MTH 664 - Lectures 6 and 7

Yevgeniy Kovchegov
Oregon State University
Topics:

• Measure and Integral.

• Random variables.

• Expectation.

• Jensen’s inequality.

• Convergence theorems.
Measure and Integral.

Definition 1. A collection \mathcal{F} of subsets of Ω is a σ-algebra if

1. $\Omega \in \mathcal{F}$
2. $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$
3. If $A_1, A_2, A_3, \ldots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$

The elements of \mathcal{F} are said to be \mathcal{F}-measurable.

Note: \mathcal{F} is an algebra if the latter condition is substituted with $\bigcup_{j=1}^{N} A_j \in \mathcal{F}$ for all $N < \infty$.

If Ω is a topological space (e.g. \mathbb{R}^n), the σ-algebra generated by all open sets is called a Borel σ-algebra, and the elements are called the Borel sets.
Measure and Integral.

Definition 2. A set function $\mu : \mathcal{F} \rightarrow [0, \infty]$ is called a measure on a measurable space (Ω, \mathcal{F}) if

1. $\mu(\emptyset) = 0$

2. For any sequence of disjoint (mutually non-intersecting) subsets $A_1, A_2, \ldots,$

$$\mu \left(\bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} \mu(A_j)$$

If $\mu(\Omega) = 1$, than μ is a probability measure. In this case, μ will satisfy all the axioms of probability, and a measurable subset $A \in \mathcal{F}$ is an event.
Measure and Integral.

Definition 3. Suppose \mathcal{G} is a collection of subsets of Ω. A set function $\mu : \mathcal{G} \to \mathbb{R}$ is **countably additive** on \mathcal{G} if for any sequence of disjoint (mutually non-intersecting) subsets A_1, A_2, \ldots in \mathcal{G},

$$
\mu \left(\bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} \mu(A_j)
$$

Famous examples.

• **Dirac point-mass.** $\delta_x(A) = 1$ if $x \in A$ and $\delta_x(A) = 0$ if $x \notin A$

• **Lebesgue measure** μ on $\Omega = \mathbb{R}^d$.

$$
m \left([a_1, b_1) \times \cdots \times [a_d, b_d) \right) = \prod_{j=1}^{d} (b_j - a_j)
$$
Probability measure.

Let P be a probability measure on (Ω, \mathcal{F}). Then the following properties can be shown.

(1.) **Monotonicity:** If $A \subseteq B$ then $P(B) \geq P(A)$

(2.) **Subadditivity:** $P(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} P(A_j)$

(3.) **Continuity from below:** If $A_1 \subseteq A_2 \subseteq \ldots$ then
$$\lim_{j \to \infty} P(A_j) = P(\bigcup_{j=1}^{\infty} A_j)$$

(4.) **Continuity from above:** If $A_1 \supseteq A_2 \supseteq \ldots$ then
$$\lim_{j \to \infty} P(A_j) = P(\bigcap_{j=1}^{\infty} A_j)$$
Product spaces.

If \((\Omega_j, \mathcal{F}_j, P_j)\) \((j = 1, 2, \ldots, d)\) are probability spaces with corresponding probability measures. Let

\[
\Omega = \Omega_1 \times \cdots \times \Omega_d = \{ (\omega_1, \ldots, \omega_d) : \omega_j \in \Omega_j \}
\]

be the product (sample) space. Then \(\{ A_1 \times \cdots \times A_d : A_i \in \mathcal{F}_i \}\) generates a \(\sigma\)-algebra over \(\Omega\),

\[
\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_d
\]

together with the probability (product) measure

\[
P(A_1 \times \cdots \times A_d) = P_1(A_1) \cdot P_2(A_2) \cdots P_d(A_d)
\]

Examples.

- Roll two dice.
- Toss a coin \(d\) times.
Random variables.

A real valued function $X : \Omega \to \mathbb{R}$ is said to be a random variable defined on (Ω, \mathcal{F}) if it is \mathcal{F}-measurable function, i.e.

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$$

for any Borel set $B \subset \mathbb{R}$.

Denote: $X(\omega) \in \mathcal{F}$

Example.

- Indicator variable. Take $E \in \mathcal{F}$. Let $1_E(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \omega \notin E \end{cases}$
Random variables.

Consider a probability measure space \((\Omega, \mathcal{F}, P)\).

If \(X\) is a random variable, then \(X\) induces a probability measure on \((\mathbb{R}, \mathcal{B})\),

\[
\mu(B) = P\left(X^{-1}(B)\right) = P\left(\{\omega \in \Omega : X(\omega) \in B\}\right)
\]

for any \(B \in \mathcal{B}\) (Borel \(\sigma\)-algebra).

