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• Jensen’s inequality.

• Characteristic and generating functions.

• Branching processes.

• Size biasing.

• Functions of random variables.
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Convex functions.

A function ϕ(x) is said to be convex over an interval I, the do-
main of the function, if

ϕ(λa+ (1− λ)b) ≤ λϕ(a) + (1− λ)ϕ(b)

for all λ ∈ [0,1] and all real a and b in I.

If function ϕ(x) is twice differentiable, then

ϕ(x) is convex in I ⇔ ϕ′′(x) ≥ 0 ∀x ∈ I

A function ϕ(x) is said to be concave if −ϕ(x) is convex. If
function ϕ(x) is twice differentiable, then

ϕ(x) is concave in I ⇔ ϕ′′(x) ≤ 0 ∀x ∈ I
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Jensen’s inequality.

A function ϕ(x) is said to be convex over an interval I, the
domain of the function, if

ϕ(λa+ (1− λ)b) ≤ λϕ(a) + (1− λ)ϕ(b)

for all λ ∈ [0,1] and all real a and b in I.

Jensen’s inequality: Suppose ϕ is convex. Then

ϕ(E[X]) ≤ E[ϕ(X)]

Proof. Let µ = E[X]. There is a line `(x) = ax+ b such that

`(x) ≤ ϕ(x) and `(µ) = ϕ(µ)

Then

ϕ(µ) = `(µ) = E[`(X)] ≤ E[ϕ(X)]
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Jensen’s inequality.

Jensen’s inequality: Suppose ϕ is convex. Then

ϕ(E[X]) ≤ E[ϕ(X)]

Examples:

• E[X2] ≥
(
E[X]

)2
as ϕ(x) = x2 is convex for x ∈ R.

• For any given a ∈ R, E[eaX] ≥ eaE[X] as ϕ(x) = eax is convex
for x ∈ R.

• If X ≥ 0 then E[X3] ≥
(
E[X]

)3
as ϕ(x) = x3 is convex for

x ∈ [0,∞).

• If X > 0 then E[X · ln(X)] ≥ E[X] · ln(E[X])
as ϕ(x) = x ln(x) is convex for x ∈ (0,∞).

• If X > 0 then E[ln(X)] ≤ ln(E[X]) as ϕ(x) = ln(x) is
concave for x ∈ (0,∞).
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Characteristic function.

Definition. The characteristic function ϕX : R→ C of a random
variable X is defined by

ϕX(s) = E
[
eisX
]

∀s ∈ R.

Properties:

• Euler’s formula states that eiθ = cos θ + i sin θ for all θ ∈ R.

Therefore,

ϕX(s) = E
[
eisX
]

= E
[

cos(sX)
]

+ i E
[

sin(sX)
]

is well defined for all s ∈ R.

• ϕX(s) = E
[
eisX
]

=


∑

x: px(x)>0

eisxpx(x) if X is discrete,

∞∫
−∞

eisxfx(x) dx if X is continuous.
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Characteristic function.

Definition. The characteristic function ϕX : R→ C of a random
variable X is defined by

ϕX(s) = E
[
eisX
]

∀s ∈ R.

• ϕX(0) = 1.

• The derivatives of ϕX(s) are computed as follows

ϕ(n)
X (s) =

dn

dsn
E[eisX] = E

[
dn

dsn
eisX
]

= inE[XneisX].

Thus, E[Xn] = (−i)nϕ(n)
X (0) (the nth moment) as −i = 1

i
.

• If X1, X2, . . . , Xn are independent random variables, then the
characteristic function of X = X1 +X2 + . . .+Xn equals

ϕX(s) = ϕX1(s) · ϕX2(s) · . . . · ϕXn(s).

• CLT can be proved via characteristic functions without assum-
ing the moment generating function of Xj is well defined.
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Characteristic function.

Definition. The characteristic function ϕX : R→ C of a random
variable X is defined by

ϕX(s) = E
[
eisX
]

∀s ∈ R.

