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Topics:

e Recurrent and transient states.

e Reversible Markov chains.

e Martingales.

e Stopping time.

e Optional Stopping Theorem.

e Harmonic functions.
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e First passage probability.
e Markov Chain Monte Carlo (MCMCQC).

e Mixing times.
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Recurrent and transient states.

We will use the following notations:

P,(A) =P(A|Xo=2x) and E,[Y]=E[Y |Xo=x].

For x € S, consider the first hitting time
T,=min{t>1: X; =x}.

Definition. A state z € § is said to be recurrent if
P(T, < >0) = 1.
A recurrent state z € S is positive recurrent if
E.[T,] < .
Otherwise it is null recurrent.
Definition. A state z € § is said to be transient if

Py(T; < 00) < 1.



MTH 565 4

Recurrent and transient states.

Example. All states in an irreducible Markov chain
over a finite state space S are positive recurrent.

0.2 08 O
Example. Let S={1,2,3}and P=| 0O 0.6 0.4
0O 0.5 0.5

Then, 1 is a transient state, while 2 and 3 are positive
recurrent states.

Example (Simple Random Walk on Z%). Consider
a simple nearest-neighbor random walk on S = Z¢
with transition probabilities equal 35 for each neighbor
state. Then,

e all vertices of S = Z% are null recurrent if d = 1, 2;

e all vertices of S = Z% are transient if d > 3.
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Stationary distribution.

Definition. A state z € S is said to be positive re-
current if

E.[T.] < o

The following is a version of ergodicity theorem for a
general discrete state space S.

Theorem (Ergodicity). Consider an irreducible ho-
mogeneous Markov chain over a discrete state space
S. If all of its states are positive recurrent, then there
exists a unique stationary distribution 7 such that

1
E.[T.]
Furthermore, if the Markov chain is aperiodic,

w(x) =

tle pi(z,y) = 7(y) Va,y € S.
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Stationary distribution.

Theorem (Ergodicity). Consider an irreducible ho-
mogeneous Markov chain over a discrete state space
S. If all of its states are positive recurrent, then there
exists a unique stationary distribution = such that

1
w(x) = BT

Furthermore, if the Markov chain is aperiodic,

lim pi(x,y) = 7(y) Vr,y € S.
t—o00

The probabilistic proof can be done in two steps.
First, proving existence/uniqueness, and then estab-
lishing convergence.
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Lemma (Existence/Uniqueness). Consider an ir-
reducible homogeneous Markov chain over a discrete
state space S, all of whose states are positive recur-

rent. Then
1

m(x) = BoT]
IS the unique stationary distribution.

Lemma (Convergence). Consider an irreducible
aperiodic homogeneous Markov chain over a discrete
state space S. If all of its states are positive recurrent,
then

lim pi(z,y) = 7(y) Va,y € S,

where 7 is the unique stationary distribution.
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Stationary distribution.

Lemma (Existence/Uniqueness). Consider an ir-
reducible homogeneous Markov chain over a discrete
state space S, all of whose states are positive recur-
rent. Then

1

E.[T:]
is the unique stationary distribution.

w(x) =

Proof. For a given z € S, let

ve(y) = Z Po(Xn=y,T: >n) =E, Z 1{Xn=y,Tx>n}]

be the mean number of visits to state y € S between
the times O and T,. Then,

Zl/x(z)p(z,y) = v,(y), where v,(x) =1.

z€S
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For a given z € S, let v, (y) = > Pu(X, =y, Ty > n).

n=0

Then,
Zl/x(z)p(z,y) = v,(y), where v, (z)=1.

zeS
Indeed, for all y #= x, we have

Zl/x(z)p(z,y) — Z Z Po(Xn =2, T > n) Pe(Xpp1 = y| Xn = 2)
z€S oo ze€S n=0
= ZZP;C(XnZZ, T >n)Px(Xn+1 :y‘Xn:Z> T: > n)
n=0 z#x
o o
— Z Py(Xpnt1=y|Te >n) = Z Po(Xnt1 =y |Te > n+1)= va(y)

by Markov property, as {1,>n — 1} is determined by
Xo0,...,Xn-1, and for z # x,

{Xn=2zTy>n}={Xn=z2, Ty >n—1}.
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o

