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e Indicator variables.

e Conditional distributions.

e Conditional expectation.

e \Wald's equation.

e Conditional variance.

e [ he law of total variance.

e VVariance of a random sum of random variables.
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e Conditional expectation as a projection.

e T he law of total variance via Pythagorean
Theorem.

e Randomization formulas.

e Joint cumulative distribution function.

e Moment generating functions.
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Indicator variables.

e Example. A Binomial random variable S,, with parameters
(n,p) represents the number of success in n independent Bernoulli
trials, each having probability p of success and 1 — p of failure.

Consider Bernoulli random variables

v, — J1 ifthe it" trial is a success,
"7 10 if the " trial is a failure.

For each : = 1,...,n, X, is the indicator variable for the event
that the 4" trial is a success.
Then, S, =X1+Xo+ ...+ X,,
where FE[X;]=p and Var(X;) =p(1—p) foralli=1,...,n.
Hence,
E[S))=FE[X1+ ...+ X, | =E[X1]+ ...+ E[X,)] =np
and

Var(S,) = Var(X1+...+X,) = Var(X1)+...4+Var(X,) = np(1l — p).
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Indicator variables.

e Definition. Consider an event A. The random variable

¥ = 1 if the event A occurs
10 if the event A does not occur

is said to be the indicator variable for the event A.
e Frequently used notation: 1y4.

e X is a Bernoulli random variable:
E[X] = P(A) and Var(X) = P(A)(1- P(A))

e The indicator variable of the complement A of A is Iz=1-—14.
e Forallk #20and X = I4, we have X* = X and E[X*] = P(A).

e For given events A and B the indicator variables X = I4 and
Y = Ip satisfy XY = Isqp (i.e., Ialp = I4qp) and

E[XY] = P(AN B).

Also, by de Morgan's law, 1 — (1 - X)(1—-Y) = I4u5 and
1-FE[(1-X)(1-Y)]=P(AUB).
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Indicator variables.

e General case of Inclusion-Exclusion Theorem.

n
P(EAUE>U...UE,) =Y (-1)tt Y P(E,;NE,N...NE;)

r=1 11 <12<...<1p

= > P(E) =) P(EyzNEy,)+> P(E,NE,NE,)—...+(-1)""'P(E1NE2N...NEy,)
=1

11 <12 11 <12<13

e Example. P(E: U E») = P(E1) + P(E») — P(E1N E»).

e Example.

3
P(E1UE>2UE3) =Y P(E;)— Y P(E;NE;,)+ P(E1NE2NE3)

i=1 11 <12

= P(E1)+P(E2)+P(E3)—-P(E1N E2)—P(E1NE3)—P(E2N E3)+P(E1N Ex2N E3)
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Indicator variables.

e General case of Inclusion-Exclusion Theorem.

n
P(EAUE>U...UE,) =Y (-1)tt Y P(E,;NE,N...NE;)

r=1 11 <10<...<lp

= > P(E)—-Y P(E,sNEy,)+> P(E,NE,NE.)—...+(-1)""'P(E1NE>N...
=1

11 <12 11<12<13

e Proof. Let

X, — 1 if the event E; occurs
710 if the event E; does not occur

Then,

1 if the event E; N E; occurs

i Xy = {O if the event E;N E; does not occur
and, by de Morgan’s law,

, y_ J1 ifthe event E;UE; occurs
1-A-=X) (1-X;) = {O if the event E; U E; does not occur

N Ey)
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Indicator variables.

. _J1 if the event E; occurs
e Proof (cont.): Let X; = {O if the event E; does not occur

Then,
__ 1 ifthe event E1UE>U...UE, oOCCUIS
1I-(1=X) (1-X2)... (1=Xn) = {O if the event E; UF,U...UE, does not occur

and

P(EAUE>U...UE,) =E[1—(1-X1)(1-X2)...(1-X,)]

_Z( 1)r+1 Z E[X: X, ... Xi]

11<12<...<1p

= Z( 1)r+1 Z P(E,NE,N...N0E;)

11<12<... <ty
as

1-(1-X1)(1—X5)...(1— Xn)—Z( 1)r+1 Z Xi X, ... X,

11<12<...<1p
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Indicator variables.

e Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1 —p of failure.
Recall that a geometric random variable with parameter p counts
the number of trials until the first success.

