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Convex functions. )
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A function ¢(x) is said to be convex over an interval Z, the do-
main of the function, if

e(Aa+ (1 —=A)b) < Ap(a) + (1 —N)ep(b)
for all A € [0,1] and all real a and b in T.
If function ¢(x) is twice differentiable, then
o(x) isconvexin T <« ¢'(z)>0 Vzxel
A function ¢(x) is said to be concave if —p(x) is convex. If
function ¢(z) is twice differentiable, then
o(x) isconcavein T <« ¢'(z)<0 VreZl
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Jensen’s inequality.

A function ¢(z) is said to be convex over an interval Z, the
domain of the function, if

p(Aa+ (1 —=2)b) < Ap(a) + (1 —N)p(b)
for all A € [0,1] and all real a and b in T.

Jensen’s inequality: Suppose ¢ is convex. Then

(E[X]) < E[p(X)]

Proof. Let u = E[X]. There is a line 4(x) = ax + b such that
(z) <p(z) and £(p) = p(p)

Then
p(p) = £(p) = E[E(X)] < Elp(X)]
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Jensen’s inequality.

Jensen’s inequality: Suppose ¢ is convex. Then
e(E[X]) < Blp(X)]
Examples:
2
o E[X?] > (E[X]) as o(x) = 22 is convex for z € R.

e For any given a € R, E[e®X] > e*FIX] 35 p(x) = e is convex
for z € R.

e If X >0 then E[X3]> (E[X])3 as p(x) = z3 is convex for
x € [0,00).

e If X >0 then E[X-In(X)]> E[X]-In(E[X])
as o(x) = xIn(z) is convex for z € (0, o).

o If X >0 then E[In(X)]<In(E[X]) as ¢(z) = In(x) is
concave for z € (0, c0).
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Characteristic function.

Definition. The characteristic function ¢px : R — C of a random
variable X is defined by

ox(s) =FE [eiSX} Vs € R.

Properties:
e Euler's formula states that e = cos6 +isin@ for all 6 € R.
Therefore,

px(s) = E[e"Y] = E| cos(sX)| +i E[sin(sX)]

is well defined for all s € R.

( > etp(x) if X is discrete,
z: px(z)>0
o ox(s)=E[e*N] =4 _
[ e f(x) dx if X is continuous.
\—OO
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Characteristic function.

Definition. The characteristic function ¢px : R — C of a random
variable X is defined by

ox(s) =FE [eiSX] Vs € R.
e ox(0)=1.
e The derivatives of px(s) are computed as follows
dn

d" . . _
(,D‘()?)(S) — @E[ezs,}(] — E [@ezs)(] — 4 E[Xnest].

Thus, E[X"] = (=i)"¢{’(0) (the nt" moment) as —i = 1.

o If X;1,X5,...,X,, are independent random variables, then the
characteristic function of X = X; + Xo+ ...+ X,, equals
px(s) = px,(8) px,(s) ... - vx,(s).

e CLT can be proved via characteristic functions without assum-
ing the moment generating function of X, is well defined.
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Characteristic function.

Definition. The characteristic function ¢x : R — C of a random
variable X is defined by

ox(s) =FE [eisx} Vs € R.
Connection to harmonic analysis: for a continuous random variable,

\/%%((—s) =¢% / e () da

is a Fourier transform of f(x), and

\/%_Wgox(s) — \/%_W / e f(x) dx

is the inverse Fourier transform of f(x).

Similar statements apply in the case of a discrete random vari-
able.
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Generating function.

Definition. For a given random variable X, the function
GX(S):E[SX}7 S>O7

is called the generating function.

e Connection to m.g.f. Gx(s) = MX(In s).

(Y s"p(x) if X is discrete,
x: px(z)>0
o Gx(s) :E[SX] =9 .
[ 5% fu(@) da if X is continuous.
[ —o0
o If X1,X5,...,X,, are independent random variables, then the

generating function of X = X7 4+ Xo 4+ ...+ X,, equals
Gx(s) = Gx,(s) - Gx,(s)-...-Gx,(s).

e If X is nonnegative integer valued random variable, i.e.,
X =0,1,2,..., then its generating function is convex.
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Branching process.