For a given z € S, let v;(y) = > Pu(Xn =1y, Ty > n).
n=0

Then,

Zl/m(z)p(z,y) =v,(y), where v,(x) =1.
zeS

In case of y = x, we have

Z ve(2)p(z,x) = Z Z P Xn=2 Ty >n)Pe(Xpy1 = 2| Xp, = 2)

z€S z€S n=0
=P(X1=2)+)> Y P(Xn=12 To>n)P(Xpy1 = x| Xn =2, T; > n)
n=1 z#x

=P(X1=2)+) Pu(Xpy1 =2, T > n) = Po(Ty < 00) = 1=1,(x)

n=1

as x is a recurrent state.
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Stationary distribution.

Proof (continued). Notice that

YD) =) Y P(Xu=y, Te>n) =) PuT:>n)=E[T.].

yES yGSn=O n=0
Thus 3 m(2)p(z,y) = valy) vields w(y) = 2
zeS Em[T$]

IS a stationary measure Vx € S. The existence of sta-
tionary distribution follows.

Since we have shown the existence of a stationary
distribution, our next goal is to show it is unique.
Consider a stationary distribution .
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Stationary distribution.

Proof (continued). For any pair a,b € S, a stationary
distribution 7 should satisfy

w(b) = 3 m(@)p(e1,b) = r(a)p(a,b)+ S w(z1)p(e1,b)

x1€S Tr17a

Similarly,  w(z1) = 7(a)p(a,z1) + Y _ w(z2)p(w2, 1)
ToFa
Substituting, we have

m(b) = m(a)p(a,b)+7(a))  pla,z1)p(z1,b)+> w(22)p(x2, 1)p(21,b),

r17a T17a
mg#a

where  m(2) = m(a)pa,a2) + 3 m(@a)p(ws, a2)
T3Fa
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Stationary distribution.

Proof (continued). We have

r(b) = w(@)p(a, 5)+7(@) Y pla,w)p(ar, B+ w(22)p(w2, 21)p(e1,b),

r17a r17a
TaFa
where  @(x2) = w(a)p(a,x2) + Z w(x3)p(x3, 22)
T3Fa

Substituting, we have

7(6) = w(@)p(a, B)+7(a) Y pla,z1)p(e1,b)+7(a)S pa, 22)p(w2, 71)p(w1, b)

T17a T17a
TorFa
+ ) w(@3)p(xs, z2)p(w2, z1)p(z1,b) and so on...
T17a
TrFa

T37Fa
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Proof (continued). After n iterations we have

w(b) = w(a)p(a,b) + 7(a) Y p(a,z1)p(x1,b)

r17a
+.41(a) 3 (a2 1)p(En 1,50 2) - .- p(1,b)
:Clzéa
T 170
+ Z 7 (2n)p(n, Tn-1)P(Tn—1,Tn—2) ...p(x1,b)
T17a
a:n';éa

which rewrites as

7w(b) =7(a)P(T, > 1, X1 =b)+7(a)P(Ty, > 2, Xo=0b)+ ...

AT (@) Pa(Ta > m, X =)+ 7(y)Py(Tu > 1, X, = b)
y7a
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Proof (continued). After n iterations we have

(b)) =7(a) Y Pa(Ta 2 by X =)+ w(y) Py(Ta 2 n, Xn =)
k=1 y7Fa

Summing over all b € S, we obtain

=) w(b) =n(a) Z Pu(To > k) +) m(y)Py(Tu > n)

beS yFa

Since for all y € S and E,[T,] < oo (see next slide),
Ey[Ta]

Py(TaZH) < — 0

as n — oo, we have

1 = r(a) f: P.(T, > k) = n(a)E,[T,]. Hence, w(a) =

k=1 Eu[T]
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Stationary distribution.
We used the following result.

Proposition. Consider a homogeneous Markov chain
over a discrete state space S. Then

E.[T,] > P.(T, < Ty)E,[Ty] Vz,y € S.
Proof. For x # y, we have
Em[Tx] > Ew[Txl{Ty<Tm}] > Ew[(Ta: - Ty)l{Ty<Tx}]

ZEx[(Tm—Ty)l{Ty<Tm}1{Ty=t}] = ZEw[(Tx_t>1{t<Tz}1{Ty=t}]

t=1 t=1

=Y E[T—t|Xi =y, Xi-1 € S\{z,y},..., X1 € S\{z,y}| P.(T, =t < T)
t=1

:ZE:B [Tx_t | Xy = y] P$<Ty =t < Tx) = E,[T:] ZPx(Ty =t< Tx) =
t=1 t=1
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Stationary distribution.
Next, we will need the following result.