Let X be a geometric random variable. We want to find E[X]
using indicator variables.

Let F;, denote the event of failure on the ¢th trial, and let X;
denote its indicator variable, i.e.,

Xi = I,

Then, X = 1—|—X1—|—X1X2—|—X1X2X3—|—... and, by indepen-
dence of X;, we have

E[X] =14+ E[Xi] 4+ E[X1Xo] + E[X1X>X3] + ...

= 1+ E[X1] + E[X1]E[X2] + E[X1] E[X2]E[X3] + ...

=1+ P(F1) + P(F1)P(F2) + P(F1)P(F2)P(F3) + ...

1+<1—p>+<1—p>2+(1—p>3+...=%.
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Conditional distributions: discrete variables.

Definition. Suppose X and Y are discrete random variables with
joint probability mass function p(x,y). For a given y such that

py(y) > 0, the conditional probability mass function pxy(z|y) is
defined as

PX|Y(9U|Z/) = P(X = ‘ Y = y) % Vo s.t. p(x,y) > 0.
y

Properties: o If X and Y independent, pxy(z|y) = px(x).
e pxy(z|y) is a probability mass function:

_ 1 _n(y) _
D paG)=—os Y sy =l =1

x: px)y (z|y)>0 z: p(x,y)>0

e The conditional cumulative distribution function: for a given
y such that p,(y) > O,

Fxy(aly) = P(X <z|Y =y) = > pxpy(aly)

a.a<x

iIS @ non- decreasing function such that
T—r00

T——00
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Conditional distributions: discrete variables.

Definition. Suppose X and Y are discrete random variables with
joint probability mass function p(xz,y). For a given y such that

py(y) > 0, the conditional probability mass function pxy(z|y) is
defined as

pav(el) = P(x =2 |y =y) =228 o st pen) >0
y

o pxy(x|y) is a probability mass function:

Z px|y (zly) = ! Z p(z,y) = () _ 1.

py(y) py(y)
z:pxy (z]y)>0 ’ z:p(x,y)>0 ’

e The conditional cumulative distribution function Fxy(zly) is
defined as follows:

Fxy(aly) = P(X <a ‘ Y = y) = Z px|y (z|y)

e Conditional probability: P(X € A|Y =y) = > pxjy(zly).
TEA
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Conditional distributions: discrete variables.

Definition. Suppose X and Y are discrete random variables with
joint probability mass function p(x,y). For a given y such that

py(y) > 0, the conditional probability mass function pxy(zly) is
defined as

pxy (zly) = P<X =z ‘ Y = y) = pp(ai(,yy)) vz s.t. p(x,y) > 0.

e Example. Let X be Poisson with parameter A\; and Y be
Poisson with parameter A». Suppose X and Y are independent.
We know that Z = X +Y is Poisson with parameter A1 +X>. We
want to find the conditional probability mass function px z(k|n)
for a given integer n > 0, and k=0,1,...,n.

P(X=k(X+Y =n)

pX|Z(k|n)=P(X:k‘Z:n) = Pz =

_ P(X=kY=n-k) P(X=kPY =n—k)
o P(Z =n) - P(Z =n)
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Conditional distributions: discrete variables.

e Example (continued). Let X be Poisson with parameter
A1 and Y be Poisson with parameter M\>. Suppose X and Y
are independent. We know that Z = X 4+ Y is Poisson with

parameter \1 + X\o.

Then, for a given n > 0, the conditional probability mass func-
tion

A,
(k| ) P(X = k;)P(Y = n — k-) € Alﬁe A (n—F)!
n) — =
Pxiz P(Z =n) e~ (o) Qo)

k n—=k
S
k A1+ Ao A1+ A2

Thus, conditioned on X +Y = n, X is a binomial
random variable with parameters (n, p= ﬁ)
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Conditional distributions: continuous variables.