This probability measure \(\mu\) is called the (probability) distribution of r.v. \(X\).

While the (cumulative) distribution function is defined as

\[
F(a) = P(X \leq a) = P\left(\{\omega \in \Omega : X(\omega) \in (-\infty, a]\}\right) = \mu\left((-\infty, a]\right)
\]
Distribution function.

The (cumulative) **distribution function** is defined as

\[F(a) = P(X \leq a) = \mu((-\infty, a]) \]

Properties:

I. \(F \) is nondecreasing

II. \(\lim_{a \to \infty} F(a) = 1, \quad \lim_{a \to -\infty} F(a) = 0 \)

III. \(F \) is right continuous: \(F(a+) = \lim_{x \downarrow a} F(x) = F(a) \)

IV. \(F(a-) = \lim_{x \uparrow a} F(x) = P(X < a) \)

V. \(P(X = a) = F(a) - F(a-) \)

Note: properties I-III suffice for a function \(F \) to be a distribution function for some r.v.
Continuous random variables.

X is a continuous random variable if

$$F(a) = \int_{-\infty}^{a} f(x) \, dx,$$

for all $a \in \mathbb{R}$, where f is said to be the probability density function.

There

$$P(X = a) = \lim_{\epsilon \downarrow 0} \int_{a-\epsilon}^{a+\epsilon} f(x) \, dx = 0$$

In other words, distribution μ contains no point-mass components.
Discrete random variables.

X is a **discrete random variable** if there are countably many values

$$a_1, a_2, \ldots \in \mathbb{R}$$

such that

$$\mu(E) = \sum_j p_j \cdot \delta_{a_j}(E),$$

where $p_j > 0$ and $\sum_j p_j = 1$.

There

$$F(a_j) - F(a_j-) = p_j$$

and $F(x) - F(x-) \equiv 0$ if $x \notin \{a_1, a_2, \ldots\}$.
Expectation.

If \(\int_\Omega |X(\omega)| \, dP(\omega) \) exists and is finite, then

\[
E[X] = \int_\Omega X(\omega) \, dP(\omega) = \int_\mathbb{R} x \, d\mu(x)
\]

Properties:

- \(E[X + Y] = E[X] + E[Y] \)
- \(E[aX + b] = aE[X] + b \) for any \(a, b \in \mathbb{R} \)
- If \(X(\omega) \leq Y(\omega) \), \(\forall \omega \in \Omega \), then \(E[X] \leq E[Y] \)
- If \(P\left(\left\{ \omega \in \Omega : X(\omega) \leq Y(\omega) \right\} \right) = 1 \), then \(E[X] \leq E[Y] \)
- If \(g(x) \in \mathcal{B} \), then

\[
E[g(X)] = \int_\Omega g(X(\omega)) \, dP(\omega) = \int_\mathbb{R} g(x) \, d\mu(x)
\]
Jensen’s inequality.

A function \(\varphi(x) \) is said to be **convex** over an interval \(\mathcal{I} \), the domain of the function, if

\[
\varphi(\lambda a + (1 - \lambda)b) \leq \lambda \varphi(a) + (1 - \lambda)\varphi(b)
\]

for all \(\lambda \in [0, 1] \) and all real \(a \) and \(b \) in \(\mathcal{I} \).

Jensen’s inequality: Suppose \(\varphi \) is convex. Then

\[
\varphi(E[X]) \leq E[\varphi(X)]
\]

Proof. Let \(\rho = E[X] \). There is a line \(\ell(x) = ax + b \) such that

\[
\ell(x) \leq \varphi(x) \quad \text{and} \quad \ell(\rho) = \varphi(\rho)
\]

Then

\[
\varphi(\rho) = \ell(\rho) = E[\ell(X)] \leq E[\varphi(X)]
\]
Jensen’s inequality.

Jensen’s inequality: Suppose \(\varphi \) is convex. Then
\[
\varphi(E[X]) \leq E[\varphi(X)]
\]

Examples:

- \(E[X^2] \geq (E[X])^2 \)
- \(E[e^{aX}] \geq e^{aE[X]} \)
- If \(X > 0 \) then \(E[X^3] \geq (E[X])^3 \)
- If \(X > 0 \) then \(E[X \cdot \ln(X)] \geq E[X] \cdot \ln(E[X]) \) as \(\varphi(x) = x \ln(x) \) is convex for \(x > 0 \).
- If \(X > 0 \) then \(E[\ln(X)] \leq \ln(E[X]) \) as \(\varphi(x) = \ln(x) \) is **concave** for \(x > 0 \).