Proposition. Consider an irreducible aperiodic ho-
mogeneous Markov chain over a discrete state space

S with transition probabilities P = (p(i,j)) . Let

1,J€S8
(Xn,Y,) be a homogeneous Markov chain on S x S
with transition probabilities

p((i1,2), (j1,52)) = p(i1, j1)p(i2, j2),
i.e., X, and Y,, are independent Markov chains over S
with transition probabilities P = (p(i,j)) . Then,

1,JE€S
(X,,Y,) is an irreducible Markov chain over S x S.

Corollary. If all states in S are positive recurrent,
then n(x,y) = m(x)w(y) is the unique stationary distri-
bution of (X,,Y,). Consequently, E¢, [T, = EAT:1E,[T,].
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Stationary distribution.

Corollary. If all states in S are positive recurrent,
then n(x,y) = n(x)w(y) is the unique stationary distri-
bution of (X, Y,). Consequently, Eq, [T(,.»] = E:[T:]Ey[T,].

Proposition. Consider an irreducible aperiodic ho-
mogeneous Markov chain over a discrete state space
S whose states are positive recurrent. Let (X,,Y,) be
a pair of independently evolving Markov chains, then

E(xo,yo) [ meig T(m’x)] < 00 Vxo,yo € S.

Proof. By the preceding results, Vxog,yo,x € 5,

2
Plooy(Tiaows) <Txz)) Eaow) [ Te)] < By Tien] = (Be[T])” < oo,
where P, ) (T(zy) < T(zx)) > 0. Hence,
By o) [T(z)] < 00.
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Stationary distribution.

Lemma (Convergence). Consider an irreducible
aperiodic homogeneous Markov chain over a discrete
state space S. If all of its states are positive recurrent,
then

Iim pe(z, y) = m(y) Vz,y € S,

where 7 is the unique stationary distribution.

Proof. We use the coupling method. We let (X,,Y,)
be a homogeneous Markov chain on S x S with tran-
sition probabilities
p(i1,51)pQiz, j2)  if i1 # io,
p((i1,12), (J1,42)) = < p(i1, 1) if 41 =12 and j1 = jo,
0 if 11 =i but j1 # jo.
The process evolves according to

P((Xn+1,Yn+1) = (J1,J2) ‘ (Xn, Yn) = (il,i2)> = p((i1,12), (J1,72))-
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Proof (continued). We use the coupling method.
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Proof (continued). We let (X,,Y,) be a homogeneous
Markov chain on S x S with transition probabilities

p(i1, j1)p(io, jo)  if i1 # o,
p((i1,i2), (j1,52)) = < p(i1, j1) if i1 =42 and j1 = jo,
0 if 11 = 1o but j1 75 j2.

Notice that each margin, X,, and Y, is a Markov chain
with transition probabilities P = (p(i,j))

’L,jES.
The (stopping) time

T=min{n >0| X, =Y,}
is called the coupling time.

For n > 7, they X,, and Y,, evolve as a single Markov
chain with transition probabilities p(7, 7):

Xr=Y:, X1 =Y, Xoq2o=Yr42, Xoqyz3=VYry3, ...
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Proof (continued). The preceding Proposition implies
the coupling time is finite, i.e.,

P(r < o0) = 1.

For any given x € S, let Xo = x, and Yy be distributed
with probabilities

P(Yo=y)=7(y) VyeSs.
Then, forallne N, P(Y,=vy) =n(y) Vy € S. Hence,
> iz, y) —w()| =D |P(Xi =y) — P(V; =)

yeSsS yeSsS

=) |P(Xi=y, Xi #Y) - P(Yi =y X; # V)|
yes

<2P(X; #Y) =2P(r>t)— 0 ast—oo. 0O
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Stationary distribution.

