MTH 464/564 Lectures 25-28

0

Yevgeniy Kovchegov Oregon State University

1

- Jensen's inequality.
- Characteristic and generating functions.
- Branching processes.
- Size biasing.
- Functions of random variables.

A function $\varphi(x)$ is said to be convex over an interval \mathcal{I} , the domain of the function, if

 $\varphi(\lambda a + (1 - \lambda)b) \leq \lambda \varphi(a) + (1 - \lambda)\varphi(b)$

for all $\lambda \in [0, 1]$ and all real a and b in \mathcal{I} .

If function $\varphi(x)$ is twice differentiable, then

 $\varphi(x)$ is convex in $\mathcal{I} \iff \varphi''(x) \ge 0 \quad \forall x \in \mathcal{I}$

A function $\varphi(x)$ is said to be concave if $-\varphi(x)$ is convex. If function $\varphi(x)$ is twice differentiable, then

arphi(x) is concave in $\mathcal{I} \iff arphi''(x) \leq 0 \quad \forall x \in \mathcal{I}$

Jensen's inequality.

A function $\varphi(x)$ is said to be convex over an interval \mathcal{I} , the domain of the function, if

 $\varphi(\lambda a + (1 - \lambda)b) \leq \lambda \varphi(a) + (1 - \lambda)\varphi(b)$

for all $\lambda \in [0, 1]$ and all real a and b in \mathcal{I} .

Jensen's inequality: Suppose φ is convex. Then $\varphi(E[X]) \leq E[\varphi(X)]$

Proof. Let $\mu = E[X]$. There is a line $\ell(x) = ax + b$ such that $\ell(x) \le \varphi(x)$ and $\ell(\mu) = \varphi(\mu)$

Then

$$\varphi(\mu) = \ell(\mu) = E[\ell(X)] \le E[\varphi(X)]$$

Jensen's inequality.

Jensen's inequality: Suppose φ is convex. Then $\varphi(E[X]) \leq E[\varphi(X)]$

Examples:

- $E[X^2] \ge (E[X])^2$ as $\varphi(x) = x^2$ is convex for $x \in \mathbb{R}$.
- For any given $a \in \mathbb{R}$, $E[e^{aX}] \ge e^{aE[X]}$ as $\varphi(x) = e^{ax}$ is convex for $x \in \mathbb{R}$.
- If $X \ge 0$ then $E[X^3] \ge (E[X])^3$ as $\varphi(x) = x^3$ is convex for $x \in [0, \infty)$.
- If X > 0 then $E[X \cdot \ln(X)] \ge E[X] \cdot \ln(E[X])$ as $\varphi(x) = x \ln(x)$ is convex for $x \in (0, \infty)$.

• If X > 0 then $E[\ln(X)] \le \ln(E[X])$ as $\varphi(x) = \ln(x)$ is concave for $x \in (0, \infty)$.

Characteristic function.

Definition. The characteristic function $\varphi_X : \mathbb{R} \to \mathbb{C}$ of a random variable X is defined by

$$\varphi_X(s) = E\left[e^{isX}\right] \qquad \forall s \in \mathbb{R}.$$

Properties:

• Euler's formula states that $e^{i\theta} = \cos \theta + i \sin \theta$ for all $\theta \in \mathbb{R}$.

Therefore,

$$\varphi_X(s) = E[e^{isX}] = E[\cos(sX)] + iE[\sin(sX)]$$

is well defined for all $s \in \mathbb{R}$.

•
$$\varphi_X(s) = E[e^{isX}] = \begin{cases} \sum\limits_{x: p_x(x)>0} e^{isx} p_x(x) & \text{if } X \text{ is discrete,} \\ \\ \int\limits_{-\infty}^{\infty} e^{isx} f_x(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$$

Characteristic function.

Definition. The characteristic function $\varphi_X : \mathbb{R} \to \mathbb{C}$ of a random variable X is defined by

$$\varphi_X(s) = E\left[e^{isX}\right] \qquad \forall s \in \mathbb{R}.$$

- $\varphi_X(0) = 1.$
- The derivatives of $\varphi_X(s)$ are computed as follows

$$\varphi_X^{(n)}(s) = \frac{d^n}{ds^n} E[e^{isX}] = E\left[\frac{d^n}{ds^n}e^{isX}\right] = i^n E[X^n e^{isX}].$$

Thus, $E[X^n] = (-i)^n \varphi_X^{(n)}(0)$ (the n^{th} moment) as $-i = \frac{1}{i}$.