Definition. Suppose X and Y are continuous random variables
with joint probability density function f(z,y). For a given y
such that f,(y) > 0, the conditional probability density function
fxy(z|y) is defined as

f(z,y)
fy(y)

o fxy(z|y) is a probability density function:

fxpy (zly) = Vz € R.

o0

/fX|y(sc\y)dx = 1y) /f(a:,y)dg; — M =1

fy( N fy(y) N

— 00

e The conditional cumulative distribution function Fyxy (z|y) is
defined as follows:

a

Fyy(aly) =P(X <a|Y =y) = /fxw(wly)dw

—0o0

e Conditional probability: P(X €A ’ Y = y) = ffX|Y(x|y)dx.
A
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Conditional distributions: continuous variables.

Definition. Suppose X and Y are continuous random variables
with joint probability density function f(z,y). For a given y
such that f,(y) > 0, the conditional probability density function
fxyy(zly) is defined as

Py (@ly) = f}fy‘”a y)) ViR,

e Example. Let X and Y be continuous random variables with
joint probability density function

ie—(y2+x)/y if x>0 and y >0,

flz,y) =

0] otherwise.

For a given y >0, find fxy(z|ly) and Fxjy (zly).
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Conditional distributions: continuous variables.
e Example (continued). Let X and Y be continuous random
variables with joint probability density function
ée_(yz'*‘x)/y if >0 and y > 0,
f(z,y) =

0] otherwise.

For a given y > 0, observe that ée—(yQ-l-x)/y = ie_ye_m/y and

fy(y) = /f(xay) der =e / 1e_m/y der = e Y
Yy
oo 0

Thus,

RO

Hence, conditioned on the event Y = y, random variable X is
exponential with parameter i Finally,

Frpy Goly) = L8828 = Lmary

a a

1
Fyjy (aly) = / Py (aly)de = / “e Az =1 Va0,
Yy

—00 0
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Conditional expectation: discrete variables.

Definition. Suppose X and Y are discrete random variables with
joint probability mass function p(x,y). For a given y such that
py(y) > 0, the conditional expectation E[X |Y = y] is defined as

EIX|Y =yl = )  apxy(aly)

z:p(z,y)>0

e Example. Let X be Poisson with parameter A1 and Y be
Poisson with parameter \». Suppose X and Y are independent.
We know that Z = X + Y is Poisson with parameter A1 + \»>.

For a given integer n > 0, conditioned on Z =n, X is a binomial

random variable with parameters (n, p= Alig&), ie.,

n A1 )k( Ao )”k
L — _ s k=0,1,...,n.
pxiz(kin) = () (/\1+A2 VRIS "
Then,

‘ AN
E[X|Z =n]= g k?pX|Z(k\n) = np = m
k=0
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Conditional expectation: continuous variables.

Definition. Suppose X and Y are continuous random variables
with joint probability density function f(z,y). For a given y
such that f,(y) > 0, the conditional expectation E[X |Y =y] is
defined as

0.@)

BEX|Y =y] = /mfxw(:vly) dx
e Example. Let X and Y be continuous random variables with

joint probability density function

%e—(y2+w)/y if >0 and y > 0,

f(z,y) =
0 otherwise.
For a given y > 0, we know that fxy(z|y) = ie*l‘/y, i.e., con-
ditioned on the event Y = y, random variable X is exponential
with parameter i Therefore,

0.} 0.}

1
EX|Y =y] = /wfxy(xly)dx=/w—€x/ydw=y
Y

—00 0
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Conditional expectation: random variable E[X|Y]

( > wpxy(zly) in discrete case
z:p(z,y)>0

EIX|Y =y] =4

(o.e]
f r fx)y(x|y) dx in continuous case

\*OO

Observe that in either case, ¢(y) = E[X |Y = y] is a function of y.
Random variable E[X]Y] is defined by letting

EX]Y] = oY)

e Example. Let X be Poisson with parameter A1 and Y be
Poisson with parameter A>. Suppose X and Y are independent,
and let Z = X 4+ Y. For a given integer n > 0, we know that