For a homogeneous Markov chain with the transition

probability matrix P = (p(z‘,j)) , the stationary
1,J€S

distribution (aka ‘equilibrium distribution’) =« is de-

fined as follows:

TP == & Zw(i)p(i,j) =x(j) Vjes.
€S
Thus Zﬂ'(i)p(i,j) = W(j)Zp(j, 1), and for any state
j c S’ 1 )
> w@pi,5) = > w(G)p, ).
1. 1FEg 1. 1%£]g

Thus when restated in terms of traffic flow, the influx
to the state j5 is equal to outflow from j, for each j.
Thus the distribution stays unchanged.
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Stationary distribution and reversibility.

The following are the detailed balance conditions (d.b.c.)
also called time reversibility:

m(0)p(i,5) = 7 (), 1) Vi,j € S.

Restated in terms of traffic flow: for every pair of
states ¢+ and 5 the traffic in between them is balanced
(equalized), i.e. the traffic flow from ¢ to 5 equals to
the traffic flow from 5 to «z.

Observe that if d.b.c. are satisfied, the distribution
will not change with time, i.e. « is stationary;

Z m()p(i, j) = Z 7(3)p(J, 1) VjeS.
i 1] A EY
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Birth-and-death chain. Consider state space
S=4{0,1,2,...}

and a Markov chain {X;};=o,1,.. on S with transition
probabilities

satisfying go =0 and ¢, +ri+p; =1 Vi

/7“0 PO 0 0 \
@1 ™m p1 O --.

P=1 0 ¢ 1 p2
O O g r3 °-.

This is a Markov chain with only nearest neighbor
transitions.
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Stationary distribution and reversibility.

Observe that in the case of a birth-and-death chain,
the definition of a stationary distribution

tP=n & Y 7(p@i,j)=n() VjeS.
1ES

can be rewritten as w9 = romo + g1 ™1 and

7Tj=pj_17rj_1—|—7’j7rj—|—qj+17rj+1 fOI’j: 1,2,...

The above equations can be shown to be equivalent
to the detailed balance conditions (d.b.c.)

Pk—1Tk—1 — qkTk.
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Stationary distribution and reversibility.

Indeed, since ro = 1—pg and r; = 1—p, —q;, equations
mo = ToTo + g171 and

) = Pj_1Tj—1 + 77T + qj+17j+1 for ,=1,2,...
are equivalent to q1m1 — pomo = 0 and
Qi — Pj—1Tj—1 = qj4-1Tj4+1 — DT for g =1,2,....
Hence,
0 = q171 — poTmo = @2T2 — P11 = ... = q;Tj — Pj—1Tj—1 = ...

Thus, the detailed balance conditions (d.b.c.) are
satisfied

Pk—1Tk—1 =— qETE.

Hence, m, = p{’;wk_l fork=1,2,....
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Stationary distribution and reversibility.

In the case of a birth-and-death chain, m, = %wk_l

and

mp o= PO PRE L o =12, ...

q1 - - - g4k

oo
Next, >  mp =1 implies

k=0
- PO D PO .- D
0- 1 0 -1
T DERES Dt R PR g
=0 =1 q1...qj =1 qi . ..q;
Hence,
—1
o0 ‘ Po...-Dr—1
1+ Zpo PiTl ) and 7, = G for k=1,2,
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Stationary distribution.

Example (Random walk on weighted graph). Con-
sider a finite simply connected graph G = (V, E) with
the weights assigned to all of its edges:

Waey = Wye >0
for all x,y € V connected by an edge in E.

Denote by W, = ) W, , the total weight of the edges
yeV
adjacent to z € V.

Next, consider a random walk X, on state space
S = V evolving according to the following transition
probabilities

Wy

x

Then, n(x) = W,/Zq with Zg =) W, satisfies the d.b.c.
eV

p(z,y) = Va,y € V.
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Stationary distribution.

Example (Knight walk). Here is an example from
an unpublished book by Aldous and Fill.

Consider the following random walk: Start with a
knight at one of the corner squares of otherwise-
empty chessboard. Each step, we move the knight
by choosing uniformly from all the possible knight
moves. What is the mean number of moves until the
knight returns to the starting square?
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Martingales.

Definition. A time homogeneous Markov chain {X;}
over a discrete state space S C R is a martingale if

o F[|X] < oo for all t >0,

° E[Xt_|_1|Xt] =Xy & E[Xt_|_1|Xt=x] =2x.