• If X_1, X_2, \ldots, X_n are independent random variables, then the characteristic function of $X = X_1 + X_2 + \ldots + X_n$ equals

$$\varphi_X(s) = \varphi_{X_1}(s) \cdot \varphi_{X_2}(s) \cdot \ldots \cdot \varphi_{X_n}(s).$$

• CLT can be proved via characteristic functions without assuming the moment generating function of X_j is well defined.

Characteristic function.

Definition. The characteristic function $\varphi_X : \mathbb{R} \to \mathbb{C}$ of a random variable *X* is defined by

$$\varphi_X(s) = E\left[e^{isX}\right] \qquad \forall s \in \mathbb{R}.$$

Connection to harmonic analysis: for a continuous random variable,

$$\frac{1}{\sqrt{2\pi}}\varphi_X(-s) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{-isx} f_x(x) \, dx$$

is a Fourier transform of $f_x(x)$, and

$$\frac{1}{\sqrt{2\pi}}\varphi_X(s) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{isx} f_x(x) \, dx$$

is the inverse Fourier transform of $f_x(x)$.

Similar statements apply in the case of a discrete random variable.

Generating function.

Definition. For a given random variable X, the function

$$G_X(s) = E\left[s^X\right], \quad s > 0,$$

is called the generating function.

• Connection to m.g.f. $G_X(s) = M_X(\ln s)$.

•
$$G_X(s) = E[s^X] = \begin{cases} \sum\limits_{x: p_x(x) > 0} s^x p_x(x) & \text{if } X \text{ is discrete,} \\ \\ \int\limits_{-\infty}^{\infty} s^x f_x(x) dx & \text{if } X \text{ is continuous.} \end{cases}$$

• If X_1, X_2, \ldots, X_n are independent random variables, then the generating function of $X = X_1 + X_2 + \ldots + X_n$ equals

$$G_X(s) = G_{X_1}(s) \cdot G_{X_2}(s) \cdot \ldots \cdot G_{X_n}(s).$$

• If X is nonnegative integer valued random variable, i.e., X = 0, 1, 2, ..., then its generating function is convex.

Problem of Extinction. Start in the 0th generation with 1 parent. In the first generation we shall have 0, 1, 2, ... offsprings with respective probabilities

 p_0, p_1, p_2, \ldots

If in the t^{th} generation there are $Z_t = k$ individuals, then in the $(t+1)^{\text{st}}$ generation there will be

 $Z_{t+1} = X_1 + X_2 + \ldots + X_k \quad \text{offsprings,}$

where X_1, X_2, \ldots, X_k are independent random variables, each with the same probability mass function p_0, p_1, p_2, \ldots

Question: For which probability mass functions $\{p_k\}$ do we have guaranteed extinction of the genealogical (family) tree?

Note that case $p_1 = 1$ is trivial.

Solution: For $m = 0, 1, \ldots$, let

 $A_m = \{ \text{ extinction by } m^{\text{th}} \text{ generation} \}.$

Then, $d_m = P(A_m)$ is the probability that the process dies out by the *m*th generation.

Solution (cont.): For $m = 0, 1, \ldots$, let

 $A_m = \{ \text{ extinction by } m^{\text{th}} \text{ generation} \}.$

Then, $d_m = P(A_m)$ is the probability that the process dies out by the *m*th generation. Since, $A_m \subseteq A_{m+1}$,

$$0=d_0\leq d_1\leq d_2\leq \ldots\leq 1$$

and $\lim_{m \to \infty} d_m$ exists. Observe that $\bigcup_{m=1}^{\infty} A_m = \{ \text{ extinction} \}$ and

$$d = P\left(\bigcup_{m=1}^{\infty} A_m\right) = \lim_{m \to \infty} P(A_m) = \lim_{m \to \infty} d_m$$

is the probability of extinction.

Next, observe that for $m \geq 1$,

$$d_m = P(A_m) = \sum_{k=0}^{\infty} P(Z_1 = k) P(A_m \mid Z_1 = k) = \sum_{k=0}^{\infty} p_k (d_{m-1})^k.$$

Solution (cont.): Since,
$$A_m \subseteq A_{m+1}$$
,
 $0 = d_0 \le d_1 \le d_2 \le \ldots \le 1$
and $\lim_{m \to \infty} d_m$ exists. Observe that $\bigcup_{m=1}^{\infty} A_m = \{ \text{ extinction} \}$ and

$$d = P\left(\bigcup_{m=1}^{\infty} A_m\right) = \lim_{m \to \infty} P(A_m) = \lim_{m \to \infty} d_m$$

m=1

is the probability of extinction.