E[X |Z = n] = 244 Therefore,

A1

1 2
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Conditional expectation: random variable E[X|Y]

(Y apxy(zly) in discrete case
z:p(z,y)>0
BXY =y] = <

0
[ = fxpy (zly) da in continuous case

\—OO

Observe that in either case, ¢(y) = E[X |Y = y] is a function of y.
Random variable E[X]Y] is defined by letting

EX]Y] = oY)

e Example. Let X and Y be continuous random variables with
%e—@zﬂ)/y if >0 and y >0,
f(z,y) =

0 otherwise.
For a given y > 0, we know that E[X |Y = y] = y. Therefore,

E[X|Y]=Y.
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Conditional expectation: random variable E[X|Y]

( > wpxpy(zly) in discrete case
z:p(z,y)>0
EX|Y =yl=<¢
[ = fxpy (zly) da in continuous case
\—OO

Observe that in either case, E[X |Y = y] satisfies all properties
of an expectation, e.qg.

EXi+ ..+ XY =y]=FE[X1|]Y =y]+ ...+ E[X,|Y =]

Thus, random variables E[X;|Y] satisfy
E[X1+ ...+ X,|Y]=E[X1|Y]+...+ E[X,|Y]

Also, for a function g,
Elg(Y)X Y] = g(Y)E[X|Y]

as Elg(y)X Y =y] = g(y) E[X|Y = y]. Finally, E[g(Y)|Y] = g(Y)
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Conditional expectation: random variable E[X|Y]

BIX|Y =yl = <

( > apxy(zly) in discrete case
z:p(z,y)>0

o0

[ = fxpy (zly) da in continuous case

\—OO

Observe that in either case, ¢(y) = E[X |Y = y] is a function of y.
Random variable E[X]Y] is defined by letting E[X|Y] = o(Y).

Theorem.

Proof. Assume X

E|BIX|Y]] = E[p(Y)]

Y-

y:py(y)>0 \z: p(z, y)>0

E|E[X|Y]] = E[X]
and Y are discrete random variables.

=) ewrw= Y | Y epxyE|p®

py(y)>0 y:py(y)>0 \z:p(z,y)>0

Z Z p(x y) py(y) = Z Z:Up(:l?,y) = Z zp(z,y) = E[X].

y:py(y)>0 \z: p(z,y)>0 x,y: p(z,y)>0
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Conditional expectation: random variable E[X|Y]

(Y apxy(zly) in discrete case
x:p(x,y)>0
EXY=yl=<¢ _
[ = fxp(zly) da in continuous case
\—OO

Observe that in either case, ¢(y) = E[X |Y = y] is a function of y.
Random variable E[X]Y] is defined by letting E[X|Y] = o(Y).

Theorem.
E|E[X|Y]] = E[X]

Proof. Assume X and Y are continuous random variables.

0.0} o0 o

E|E[X|Y]] = E[p(Y)] =/90(y)fy(y) dy =/ /:fow(w\y) dx | f,(y) dy

—0o0 —0o0 —0o0

o0 o0

:/ /xf(x’y)dx fy<y>dy=//xf<sc,y>d:cdy=E[X].
fy(y)
RQ

—0o0 —0o0
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Conditional expectation: random variable E[X|Y]
Observe that in either case, ¢(y) = E[X |Y = y] is a function of y.
Random variable E[X]Y] is defined by letting E[X|Y] = o(Y).

Theorem.
E|E[X|Y]] = E[X]
Note that E[E[X|Y]} = FE[X] holds even when one of the vari-

ables is continuous and the other is discrete.

Example. Weather prediction. Let
X = weather after tomorrow and Y = weather tomorrow
Then,

E[X] = today's prediction of weather after tomorrow

E[X|Y] = tomorrow'’s prediction of weather after tomorrow

and

E[E[X|Y]] = today’s prediction of tomorrow's prediction of weather after tomorrow
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Wald’s equation.