Problem of Extinction. Start in the Oth generation with 1 parent.
In the first generation we shall have 0,1,2,... offsprings with
respective probabilities

po,P1,P2,.---

If in the t*" generation there are Z; = k individuals, then in the
(t + 1)st generation there will be

i1 =X1+Xo+ ...+ X offsprings,

where X, Xo,...,X; are independent random variables, each
with the same probability mass function po, p1,p2, ...

Question: For which probability mass functions {p;} do we have
guaranteed extinction of the genealogical (family) tree?

Note that case p; = 1 is trivial.
Solution: For m=20,1,..., let
A,, = { extinction by m'" generation}.

Then, d,, = P(A,,) is the probability that the process dies out
by the mth generation.
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Branching process.

Solution (cont.): For m =0,1,..., let
A, = {extinction by m'" generation}.

Then, d,, = P(A,,) is the probability that the process dies out
by the mth generation. Since, A,, C A,,+1,

O=do<d1<dr<...<1

and lim d,, exists. Observe that U A, = { extinction } and

m—00

m=1
d=P UAm — lim P(An) = lim d,,
m—0o0 m—r00
m=1

is the probability of extinction.

Next, observe that for m > 1,

d=P(An) =Y P(Zi=k)P(An|Z1=k) = > pi(dn-1)".
k=0

k=0
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Branching process.

Solution (cont.): Since, A, C A,+41,
O=do<d1 <dp<...<1

and lim d,, exists. Observe that ] A, = {extinction} and

m—o0 m=1
d=P U Am | = lim P(A,) = lim d,,
m—0o0 m—r0o0
m=1

is the probability of extinction.
Next, observe that for m > 1,

dm = P(Ap) = Z P(Z1=k) P(An | Z1 = k) = Zpk (dp_1)".
k=0 k=0
Let h(z) be the generating function for the distribution py:

h(z) = Zpk 2"
k=0
Then,

dm = h(d,,—1), and as d,, — d, we have d = h(d).
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Branching process.

0 d<1 1 0 d=1 0 1 d>1
(a) (b) (©)

Source: Grinstead and Snell (Chapter 10)
dm = h(dyn-1), and as d,, — d, we have d = h(d).
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Branching process.
Solution (cont.):

dm = h(dn-1), and as d,, — d, we have d = h(d).

o h(z) = pipz¥, its derivative R'(z) = > kp,2F~1, and
k=0 =

W(1) =) kpe = B[X].

k=1

e h(z) is a convex function as

()= k(k—1)pez"2>0,  (2>0).
k=2

Extinction criterium: Suppose p;1 # 1. Then,

d =1 (guaranteed extinction) if and only if A'(1) = E[X;] < 1.
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Branching process.

h(z) is a convex function for z > 0 as h"(z) =2p>+6p3z+... >0

y y y
A A A
y=h(2)

0 d<l1 1 0 d=1 0 1 d>1
(@) (b) (c)

d=1 ifandonlyif A'(1)=FE[X;] <1.



MTH 464/564 15

Branching process.

y

d0=0 d1 d2 d3 d 1

dp = h(dm_1) and d= h(d).
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Critical branching process.

Example. Consider a critical binary Galton-Watson
(branching) process:

. 1
bo — p2 — >
It is critical: FE[X;]] =p1+2p2+3ps+... = 1.

Let N be the number vertices. Then,

P(N<o)=1 and E[N]=oo

Example. Consider a Galton-Watson (branching)
processwith po =3, p1=1%, P2=12%, ..., Pk = 5,
It is critical: E[X;]] =p1+2p2+3p3+ ... =1.

Here too, for the number of vertices IV,

P(N<oo)=1 and E[N]= o0
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Size biasing.
Jensen’s inequality: If ¢ is convex, then o(FE[X]) < E[e(X)].