Next, observe that for $m \geq 1$,

$$d_m = P(A_m) = \sum_{k=0}^{\infty} P(Z_1 = k) P(A_m \mid Z_1 = k) = \sum_{k=0}^{\infty} p_k (d_{m-1})^k.$$

Let h(z) be the generating function for the distribution p_k :

$$h(z) = \sum_{k=0}^{\infty} p_k z^k.$$

Then,

$$d_m = h(d_{m-1})$$
, and as $d_m \to d$, we have $d = h(d)$.

Source: Grinstead and Snell (Chapter 10) $d_m = h(d_{m-1})$, and as $d_m \rightarrow d$, we have d = h(d).

Solution (cont.):

 $d_m = h(d_{m-1})$, and as $d_m \to d$, we have d = h(d).

•
$$h(z) = \sum_{k=0}^{\infty} p_k z^k$$
, its derivative $h'(z) = \sum_{k=1}^{\infty} k p_k z^{k-1}$, and
$$h'(1) = \sum_{k=1}^{\infty} k p_k = E[X_i].$$

• h(z) is a convex function as

$$h''(z) = \sum_{k=2}^{\infty} k(k-1) p_k z^{k-2} \ge 0, \qquad (z \ge 0).$$

Extinction criterium: Suppose $p_1 \neq 1$. Then,

d = 1 (guaranteed extinction) if and only if $h'(1) = E[X_i] \leq 1$.

h(z) is a convex function for $z \ge 0$ as $h''(z) = 2p_2 + 6p_3 z + \ldots \ge 0$

d = 1 if and only if $h'(1) = E[X_i] \leq 1$.

 $d_m = h(d_{m-1})$ and d = h(d).

Critical branching process.

Example. Consider a critical binary Galton-Watson (branching) process:

$$p_0 = p_2 = \frac{1}{2}$$

It is critical: $E[X_i] = p_1 + 2p_2 + 3p_3 + \ldots = 1$. Let N be the number vertices. Then,

 $P(N < \infty) = 1$ and $E[N] = \infty$

Example. Consider a Galton-Watson (branching) process with $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{8}$, ..., $p_k = \frac{1}{2^{k+1}}$, It is critical: $E[X_i] = p_1 + 2p_2 + 3p_3 + \ldots = 1$.

Here too, for the number of vertices N,

$$P(N < \infty) = 1$$
 and $E[N] = \infty$

Size biasing.

Jensen's inequality: If φ is convex, then $\varphi(E[X]) \leq E[\varphi(X)]$.

Suppose X is a positive valued continuous random variable (X > 0) with mean $\mu > 0$, variance $\sigma^2 > 0$ and probability density function $f_x(x)$. By Jensen's inequality we have a lower bound $E[X \cdot \ln X] > E[X] \cdot \ln(E[X]) = \mu \ln \mu$

as $\varphi(x) = x \ln x$ is convex for $x \in (0, \infty)$.

Problem: Find an upper bound on $E[X \cdot \ln X]$.

Size biasing: Function $g(x) = \frac{1}{\mu} x f_x(x)$ is a probability density function as $\int_{0}^{\infty} g(x) dx = \frac{1}{\mu} \int_{0}^{\infty} x f_x(x) dx = \frac{1}{\mu} E[X] = 1$. Let Y be a random variable with p.d.f. g(x), then since $\ln x$ is concave, $E[X \cdot \ln X] = \int_{0}^{\infty} x \ln x \cdot f_x(x) dx = \mu \int_{0}^{\infty} \ln x \cdot g(x) dx = \mu E[\ln Y] \le \mu \ln(E[Y]) = \mu \ln\left(\mu + \frac{\sigma^2}{\mu}\right)$ by Jensen's inequality, where $E[Y] = \int_{0}^{\infty} x g(x) dx = \frac{1}{\mu} \int_{0}^{\infty} x^2 f_x(x) dx = \frac{E[X^2]}{\mu} = \frac{\sigma^2 + \mu^2}{\mu}$.

Size biasing.

Suppose X is a positive valued continuous random variable (X > 0) with mean $\mu > 0$, variance $\sigma^2 > 0$ and probability density function $f_x(x)$.

Jensen's inequality: a lower bound

 $E[X \cdot \ln X] \ge \mu \, \ln \mu$

Size biasing: an upper bound

$$E[X \cdot \ln X] \le \mu \ln \left(\mu + \frac{\sigma^2}{\mu}\right)$$

Hence,

$$\mu \, \ln \mu \leq E[X \cdot \ln X] \leq \mu \, \ln \left(\mu + \frac{\sigma^2}{\mu} \right)$$

The inequalities hold if X is a positive valued discrete random variable.