Wald’s equation. Suppose Xi,X»o,... are a sequence of ran-
dom variables with finite mean E[X;] = (¢ > 1), and let N be a
nonnegative integer-valued discrete random variable with finite
mean E[N]. Assume N is independent from Xi, X>5,.... Then,

TN 0
E ZXZ» = u E[N], where, in this notations ZXi = 0.

Proof. For a given integer n > 0,

N n n
E in N=n|=E ZX@- N=n|=E ZXZ- = np.
| i=1 =1 i=1
N _
Therefore, E ZXi N | = Ny, and
i=1 ]
N N T
E ZXi —E|E ZXi N|| = E[Nu] = u E[N].
=1 =1
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Wald’s equation.

Wald’s equation. Suppose X1, X»,... are a sequence of ran-
dom variables with finite mean F[X;] = un (¢ > 1), and let N be a
nonnegative integer-valued discrete random variable with finite
mean E[N]. Assume N is independent from Xi, X>,.... Then,

N 0
E ZXi = u E[N], where, in this notations ZXZ- = 0.
=1 =1

Alternative proof using indicator variables.

N 00
Observe that > X; = > X;In>;. Therefore,
=1 =1

N 00 0o )
E ZXZ =F ZXZ'INZZ' ZZE[XiINZi} =ZE[Xi]E|:INZi:|
1=1 1=1 1=1 1=1

= wP(N>i)=p) P(N>i)=pE[N].
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Wald’s equation.

Wald’s equation. Suppose Xi, X»,... are a sequence of ran-
dom variables with finite mean E[X;] = (¢ > 1), and let N be a
nonnegative integer-valued discrete random variable with finite
mean E[N]. Assume N is independent from Xi, X»,.... Then,

N 0
E ZXi = u E[N], where, in this notations ZXi = 0.
=1

=1

Example. Let N = the number of customers per day

and X; = income from the it" customer

Then, the total expected income per day equals

N
E in — 1 E[N].
=1
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Conditional variance: random variable Var(X|Y)
Conditional variance is a random variable defined as

Var(X|Y) = E[(X - BIX|Y])"| Y]

2
Lemma. Var(X|Y) = E[X2|Y] - (E[X|Y])
Theorem (the law of total variance).

Var(X) = E|Var(X[Y)| + Var (E[X|Y])

Proof.
E[Var(X|Y)] = E[E[X2|Y]]—E[<E[X|Y])2] — E[X2]—E[(E[X|Y]>2]

2 2

Var(E[X]Y]) = E[(E[X|Y])2} —(E [E[X|Y]]> — E[(E[X|Y]>2] - (EIX)

Therefore,

E[Var(X|Y)] 4+ Var (E[X|Y]) = E[X?] — (E[X])2 = Var(X)
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Conditional variance. The law of total variance.

Theorem (the law of total variance).

Var(X) = E|[Var(X[Y)| + Var (E[X|Y])

Variance of a random sum of random variables.

Suppose X1, X»,... are independent random variables with finite
E[X]J=p and Var(X;) =02,

and let N be a nonnegative integer-valued discrete random vari-
able with finite mean and variance. Assume N is independent
from X1, Xo,.... Then,

N
Var ZXi = 02 E[N] + p?2 Var(N).
i=1

N
Recall Wald's equation: E [Z Xi] = u E[N].
i=1
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Variance of a random sum of random variables.

N
Var <Z Xi> = 02 E[N] + p2 Var(N).

i=1
N
Xi
i=1

N N 2
Var (ZX N) :E|:<ZXZNM> N] — No2  as
=1 =1
N 2 n 2 n
E|:(ZXZ-N/,L> N=n] :E|:<2Xinu> ] :ZVar(Xi):na2
=1 =1 =1

N N N
Therefore.  Var (Z XZ-) —E |Var (Z X, N> +Var (E [Z X, ND
=1 =1 =1

= E|[No®| 4+ Var(Np) = 0 E[N] + p? Var(N).

Proof. Recall FE

N] = Nu. Thus,
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Conditional expectation as a projection.
Theorem (the law of total variance).

Var(X) = E|Var(X[Y)| + Var (E[X|Y])

Consider the following distance: for a pair of random variables,
U and V, let

d(U, V) = \/E[(U -V)?].