Suppose X is a positive valued continuous random variable (X > 0)
with mean pu > 0, variance o2 > 0 and probability density function
fx(x). By Jensen’'s inequality we have a lower bound

E[X -InX]> E[X]-In(E[X])=pInpu
as p(z) ==xInz is convex for z € (0,00).

Problem: Find an upper bound on E[X -In X].

Size biasing: Function g(z) = %xfx(a:) is a probability density
function as fg(:c) dr = %facfx(a:) dr = %E[X] = 1.
0 0

Let Y be a random variable with p.d.f. g(x), then since Inx is concave,

o0 o0

E[X -In X] =/a;|n x fx(x)dx = ,u/ln z-g(x)dr = pE[InY] < pIn(E[Y]) = pln (,u + 0—2>
o

0 0 00
by Jensen's inequality, where E[Y] = [z g(z)dz =
0

2 — E[X?] _ o’+p?
x* fx(z) doe = = :

1
p p

0%8
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Size biasing.

Suppose X is a positive valued continuous random variable (X > 0)
with mean p > 0, variance o2 > 0 and probability density function

(ﬂ(x)
Jensen’s inequality: a lower bound
E[X - InX]>plnp

Size biasing: an upper bound
0.2
EFIX InX]|<pin|p+—
7

Hence,
0.2
pinp<EX-InX]<plin|pt+—
7

The inequalities hold if X is a positive valued discrete random
variable.

Example. Let X be an exponential random variable with pa-
rameter A > 0, then pu =0 =X and

AInA < E[X -InX] §>\In(2>\) =>\(In>\—|—ln2)
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Functions of random variables.

Theorem. Let X be a continuous random variable with den-
sity function fi(xz). If g(z) is a strictly monotone (increasing or
decreasing) differentiable function, and if Y = ¢g(X), then the
probability density function of Y
fx(g_l(y)) . ‘d%g_l(y)} if y=g(x) for some z s.t. fi(z) #0
fy(y) =

0 otherwise

where g1 is the inverse of g: g(z) =y < g (y) ==.

Question: Let X; and X» be continuous random variable with
the joint probability density function fy «,(x1,22). Let

g(z1,22) = (91(3?1,962)7 92(1‘1,962))

be a bijection (one-to-one and onto) mapping from R? to RZ.
Find the joint probability density function fi, ,,(y1,y2) of

Y1 =91(X1,X2) and Yo = g2(X1, X2).
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Functions of random variables.

Question: Let X7 and X» be continuous random variable with
the joint probability density function f, «,(x1,22). Let

g(z1,22) = (91(1’1,932), 92(331,932))

be a bijection (one-to-one and onto) mapping from R? to RZ.
Find the joint probability density function f,, ,,(y1,y2) of

Y1 =91(X1,X2) and Yo = go(X1, X2).

Theorem.
-1

0
9g(w1,22) , where (z1,z2) =g~ (y1,92)

011012
if le,XQ (g_l(yl,yz)) = fxl,xQ(xl,ZCQ) > 0. Here,

O0g1(xz1,x2)  9g1(w1,22)

Fory2 (Y1, 92) = faue(x1,22) - ‘

0g(x1,xo O0x1 O0xo
0x10x> 0g2(x1,22)  Og2(x1,72)
61‘1 81‘2

is the Jacobian of g(x1,z2).
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Functions of random variables.

T heorem.
-1

0
9g(x1,22) , where (z1,22) =g (y1,2)

0x10x>

fy1,y2(y1792) - fX1,X2(x17$2) : ‘

it fase (97 (W1, 12)) = fus(@1,22) > 0. Here,

0g1(x1,22)  9g1(x1,22)

ag($17$2) o det 8.’131 8332
8$18£C2 0g2(x1,22) 0g2(x1,72)
81‘1 8:172

is the Jacobian of g(x1,x2).

Example. Let X; be an exponential random variable with pa-
rameter A1 = 1 and X, be an exponential random variable with
parameter \» = 2. Suppose X7 and X, are independent. Find
the joint probability density function fy,y,(y1,y2) of

X1

Y:i = X714+ X5 and Yo = —F—.
X1+ Xo



