)$$
 a.s.

Martingale Convergence Theorem.

Suppose X_n is a submartingale:

$$E[X_{n+1} \mid \mathcal{F}_n] \geq X_n \quad a.s. \quad \forall n > 1$$

Let a < b and let $N_0 = -1$,

$$N_{2k+1} = \inf\{n > N_{2k} : X_n \le a\}$$
 $k = 0, 1, ...,$

$$N_{2k} = \inf\{n > N_{2k-1} : X_n \ge b\}$$
 $k = 1, 2, ...$

Then N_j are stopping times,

$$\{N_{2k-1} < n \le N_{2k}\} = \{N_{2k-1} \le n-1\} \cap \{N_{2k} \le n-1\}^c \in \mathcal{F}_{n-1}$$

and

$$H_n = \begin{cases} 1 & \text{if } N_{2k-1} < n \le N_{2k} & \text{for some } k \ge 1 \\ 0 & \text{otherwise} \end{cases} \in \mathcal{F}_{n-1}$$

Such time intervals $[N_{2k-1}, N_{2k}]$ are called upcrossings.

Let $U_n = \sup\{k : N_{2k} \le n\}$ denote the number of upcrossings by time n.

Martingale Convergence Theorem.

$$H_n = \begin{cases} 1 & \text{if } N_{2k-1} < n \le N_{2k} & \text{for some } k \ge 1 \\ 0 & \text{otherwise} \end{cases} \in \mathcal{F}_{n-1}$$

Such time intervals $[N_{2k-1}, N_{2k}]$ are called upcrossings.

Let $U_n = \sup\{k : N_{2k} \le n\}$ denote the number of upcrossings by time n.

The Upcrossing Inequality. If $\{X_n\}_{n=0,1,...}$ is a submartingale, then

$$(b-a) \cdot E[U_n] \le E[(X_n-a)^+] - E[(X_0-a)^+]$$

Proof. Observe that $Y_n = a + (X_n - a)^+$ is also a submartingale, and it upcrosses [a,b] the same number of times as X_n does, and therefore

$$(b-a) \cdot U_n \le (H \cdot Y)_n = \sum_{m=1}^n H_m \cdot (Y_m - Y_{m-1})$$

as $(H \cdot Y)_n$ adds up the upcrossings $Y(N_{2k}) - Y(N_{2k-1}) \ge b - a$ of Y.

Finally,
$$(b-a) \cdot E[U_n] \le E[(H \cdot Y)_n] \le E[Y_n - Y_0] = E[(X_n - a)^+] - E[(X_0 - a)^+]$$

Martingale Convergence Theorem.

Proof. Observe that $Y_n = a + (X_n - a)^+$ is also a submartingale, and it upcrosses [a,b] the same number of times as X_n does, and therefore

$$(b-a) \cdot U_n \le (H \cdot Y)_n = \sum_{m=1}^n H_m \cdot (Y_m - Y_{m-1})$$

as $(H \cdot Y)_n$ adds up the upcrossings $Y(N_{2k}) - Y(N_{2k-1}) \ge b - a$ of Y.

Finally,
$$(b-a) \cdot E[U_n] \le E[(H \cdot Y)_n] \le E[Y_n - Y_0] = E[(X_n - a)^+] - E[(X_0 - a)^+]$$

as $H_n \in \mathcal{F}_{n-1}$ and

$$E[Y_n - Y_0] - E[(H \cdot Y)_n] = E\left[\sum_{m=1}^n (1 - H_m) \cdot (Y_m - Y_{m-1})\right]$$

$$= E\left[\sum_{m=1}^{n} (1 - H_m) \cdot E[Y_m - Y_{m-1} | \mathcal{F}_{m-1}]\right] \ge 0$$

Martingale Convergence Theorem.

The Martingale Convergence Theorem. Suppose X_n is a submartingale such that

$$\sup_{n} E[X_{n}^{+}] < \infty$$

Then, as $n \to \infty$,

$$X_n \to X$$
 a.s.

where $X \in L^1(\Omega, P)$.