Pythagorean Theorem. Random variable ¢(Y) = E[X|Y] is
an orthogonal projection onto a subspace of random variables

F)={g9(Y) : Vg:R— R},
That is, for any function g,

(X, 9(V)) = (X, (V) + d>(¢(¥), g(V))
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Conditional variance. The law of total variance.

Pythagorean Theorem. Random variable ¢(Y) = E[X|Y] is
an orthogonal projection onto a subspace of random variables

F)={g9(Y) : Vg:R—>R}.
That is, for any function g,
d?(X,9(Y)) = d* (X, (V) + d?(2(¥), 9(Y))
Proof. Let Z =X — g(Y). Recall that

E[Var(2V)] = E[E[22|Y]] —E[(E[Z|Y])2] = E[ZQ]—E[(E[ZD/])Q]

= B[(X=9(1))°]-E[ (s(V) — 91))’| = & (X.9(1)) = ((¥). 9(1))

as E[Z]Y] = E[X|Y]—9g(Y) = p(Y) —g(Y). On the other hand,

E|Var(Z|Y)| = E|E[(Z - E[Z]Y] \ Y]] =E[E[(X —g(Y) - E[2|Y] \ Y]]

=B|(X - p()’| = @(X.0(1)) a5 El(MY]=g(1).
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Conditional expectation as a projection.

Pythagorean Theorem. Random variable ¢(Y) = E[X|Y] is
an orthogonal projection onto a subspace of random variables

F)={g9(Y) : Vg:R— R},
That is, for any function g,
& (X,9(V)) = d*(X,p(Y)) + d>(¢(¥), g(V))

X

[
.
.

T(¥)

Thus, d? (X,g(Y)) > d? (X,go(Y)) Vg : R — R. In other words,
e(Y) = E[X]Y] is an orthogonal projection onto F(Y).
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Conditional expectation as a projection.

Pythagorean Theorem. Random variable ¢(Y) = E[X|Y] is
an orthogonal projection onto a subspace of random variables

FY) = {g(Y) Vg R — R}.
That is, for any function g,

& (X,9(V)) = d>(X,p(Y)) + d>(¢(¥), g(V))

Consider linear subspaces R C F', and the respective orthogonal
projections, lNgr and MNMg. Then,

MNrMrp =Tlg.

The space of all real-valued constant functions R C F(Y). We
have shown that FE[X|Y]=TNrX is an orthogonal projection.
Similarly, E[X] = NMrX. Thus,

NeMr=Ngr < E|E[X|Y]] = E[X]

Also,
NpZ =72 VZeF(Y) < FE[g(Y)|Y]=g((Y).



MTH 464/564 34

The law of total variance via Pythagorean Theorem.

d(U,V) = \/E (U -Vv)?]
Pythagorean Theorem.

& (X,9(V)) = d>(X,p(Y)) + d>(¢(¥), g(V))

The law of total variance, Var(X) = F [Var(X\Y)] + Var(E[X|Y])
is equivalent to

d?(X,0) = d?(X,0(Y)) + d*(x(Y),0)

Indeed,

P (X,0) = &(X,0())+d?(p(¥),0) & EX? =E[(X—o()) ]| +E[*1)]

& BIXY-(BX]) = E[E[(X—@(Y))Q | YH +E[Z(W)] - (B[EX|Y]])’

& Var(X) = E|Var(X|Y)| + Var(E[X|Y])
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Conditional distributions: randomization formula.

Definition. Suppose X and Y are discrete random variables.
For a given y such that p,(y) > 0, the conditional probability
mass function pxy(x|y) is defined as
p(z,y)
pxy(zly) =P(X =x \ Y =y) = —en Vz s.t. p(z,y) > 0.
y

We have the following randomization formula

px(x) = Z p(x,y) = Z x|y (z|y)py(y)-
y:p(z,y)>0 y:p(z,y)>0

Definition. Suppose X and Y are continuous random variables.
For a given y such that f,(y) > 0, the conditional probability
density function fxy(z|y) is defined as

f(z,y)
fxy (zly) = Vz € R.
| fy(y)
The following randomization formula holds

fx(z) = /f(w,y) dy = /fxw(af\y)fy(y) dy.