Example. Random walk on 7Z. Take p € (0,1) ,
and let &1,&,... bei.i.d. Bernoulli random variables
such that

¢ = +1 with probability p
77 1=1  with probability g =1 —1p

If p=3, the random walk X, =Xo+& +...+ &
IS @ martingale.
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Martingales.
Recall that E[E[X|Y]] = E[X]. Therefore,

EEX|Y]|Z=2=E[X|Z=2] <& E[EX|Y]|Z]=E[X|Z]

If Markov chain {X;} is a martingale, then E[X1|Xo] = Xo,
and

E[X2|Xo] = E|E[X2|X1] ’Xo} = E|X; ! Xo] = Xo
Then, recursively, we have

E[X3|Xo] = E[E[X3|X2] | Xo] = E[X2 | Xo] = Xo

E[Xa|Xo0] = E[E[X4|X3] | Xo] = E[X3]| X0] = Xo

E[X{|Xo] = Xo & E[X;|Xo=2z] =2z forallt>D0.
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Stopping time.

Definition. For a homogeneous Markov chain {X;},
a random variable T is a stopping time if for any
t > 0, knowing Xo, X1,...,X; is sufficient for deter-
mining whether the event {T" <t} occurred or not. In
other words, 17<; is a function of Xg, X1,...,X:.

Important example. For A C S, the first hitting
time

Ty=min{t >0 : X; € A}
IS a stopping time.

Optional Stopping Theorem. Suppose a homoge-
neous Markov chain {X;} is a martingale, and T is a
stopping time with respect to X;. If P(T < o0) = 1
and there is K > 0 such that |X;| < K when t < T,
then

E[X7 | Xo] = Xo.
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First passage probability.

Example. Random walk on Z. Take p e (0,1) ,
and let &1,&,... bei.i.d. Bernoulli random variables

such that

¢ = {—|—1 with probability p

77 1=1  with probability g=1—p
Consider integers 0 < g < M. Let Xo = z90 and
Xe=Xo+ &+ ... +&. Then, the first first hitting
time

T=min{t>0: X;=0 or X; =M}
is a stopping time.
We want to find P, ,(Xr = M) = P(Xr = M | X0 = x0).

If p=3, therandom walk X; = Xo+&+...+& isa
martingale, and by the Optional Stopping Theorem,
0

Pr(Xr = M) =2
(X7 ) v
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Martingales.

Definition. A sequence of random variables {M;} is
a martingale with respect to a homogeneous Markov
chain {X;} if

e M; is a function of Xy, X;_1,..., Xo,

e E[|M;]] < co for all t >0, and

E[Myyq1| Xty Xe—1,...,Xo] = M.

Property: FE[M; Xo] = My for all ¢t > 0.

Optional Stopping Theorem. Suppose {M;} is a
martingale with respect to {X:}, and T is a stopping
time with respect to X;. If P(T < oo) = 1 and there
is K > 0 such that |M;| < K when ¢t < T, then

E[Mr|Xo] = Mo .
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Martingales.

Optional Stopping Theorem. Suppose {M;} is a
martingale with respect to {X;}, and T is a stopping
time with respect to X;. If P(T < oo) = 1 and there
is K > 0 such that |M;| < K when ¢t < T, then

E[Mr | Xo] = Mo .
Proof. Consider the stopped process Y; = M; . Then,
Yy = Milyrsy + Mrlroy = Milypsy + Mrlr<
and
ElYi41 | X, ..., Xo] = 1 E[Myq1 | Xy, ..., Xo] +E[Mrlr<e | Xy, . .., Xo]
= 1po: My + M7lr<y = Y3

as 1r-; and Mrlr<, are functions of Xo,...,X;.

Hence, Y: is a martingale with respect to {X.}.
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Martingales.
Proof (continued).
Yi = Myly>y + Mrlrey = Milypsy + Mrlr<
and
E[Yig1|Xt, ..., Xol = 1psi E[Myg1 | X, . . ., Xol+E[Mplye | Xy, . .., Xo]
= 17> My + Mrlr<; = Ys

Hence, Y: is a martingale with respect to {X;}.
Thus, E[Y:| Xo] =Yoo= My forallt=0,1,2,..., and
E[Mr | Xo] + E[Y; — Mt | Xo] = Mo,
where, by Jensen’s inequality,
|ElY: — Mr| Xo]| = |E[(M; — M7)17r5: | Xo)| < E[|[M; — Mr|175:| Xo]
<2K P(T >t|Xpo) — 0 as t— oo.
Therefore, E[Mr|Xo] = Mp.
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First passage probability.