Proof. From the Upcrossing Inequality, $\forall a < b$,

$$(b-a) \cdot E[U_n] \le E[(X_n-a)^+] - E[(X_0-a)^+]$$

and, as $(x-a)^+ \le x^+ + |a|$,

$$E[U_n] \le \frac{E\left[X_n^+\right] + |a|}{b - a}$$

Thus, since $\sup_n E[X_n^+] < \infty$, and since U_n is an increasing sequence,

 $U_n \uparrow U$, where $E[U] < \infty$ and $U < \infty$ a.s.

Martingale Convergence Theorem.

Proof. From the Upcrossing Inequality, $\forall a < b$,

$$(b-a) \cdot E[U_n] \le E[(X_n-a)^+] - E[(X_0-a)^+]$$

and, as $(x-a)^+ \le x^+ + |a|$,

$$E[U_n] \le \frac{E\left[X_n^+\right] + |a|}{b - a}$$

Thus, since $\sup_n E[X_n^+] < \infty$, and since U_n is an increasing sequence,

$$U_n \uparrow U$$
, where $E[U] < \infty$ and $U < \infty$ a.s.

Thus

$$P\bigg(\bigcup_{\substack{a \ b \in \mathbb{O}}} \Big\{ \liminf_{n \to \infty} X_n < a < b < \limsup_{n \to \infty} X_n \Big\} \bigg) = 0$$

and therefore

$$\liminf_{n \to \infty} X_n = \limsup_{n \to \infty} X_n \quad a.s.$$

MTH 664

Martingale Convergence Theorem.

Proof. (continued)

$$\liminf_{n \to \infty} X_n = \limsup_{n \to \infty} X_n \quad a.s.$$

Finally, we need to show that $X = \lim_{n \to \infty} X_n$ is in $L^1(\Omega, P)$.

By Fatou's Lemma,

$$E[X^+] \leq \liminf_{n \to \infty} E[X_n^+] < \infty$$

Now, since X_n is a submartingale,

$$E[X_n^-] = E[X_n^+] - E[X_n] \le E[X_n^+] - E[X_0],$$

and by Fatou's Lemma,

$$E[X^-] \leq \liminf_{n \to \infty} E[X_n^-] \leq \sup_n E[X_n^+] - E[X_0] < \infty$$

Polya's Urn.

Polya's Urn

We begin with R_0 red marbles and G_0 green marbles in the urn, at time t=0. At each iteration, a marble is selected from the urn, uniformly at random. Then the marble is returned to the urn, and D marbles of the same color as the selected marble are added into the urn.

Let R_n and G_n denote respectively the number of red and green marbles after n iterations. Then the fraction of the red marbles at time n,

$$\rho_n = \frac{R_n}{R_n + G_n}$$

is a **martingale**:

$$E[\rho_{n+1} \mid \mathcal{F}_n] = \frac{R_n + D}{R_n + G_n + D} \cdot \frac{R_n}{R_n + G_n} + \frac{R_n}{R_n + G_n + D} \cdot \frac{G_n}{R_n + G_n} = \frac{R_n}{R_n + G_n} = \rho_n$$

Polya's Urn.

The fraction of the red marbles at time n,

$$\rho_n = \frac{R_n}{R_n + G_n}$$

is a **martingale**:

$$E[\rho_{n+1} \mid \mathcal{F}_n] = \frac{R_n + D}{R_n + G_n + D} \cdot \frac{R_n}{R_n + G_n} + \frac{R_n}{R_n + G_n + D} \cdot \frac{G_n}{R_n + G_n} = \frac{R_n}{R_n + G_n} = \rho_n$$

Thus, by the Martingale Convergence Theorem,

$$\rho_n \rightarrow \rho_{\infty}$$
 a.s.

Here one can show that ρ_{∞} is a beta random variable with parameters $(R_0 + D, G_0 + D)$ and density function

$$f(x) = \frac{1}{B(R_0 + D, G_0 + D)} \cdot x^{R_0 + D - 1} (1 - x)^{G_0 + D - 1} \qquad 0 \le x \le 1$$