—0o0 —o0
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Conditional distributions: randomization formula.

Example. Suppose Xi, Xo,... are i.i.d. Bernoulli random vari-
ables with parameter p, and N be a Poisson random variable
with parameter A > 0. Assume N, X;,X»,... are independent.
Let

N 0
Y = ZX“ where, in this notations ZXi = 0.
i=1 i=1

Find the probability mass function py.

Solution: Fix an integer n = 0,1,.... Then, the conditional
probability mass function

n

)P —p)

N n
pyy (kjn) = P ZXZ-:k;)Nzn —p le:k = (
i=1 1=1

for k=0,1,...,n, as Y _ X; is binomial with parameters (n,p).
=1
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Conditional distributions: randomization formula.

Solution (continued): Fix an integer n =0,1,.... Then,

n

N n
py\N(kln)=P ZX@ZIC’NZTL = P ZXZZk — <k>pk:(1_p)nk;
=1 i=1

for k=0,1,...,n, as ZXZ- is binomial with parameters (n,p).
=1

Recall the randomization formula:

@)= > pxp @)

y:p(z,y)>0
Thus, for k=0,1,2,..., we have a randomization formula

py(k) = Zpyw(k\n)pz\;(n) = Z (Z)pk(l —p)n—ke_Ag
n=k n==Fk

_ Ot f: (ra _p>)n_k _ 00 sap )
- k! (n—k) k! o k!

n==k
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Conditional distributions.

Definition. Suppose X is a discrete random variable with prob-
ability mass function py and Y is a continuous random variable
with probability density function f,. For a given y such that
fy(y) > 0, the conditional probability mass function pxy(z|y) is
defined as

iP(X:xmygy)

%y Ve S.t. py 0.
fy(y) T stopde) >

pX|Y(33|y) =

Definition. Suppose X is a continuous random variable with
probability density function fx and Y is a discrete random vari-
able with probability mass function p,. For a given y such that
py(y) > 0, the conditional probability density function fyy (z|y)
is defined as

dplX<znY =
fX\Y(ﬂC|y):dw ( ;y:zy) y)Z%P(XS:U‘Y:y) Vz € R.

Property: fxy (zly)py(y) = £P(X <znY =y) = pyx (yl) f(@).
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Conditional distributions.

Definition. Suppose X is a discrete random variable with prob-
ability mass function p, and Y is a continuous random variable
with probability density function f,. For a given y such that
fy(y) > 0, the conditional probability mass function pxy(z|y) is
defined as

d%P(X =2NY <y)
fy(y)

The probability mass function is computed as follows:

px|Y(33|y) = Ve s.t. p«(x) > 0.

(0@}

px(x) = /pxy(wly) fy(y) dy

—00
Example. Suppose X is a discrete random variable and Y is
an exponential random variable with parameter A > 0. For a
given y > 0, the conditional probability mass function pxy (z|y)
is Poisson with parameter y:

y*
k!
Find the probability mass function p(k).

px|y (kly) = e k=0,1,2,...
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Conditional distributions.

Example. Suppose X is a discrete random variable and Y is
an exponential random variable with parameter A > 0. For a
given y > 0, the conditional probability mass function pxy (x|y)
is Poisson with parameter y:

k

Y
x|y (kly) =e yg k=0,1,2,...

Find the probability mass function py(k).
Solution: For £k =0,1,2,...,

k A
pek) = /e—yy_ AT dy = (A + 1)kt+1E! / <(>‘+1)y)ke_(k+l)y (A+1)dy

k!
0 0

0.9}

_ A b gy — A A ( 1 )’f
T O+ MR [ T OoOFDMH T A+ U1
0
as we let z = (A4 1)y.

Thus, X 4+ 1 is a geometric random variable with parameter
A

P=x
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Conditional distributions.