Example. Random walk on Z. Take p € (0,1) ,
and let &1,&,... bei.i.d. Bernoulli random variables

such that

1 with probability p
—1 with probability g =1 —»p

Consider 0 < zg < M. Let Xo = 20 and X, =
Xo+& + ...+ & Then, the first first hitting time

T=min{t>0: X;=0 or X; =M}
IS a stopping time.
We want to find P, (X = M) = P(Xy = M | Xo = x0).
If p= % the random walk X; is a martingale, and by

the Optional Stopping Theorem, Py, (X7 = M) = 5.

If p# 1, then X; is not a martingale.
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First passage probability.

Example (continued).

We want to find P,,(Xr = M) = P(Xy = M | Xo = x0).
If p % % then X, is not a martingale, but M; = h(X})
is a martingale when h(z) = A (%)x + B for any choice
of constants A and B.

Taking A # 0, by the Optional Stopping Theorem,
we have

h(M)P,,(Xp = M)4h(0)(1—Py, (X7 = M)) = Eg [R(X7)]
= Exo [MT] = h(a:o)
Therefore,

T

h@@—h@)zl—(>%
hOD = hO) ()"

P, (X =M) =
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Martingales and harmonic functions.
Suppose {X:} is a time homogeneous Markov chain
(HMOQ).

We say that h(-) is a harmonic function with respect
to the transition probabilities {p(x,y)} if h satisfies
the averaging property

> oz, y)h(y) = h(z).

Here, h(X:) is @ martingale with respect to {X;}:

Eh(Xi41) | Xe = 2] =) p(@,y)h(y) = h(z)
Y

and
E[h(Xi41) | Xi] = h(X4).
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Martingales and harmonic functions.

For a birth-and-death chain X;, the probability har-
monic function h is the one satisfying the averaging
property

h(k) = qth(k — 1) + (1 — g1 — pr)h(k) + prh(k + 1)

The above recurrence relation, after being simplified
as

@k (h(0) = h(k — 1)) = pi(hk + 1) = h(R))
vields h(0) = A, h(1) = A+ B, and

k
h(k) = A+ B 1—l—2:(11'”q’_1 for k=2,3,...
=2 P1---Pj-1

Thus M; = h(X;) is a martingale with respect to {X.}.
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Martingales and harmonic functions.

For a birth-and-death chain X;, the probability har-
monic function h is the one satisfying the averaging
property

h(k) = qth(k — 1) + (1 — g1 — pr)h(k) + prh(k + 1)
The above recurrence relation yields h(0) = A,

k
h(1) = A+B, and h(k) = A+B 1+ Y LU for p=2,3,...
— P1...PDj-1
j=2

Thus M; = h(X;) is a martingale with respect to {X.}.
Define the following stopping time with respect to X,
T =min{t>0 : X; =0 or m}.
Then, given that Xg = zg for 0 < zg < m,
h(zo) — h(0)

nm)—noy ~ BFO

P(Xr=m|Xo=xz0) =
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Martingales and harmonic functions.

Example. For a birth-and-death chain X; with pp = p
and g = q for all k, and p # q,

h(k) = qh(k —1)+ (1 —q—p)h(k) + ph(k+ 1)
yielding

k
h(k):A+B(g> for k=0,1,2,3,...
p

Define the following stopping time with respect to X,
T =min{t>0 : X; =0 or m}.
Then, given that Xg = zg for 0 < zg < m,

=
) 1

h(zo) — h(0) _ (
h(m) — h(0) <

P(Xr=m|Xo=ux0) =

"[R (DB
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Recurrence: random walk on 7Z.
For x € S, denote the first hitting time by

T, =min{t>1: X; =z}
Let X; be asimple random walkon S =7 (p; = q; = %).
For all M € N, we have
P(TO>TM|XO=:130)=% for all 0 <z < M,

and

1

Hence, as M is arbitrary, Py(1p < o©) =1 and, by
space homogeneity,

P(T, <o) =P (Tp<oo)=1 forall x¢eZ.