Example. Let X be an exponential random variable with parameter $\lambda > 0$, then $\mu = \sigma = \lambda$ and

$$\lambda \ln \lambda \leq E[X \cdot \ln X] \leq \lambda \ln (2\lambda) = \lambda (\ln \lambda + \ln 2)$$

Functions of random variables.

Theorem. Let X be a continuous random variable with density function $f_x(x)$. If g(x) is a strictly monotone (increasing or decreasing) differentiable function, and if Y = g(X), then the probability density function of Y

$$f_{y}(y) = \begin{cases} f_{x}(g^{-1}(y)) \cdot \left| \frac{d}{dy}g^{-1}(y) \right| & \text{if } y = g(x) \text{ for some } x \text{ s.t. } f_{x}(x) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

where g^{-1} is the inverse of g: $g(x) = y \Leftrightarrow g^{-1}(y) = x$.

Question: Let X_1 and X_2 be continuous random variable with the joint probability density function $f_{x_1,x_2}(x_1,x_2)$. Let

$$g(x_1, x_2) = \left(g_1(x_1, x_2), g_2(x_1, x_2)\right)$$

be a bijection (one-to-one and onto) mapping from \mathbb{R}^2 to \mathbb{R}^2 . Find the joint probability density function $f_{y_1,y_2}(y_1,y_2)$ of

$$Y_1 = g_1(X_1, X_2)$$
 and $Y_2 = g_2(X_1, X_2)$.

Functions of random variables.

Question: Let X_1 and X_2 be continuous random variable with the joint probability density function $f_{x_1,x_2}(x_1,x_2)$. Let

$$g(x_1, x_2) = \left(g_1(x_1, x_2), g_2(x_1, x_2)\right)$$

be a bijection (one-to-one and onto) mapping from \mathbb{R}^2 to \mathbb{R}^2 . Find the joint probability density function $f_{y_1,y_2}(y_1,y_2)$ of

 $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$.

Theorem.

$$f_{y_1,y_2}(y_1,y_2) = f_{x_1,x_2}(x_1,x_2) \cdot \left| \frac{\partial g(x_1,x_2)}{\partial x_1 \partial x_2} \right|^{-1}, \text{ where } (x_1,x_2) = g^{-1}(y_1,y_2)$$

if $f_{x_1,x_2}\left(g^{-1}(y_1,y_2)\right) = f_{x_1,x_2}(x_1,x_2) > 0.$ Here,
$$\frac{\partial g(x_1,x_2)}{\partial x_1 \partial x_2} = \det \begin{pmatrix} \frac{\partial g_1(x_1,x_2)}{\partial x_1} & \frac{\partial g_1(x_1,x_2)}{\partial x_2} \\ \frac{\partial g_2(x_1,x_2)}{\partial x_1} & \frac{\partial g_2(x_1,x_2)}{\partial x_2} \end{pmatrix}$$

is the Jacobian of $g(x_1, x_2)$.

Functions of random variables.

Theorem.

 $f_{y_{1},y_{2}}(y_{1},y_{2}) = f_{x_{1},x_{2}}(x_{1},x_{2}) \cdot \left| \frac{\partial g(x_{1},x_{2})}{\partial x_{1}\partial x_{2}} \right|^{-1}, \text{ where } (x_{1},x_{2}) = g^{-1}(y_{1},y_{2})$ if $f_{x_{1},x_{2}}(g^{-1}(y_{1},y_{2})) = f_{x_{1},x_{2}}(x_{1},x_{2}) > 0.$ Here,

$$\frac{\partial g(x_1, x_2)}{\partial x_1 \partial x_2} = \det \begin{pmatrix} \frac{\partial g_1(x_1, x_2)}{\partial x_1} & \frac{\partial g_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial g_2(x_1, x_2)}{\partial x_1} & \frac{\partial g_2(x_1, x_2)}{\partial x_2} \end{pmatrix}$$

is the Jacobian of $g(x_1, x_2)$.

Example. Let X_1 be an exponential random variable with parameter $\lambda_1 = 1$ and X_2 be an exponential random variable with parameter $\lambda_2 = 2$. Suppose X_1 and X_2 are independent. Find the joint probability density function $f_{y_1,y_2}(y_1,y_2)$ of

$$Y_1 = X_1 + X_2$$
 and $Y_2 = \frac{X_1}{X_1 + X_2}$.