Connection to harmonic analysis: for a continuous random variable,

1
√

2π
ϕX(−s) =

1
√

2π

∞∫
−∞

e−isxfx(x) dx

is a Fourier transform of fx(x), and

1
√

2π
ϕX(s) =

1
√

2π

∞∫
−∞

eisxfx(x) dx

is the inverse Fourier transform of fx(x).

Similar statements apply in the case of a discrete random vari-
able.
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Generating function.

Definition. For a given random variable X, the function

GX(s) = E
[
sX
]
, s > 0,

is called the generating function.

• Connection to m.g.f. GX(s) = MX

(
ln s
)

.

• GX(s) = E
[
sX
]

=


∑

x: px(x)>0

sx px(x) if X is discrete,

∞∫
−∞

sx fx(x) dx if X is continuous.

• If X1, X2, . . . , Xn are independent random variables, then the
generating function of X = X1 +X2 + . . .+Xn equals

GX(s) = GX1(s) ·GX2(s) · . . . ·GXn(s).

• If X is nonnegative integer valued random variable, i.e.,
X = 0,1,2, . . ., then its generating function is convex.
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Branching process.

Problem of Extinction. Start in the 0th generation with 1 parent.
In the first generation we shall have 0,1,2, . . . offsprings with
respective probabilities

p0, p1, p2, . . . .

If in the tth generation there are Zt = k individuals, then in the
(t+ 1)st generation there will be

Zt+1 = X1 +X2 + . . .+Xk offsprings,

where X1, X2, . . . , Xk are independent random variables, each
with the same probability mass function p0, p1, p2, . . ..

Question: For which probability mass functions {pk} do we have
guaranteed extinction of the genealogical (family) tree?

Note that case p1 = 1 is trivial.

Solution: For m = 0,1, . . ., let

Am = { extinction by mth generation}.

Then, dm = P (Am) is the probability that the process dies out
by the mth generation.
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Branching process.

Solution (cont.): For m = 0,1, . . ., let

Am = { extinction by mth generation}.

Then, dm = P (Am) is the probability that the process dies out
by the mth generation. Since, Am ⊆ Am+1,

0 = d0 ≤ d1 ≤ d2 ≤ . . . ≤ 1

and lim
m→∞

dm exists. Observe that
∞⋃

m=1

Am = { extinction } and

d = P

(
∞⋃

m=1

Am

)
= lim

m→∞
P (Am) = lim

m→∞
dm

is the probability of extinction.

Next, observe that for m ≥ 1,

dm = P (Am) =

∞∑
k=0

P (Z1 = k)P
(
Am
∣∣Z1 = k

)
=

∞∑
k=0

pk (dm−1)k.
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Branching process.
Solution (cont.): Since, Am ⊆ Am+1,

0 = d0 ≤ d1 ≤ d2 ≤ . . . ≤ 1

and lim
m→∞

dm exists. Observe that
∞⋃

m=1

Am = { extinction } and

d = P

(
∞⋃

m=1

Am

)
= lim

m→∞
P (Am) = lim

m→∞
dm

is the probability of extinction.

Next, observe that for m ≥ 1,

dm = P (Am) =

∞∑
k=0

P (Z1 = k)P
(
Am
∣∣Z1 = k

)
=

∞∑
k=0

pk (dm−1)k.

Let h(z) be the generating function for the distribution pk:

h(z) =

∞∑
k=0

pk z
k.

Then,
dm = h(dm−1), and as dm → d, we have d = h(d).
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Branching process.380 CHAPTER 10. GENERATING FUNCTIONS
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Figure 10.2: Graphs of y = z and y = h(z).

y = h(z) can intersect the line y = z in at most two points. Since we know it must

intersect the line y = z at (1, 1), we know that there are just three possibilities, as

shown in Figure 10.2.