Thus, simple random walk on Z is recurrent.

Moreover, each state is null recurrent as E.[T,] = Eg[To] for all = € Z.
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Expected first hitting time.

Consider a birth-and-death chain X;on S = {0,1,..., M}
with forward probabilities and backward probabilities
denoted respectively p; and g;. Our goal is to find the
first hitting time:

T=min{t>0: X, =0o0r M}.
We let

¢(j) = E[T| X0 = jl,

and write the following recurrence equation:

{w(j) =1+4+qip(G — 1) +rjp(G) +pjp(G+1) forj=1,....M~—1
p(0) = (M) =20
Let Ap(j) = o(j + 1) — ¢(j) denote the forward difference.
Then for 0 < j <mn,

. q; . 1
Ap(j) = ZLAp(G—1) — —.
Dj Pj



MTH 565 46

Expected first hitting time.
Let Ap(j) = o(j + 1) — ¢(j) denote the forward difference.

Then for 0 < 5 <mn,

N . 1
Dp(j) = =Ap(j—1) ——.
Dj Pj

Example (Random Walk on Z). Let p; =g¢; = 3.

Then,
Ap(j) = Ap(j —1) =2 with »(0) = (M) = 0.
Hence, Ap(j) = Ap(0) — 25 = ¢(1) — 25 and

j—1
(7)) = 0(0) + ) Ap(i) = je(1) — (G — 1),
i=0
where for j = M, we have 0 = (M) = Mp(1l) — M(M — 1).
Hence, ¢(1) = M — 1 and

BT |Xo=jl=»() =je(1) =G —1) = j(M —j).
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Diffusivity of simple random walk.
Consider a simple random walk on Z: let &1,&,... be
i.i.d. Bernoulli random variables such that
{ 1 with probability p =

&= 1 with probability ¢ =

and let Xgo =z and Xt:Xo—|—£1—|-...—|-£t.

NN |-

Here, the transition probabilities are

. . 1 .
p(9,9+1)=p(3,3—1)=5 for all j € Z.
For x € Z and n € N, let
T=min{t>0: Xy=xz—norx+n}.

Then, E[T|Xo = z] =n? which can be interpreted
as follows:

| X1t — Xi| ~ Vo?At, where 02 = Var(¢) =1 (diffusivity).
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Metropolis-Hastings algorithm.

Goal: simulating an S-valued random variable X, dis-
tributed according to a given probability distribution
m(z), i.e., P(X =z2)~n(z) forall z€ S.

MCMC: generating a Markov chain {X;} over S, with
distribution u:(z) = P(X; = z) converging rapidly to
its unique stationary distribution, i.e., u(z) — 7(2).

Metropolis-Hastings algorithm: Consider a con-

nected neighborhood network with points in S. Sup-
pose we know the ratios of % for any two neighbor
points z and 2z’ on the network.

Let for z and 2z’ connected by an edge of the network,
the transition probability be set to

w(z')
T ow(2)

1
p(z,2) = o7 min {1 } for M large enough.
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Metropolis-Hastings algorithm.

Consider a connected neighborhood network with points
in S.

Suppose we know the ratios of () for any two neigh-

w(z)
bor points z and 2z’ on the network.

Let for z and 2z’ connected by an edge of the network,
the transition probability be set to

w(2")
" ow(2)

Specifically, M can be any number greater than the
maximal degree in the neighborhood network.

1
p(z,2) = i min {1 } for M large enough.

Let p(z,z) absorb the rest of the probabilities, i.e.

p(z2)=1- 3 p(z2)

2l oz~z!
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Knapsack problem. The knapsack problem is a
problem in combinatorial optimization: Given a set
of items, each with a mass and a value, determine
the number of each item to include in a collection
so that the total weight is less than or equal to a
given limit and the total value is as large as possible.
Knapsack problem is NP complete.

Source: Wikipedia.org
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Knapsack problem. Given m items of various weights
w; and value vj, and a knapsack with a weight limit
R. Assuming the volume and shape do not matter,
find the most valuable subset of items that can be

carried in the knapsack.