In case (a) the equation d = h(d) has roots {d, 1} with 0  d < 1. In the second

case (b) it has only the one root d = 1. In case (c) it has two roots {1, d} where

1 < d. Since we are looking for a solution 0  d  1, we see in cases (b) and (c)

that our only solution is 1. In these cases we can conclude that the process will die

out with probability 1. However in case (a) we are in doubt. We must study this

case more carefully.

From Equation 10.4 we see that

h0(1) = p1 + 2p2 + 3p3 + · · · = m ,

where m is the expected number of o↵spring produced by a single parent. In case (a)

we have h0(1) > 1, in (b) h0(1) = 1, and in (c) h0(1) < 1. Thus our three cases

correspond to m > 1, m = 1, and m < 1. We assume now that m > 1. Recall that

d0 = 0, d1 = h(d0) = p0, d2 = h(d1), . . . , and dn = h(dn�1). We can construct

these values geometrically, as shown in Figure 10.3.

We can see geometrically, as indicated for d0, d1, d2, and d3 in Figure 10.3, that

the points (di, h(di)) will always lie above the line y = z. Hence, they must converge

to the first intersection of the curves y = z and y = h(z) (i.e., to the root d < 1).

This leads us to the following theorem. 2

Theorem 10.2 Consider a branching process with generating function h(z) for the

number of o↵spring of a given parent. Let d be the smallest root of the equation

z = h(z). If the mean number m of o↵spring produced by a single parent is  1,

then d = 1 and the process dies out with probability 1. If m > 1 then d < 1 and

the process dies out with probability d. 2

We shall often want to know the probability that a branching process dies out

by a particular generation, as well as the limit of these probabilities. Let dn be

Source: Grinstead and Snell (Chapter 10)

dm = h(dm−1), and as dm → d, we have d = h(d).
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Branching process.

Solution (cont.):

dm = h(dm−1), and as dm → d, we have d = h(d).

• h(z) =
∞∑
k=0

pk z
k, its derivative h′(z) =

∞∑
k=1

k pk z
k−1, and

h′(1) =

∞∑
k=1

k pk = E[Xi].

• h(z) is a convex function as

h′′(z) =

∞∑
k=2

k(k − 1) pk z
k−2 ≥ 0, (z ≥ 0).

Extinction criterium: Suppose p1 6= 1. Then,

d = 1 (guaranteed extinction) if and only if h′(1) = E[Xi] ≤ 1.
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Branching process.

h(z) is a convex function for z ≥ 0 as h′′(z) = 2p2 + 6p3z + . . . ≥ 0
380 CHAPTER 10. GENERATING FUNCTIONS
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Figure 10.2: Graphs of y = z and y = h(z).

y = h(z) can intersect the line y = z in at most two points. Since we know it must

intersect the line y = z at (1, 1), we know that there are just three possibilities, as

shown in Figure 10.2.

In case (a) the equation d = h(d) has roots {d, 1} with 0  d < 1. In the second

case (b) it has only the one root d = 1. In case (c) it has two roots {1, d} where

1 < d. Since we are looking for a solution 0  d  1, we see in cases (b) and (c)

that our only solution is 1. In these cases we can conclude that the process will die

out with probability 1. However in case (a) we are in doubt. We must study this

case more carefully.

From Equation 10.4 we see that

h0(1) = p1 + 2p2 + 3p3 + · · · = m ,

where m is the expected number of o↵spring produced by a single parent. In case (a)

we have h0(1) > 1, in (b) h0(1) = 1, and in (c) h0(1) < 1. Thus our three cases

correspond to m > 1, m = 1, and m < 1. We assume now that m > 1. Recall that

d0 = 0, d1 = h(d0) = p0, d2 = h(d1), . . . , and dn = h(dn�1). We can construct

these values geometrically, as shown in Figure 10.3.

We can see geometrically, as indicated for d0, d1, d2, and d3 in Figure 10.3, that

the points (di, h(di)) will always lie above the line y = z. Hence, they must converge

to the first intersection of the curves y = z and y = h(z) (i.e., to the root d < 1).

This leads us to the following theorem. 2

Theorem 10.2 Consider a branching process with generating function h(z) for the

number of o↵spring of a given parent. Let d be the smallest root of the equation

z = h(z). If the mean number m of o↵spring produced by a single parent is  1,

then d = 1 and the process dies out with probability 1. If m > 1 then d < 1 and

the process dies out with probability d. 2

We shall often want to know the probability that a branching process dies out

by a particular generation, as well as the limit of these probabilities. Let dn be

d = 1 if and only if h′(1) = E[Xi] ≤ 1.
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Branching process.10.2. BRANCHING PROCESSES 381

y = z

y = h(z)

y
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Figure 10.3: Geometric determination of d.

the probability of dying out by the nth generation. Then we know that d1 = p0.

We know further that dn = h(dn�1) where h(z) is the generating function for the

number of o↵spring produced by a single parent. This makes it easy to compute

these probabilities.

The program Branch calculates the values of dn. We have run this program

for 12 generations for the case that a parent can produce at most two o↵spring and

the probabilities for the number produced are p0 = .2, p1 = .5, and p2 = .3. The

results are given in Table 10.1.

We see that the probability of dying out by 12 generations is about .6. We shall

see in the next example that the probability of eventually dying out is 2/3, so that

even 12 generations is not enough to give an accurate estimate for this probability.

We now assume that at most two o↵spring can be produced. Then

h(z) = p0 + p1z + p2z
2 .

In this simple case the condition z = h(z) yields the equation

d = p0 + p1d + p2d
2 ,

which is satisfied by d = 1 and d = p0/p2. Thus, in addition to the root d = 1 we

have the second root d = p0/p2. The mean number m of o↵spring produced by a

single parent is

m = p1 + 2p2 = 1 � p0 � p2 + 2p2 = 1 � p0 + p2 .

Thus, if p0 > p2, m < 1 and the second root is > 1. If p0 = p2, we have a double

root d = 1. If p0 < p2, m > 1 and the second root d is less than 1 and represents

the probability that the process will die out.

dm = h(dm−1) and d = h(d).
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Critical branching process.

Example. Consider a critical binary Galton-Watson
(branching) process:

p0 = p2 =
1

2

It is critical: E[Xi] = p1 + 2p2 + 3p3 + . . . = 1.
Let N be the number vertices. Then,

P (N <∞) = 1 and E[N ] =∞

Example. Consider a Galton-Watson (branching)
process with p0 = 1

2
, p1 = 1

4
, p2 = 1

8
, . . . , pk = 1

2k+1 , . . ..
It is critical: E[Xi] = p1 + 2p2 + 3p3 + . . . = 1.

Here too, for the number of vertices N ,

P (N <∞) = 1 and E[N ] =∞
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Size biasing.

Jensen’s inequality: If ϕ is convex, then ϕ(E[X]) ≤ E[ϕ(X)].

Suppose X is a positive valued continuous random variable (X > 0)
with mean µ > 0, variance σ2 > 0 and probability density function
fx(x). By Jensen’s inequality we have a lower bound

E[X · lnX] ≥ E[X] · ln(E[X]) = µ lnµ

as ϕ(x) = x lnx is convex for x ∈ (0,∞).

Problem: Find an upper bound on E[X · lnX].

Size biasing: Function g(x) = 1
µ
xfx(x) is a probability density

function as
∞∫
0

g(x) dx = 1
µ

∞∫
0

xfx(x) dx = 1
µ
E[X] = 1.