Mathematically: we need z = (z1,...,2m) in

S = {z c {O,l}m : ijzj < R}
j=1

maximizing U(z) = ) v;z;.
j=1

Source: Wikipedia.org
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Knapsack problem. Find z = (z1,...,2m) in

=1

S={ze{0,1}" : w;z; < R} maximizing U(z) = > v;z;.
=1

e MCMC approach: Assign weights 7(z) = Ziﬁexp {BU(2)}

to each z € S with 8 = % where
Zg = Zexp {BU(2)}
z€S

is called partition function. Next, for each z € S
consider a clique C, of neighbor points in S. Consider
a Markov chain over S that jumps from z to a neighbor
2z € C, with probability

p(z,2") = 1 min {1 W(Z/)} .

m T ow(2)
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Knapsack problem. Assign weights n(z) = Ziﬁ exp{BU(2)}

to each z € S with 8 = 7, where

Zg = Zexp {BU(2)}
z€S
is called partition function. Next, for each z € S
consider a clique C, of neighbor points in S. Consider
a Markov chain over S that jumps from z to a neighbor
2z € C, with probability

p(z,2) = % min {1, 7;((2/))} :

Observe that

T —exp {8 (UG) - U) = ex0 {5 (v = )},

where v = (v1,...,vm) IS the values vector.
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Mixing times.

Total variation distance:

= vl 2= 5 3 o) = v(@)| = sup [s(4) — ()

zeS

measure the distance between distributions u and v
on the scale from O to 1.

Mixing time: for a given ¢ € (0,1) (e.g. e =0.1), let

tm@x(‘g) = inf {t : H/“Lt o 7THTV S &, all MO})
where u; = uoP?.

Mixing time is a running time of MCMC algorithm.
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Card shuffling.

Problem: We would like to shuffle a deck of n
cards so that each of the n! possible configurations
is equally likely, i.e., has probability &. We use fol-
lowing algorithm: each step, we take the top card
and insert it to any of the n slots in the deck (in-
cluding the top) with equal probability. Each step is
performed independently. How soon will the deck be
well shuffled?

This card shuffling algorithm is a Markov chain on the
space S = S,, of all n-permutations with stationary
distribution w(c) =2 Vo € S,. Let p; denote the
distribution of possible configurations after t shuffles.
We need to find the most optimal upper bound on
the mixing time t,,:.(¢).

Let 7 denote the first time all n cards were shuffled
in, after ascending to the top of the deck.
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Card shuffling. Let 7 denote the first time all n
cards were shuffled in, after ascending to the top of

the deck.
Observe that P(X, =0) = n(o), and
P(X;=o|t>7)=mn(c) Vs>D0.
Next,
1 1
e = 7llo = 5 D (o) =m(o)| = 5 3 |P(X1 = 0)=(0)

oESsS, oES,

< %Z |P(Xi =0t <7)—m(o)| Pt < T)+%Z | P(X: =0t > 7)—m(a)| P(t > 7)

oES, ocESy

1 1
=2 3 [P(Xi =0l t < 1) =m(o)| Pt < 7) < Pt <7) < B,
oc€eS, t
where E[r] = nlogn 4+ O(n) by the coupon collector
problem.
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Coupon collector problem

n types of coupons: :
coupon / unit of time, each coupon type is equally

1],

2],

Collectlng coupons:

, Elthn—7n_1] = n.

likely. Goal: To collect a coupon of each type.
Question: How much time will it take?
cl c2 cl c3 c3 c2 c4 chb
) ) ) ) T
m=1 T3 T4 TS
Here, m = 1, E[TQ—Tl] = i , E[T3—7'2] = ik y oo
n—1 n— 2

Hence,

E[Tn]zn(l-l—l-l-l-l—-“—l-l) = nlogn + O(n)
2 3 n
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Card shuffling.

This card shuffling algorithm is a Markov chain on the
space S = S,, of all n-permutations with stationary
distribution n(c) =2 Vo € S,. Let p, denote the
distribution of possible configurations after t shuffles.
We need to find the most optimal upper bound on

the mixing time t,,.(¢).

Let 7 denote the first time all n cards were shuffled
in, after ascending to the top of the deck. Then,

1
e — 7|, < Pt <T) < ;E[T],
where E[r] =nlogn + O(n) by the coupon collector
problem.
B[]

Hegce, fort = == = %nlogn + O0n), ||uw—m=|,, <e
an

1
tmiz(e) < Cnlogn for C > —.
g