Let Y be a random variable with p.d.f. g(x), then since lnx is concave,

E[X · lnX] =

∞∫
0

x lnx·fx(x)dx = µ

∞∫
0

lnx·g(x)dx = µE[lnY ] ≤ µln(E[Y ]) = µ ln

(
µ+

σ2

µ

)
by Jensen’s inequality, where E[Y ] =

∞∫
0

x g(x) dx = 1
µ

∞∫
0

x2fx(x) dx = E[X2]
µ

= σ2+µ2

µ
.
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Size biasing.
Suppose X is a positive valued continuous random variable (X > 0)
with mean µ > 0, variance σ2 > 0 and probability density function
fx(x).

Jensen’s inequality: a lower bound

E[X · lnX] ≥ µ lnµ

Size biasing: an upper bound

E[X · lnX] ≤ µ ln

(
µ+

σ2

µ

)
Hence,

µ lnµ ≤ E[X · lnX] ≤ µ ln

(
µ+

σ2

µ

)
The inequalities hold if X is a positive valued discrete random
variable.

Example. Let X be an exponential random variable with pa-
rameter λ > 0, then µ = σ = λ and

λ lnλ ≤ E[X · lnX] ≤ λ ln
(

2λ
)

= λ
(

lnλ+ ln 2
)
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Functions of random variables.

Theorem. Let X be a continuous random variable with den-
sity function fx(x). If g(x) is a strictly monotone (increasing or
decreasing) differentiable function, and if Y = g(X), then the
probability density function of Y

fy(y) =

{
fx
(
g−1(y)

)
·
∣∣ d
dy
g−1(y)

∣∣ if y = g(x) for some x s.t. fx(x) 6= 0

0 otherwise

where g−1 is the inverse of g: g(x) = y ⇔ g−1(y) = x.

Question: Let X1 and X2 be continuous random variable with
the joint probability density function fx1,x2(x1, x2). Let

g(x1, x2) =
(
g1(x1, x2), g2(x1, x2)

)
be a bijection (one-to-one and onto) mapping from R2 to R2.
Find the joint probability density function fy1,y2(y1, y2) of

Y1 = g1(X1, X2) and Y2 = g2(X1, X2).
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Functions of random variables.

Question: Let X1 and X2 be continuous random variable with
the joint probability density function fx1,x2(x1, x2). Let

g(x1, x2) =
(
g1(x1, x2), g2(x1, x2)

)
be a bijection (one-to-one and onto) mapping from R2 to R2.
Find the joint probability density function fy1,y2(y1, y2) of

Y1 = g1(X1, X2) and Y2 = g2(X1, X2).

Theorem.

fy1,y2(y1, y2) = fx1,x2(x1, x2) ·
∣∣∣∂g(x1, x2)

∂x1∂x2

∣∣∣−1

, where (x1, x2) = g−1(y1, y2)

if fx1,x2
(
g−1(y1, y2)

)
= fx1,x2(x1, x2) > 0. Here,

∂g(x1, x2)

∂x1∂x2
= det

( ∂g1(x1,x2)
∂x1

∂g1(x1,x2)
∂x2

∂g2(x1,x2)
∂x1

∂g2(x1,x2)
∂x2

)

is the Jacobian of g(x1, x2).
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Functions of random variables.

Theorem.

fy1,y2(y1, y2) = fx1,x2(x1, x2) ·
∣∣∣∂g(x1, x2)

∂x1∂x2

∣∣∣−1

, where (x1, x2) = g−1(y1, y2)

if fx1,x2
(
g−1(y1, y2)

)
= fx1,x2(x1, x2) > 0. Here,

∂g(x1, x2)

∂x1∂x2
= det

( ∂g1(x1,x2)
∂x1

∂g1(x1,x2)
∂x2

∂g2(x1,x2)
∂x1

∂g2(x1,x2)
∂x2

)

is the Jacobian of g(x1, x2).

Example. Let X1 be an exponential random variable with pa-
rameter λ1 = 1 and X2 be an exponential random variable with
parameter λ2 = 2. Suppose X1 and X2 are independent. Find
the joint probability density function fy1,y2(y1, y2) of

Y1 = X1 +X2 and Y2 =
X1

X1 +X2
.