Definition. Suppose X is a continuous random variable with

probability density function fi and Y is a discrete random vari-

able with probability mass function p,. For a given y such that

py(y) > 0, the conditional probability density function fxy(z|y)

is defined as

dp(X<zxnY = Y

Fxpy (zly) = = ( )=iP(X§w\Y=y) vz €R.
py(y) dx

The probability density function is computed as follows:

@ = > fay@Ep®)

y:py(y)>0

Example. Suppose X is a continuous random variable and Y
is geometric random variable with parameter p € (0,1). For a
given m = 1,2,..., the conditional probability density function
fxy(xz|m) is Gamma with parameters (m, \):

1
fyy (zlm) = ——X"2™ e ™ vz >0, where (m)= (m—1)!
| r(m)

Find the probability density function fi(x).
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Conditional distributions.

Example. Suppose X is a continuous random variable and Y
is geometric random variable with parameter p € (0,1). For a
given m = 1,2,..., the conditional probability density function
fxyy(zlm) is Gamma with parameters (m, \):

1
fxy (xm) = —— Nl vy >0, where M(m) = (m—1)!
r(m)
Find the probability density function f(x).

Solution: For =z > 0,

m=1

m=1

-~ 1 m—1
— -z - — =z A(1-p)xz _ —A\px
= A\pe g —(m Ny ()\(1 p)x) = A\pe e\ TP = Ape” NPT,
m=1

Thus, X is an exponential random variable with parameter Ap.
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Conditional distributions.

Example. Suppose X is a continuous random variable and Y
is geometric random variable with parameter p € (0,1). For a
given m = 1,2,..., the conditional probability density function
fxy (z|m) is Gamma with parameters (m, \):

1
fxy(zlm) = —— N ey >0, where M(m) = (m—1)!
r(m)

Find the probability density function f(x).

Answer: For =z > 0,
fx(x) = )\pe_’\px.
Thus, X is an exponential random variable with parameter Ap.

This example may come up when X3, X5,... are i.i.d. exponen-
tial random variables with parameter A > 0, random variable Y
(geometric with parameter p) is independent of X3, X»,..., and

Y 0
X = ZX“ where, in this notations ZXZ- = 0.
i=1

=1
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Joint cumulative distribution function.

Definition. For a pair of random variables X and Y, the function
FX,y(xvy)ZP(XSmeSy)7 x??/ER?
is the joint cumulative distribution function.

Example. Suppose X and Y are continuous random variables,

then
b a
Fy(a,b) =P(X <any <b) = //f(w,y) dz dy
and
0? 0?
7b — FX 7b - —Fx ,b .

Jla,b) = 5 gp ol b) = 550 Fo(a,b)

Similarly, for random variables Xi, X»>, ..., X,, the function

F(xi,20,...,2p) = P(Xi1 <ax1 N Xo<axxN..NX,<z,), x1,%2,...,Tn €R,

is the joint cumulative distribution function.
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Moment generating functions.

Definition. For a given random variable X, the function
Mx(s) = E|e*¥]

is called the moment generating function (m.g.f.).

Properties: e Mx(0) = 1.

(Y ep(x) if X is discrete,
z:px(z)>0

o Mx(s)=E[eX| =< _

[ e fu(x) da if X is continuous.

K—OO

e The derivatives of Mx(s) are computed as follows
d
My (s) = d—E[eSX] = E[Xe*X]  and
S
(n) _ d" sX1 — d" sX | n _sX
M (s) = < Ble ]—E[@e } — E[X"eN].
Thus, M)((”)(O) = E[X"] (the nt" moment), and

B[X] = My(0), E[X?] = M%(0), Var(X)=M%(0)—(Mx(0))".
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Moment generating functions.

Definition. For a given random variable X, the function
Mx(s) = E[eSX]

is called the moment generating function (m.g.f.).

An important property of Mx(s): If X and Y are independent
random variables with the respective moment generating func-
tions Mx(s) and My(s), then the moment generating function
of X4+Y s

Mxiy(s) = E[es(X"_Y)] =F [eSXeSY] = E[eSX] E[eSY] = Mx(s) My (s).

Hence, if X1, X5,...,X, are independent random variables, then
the moment generating function of X = X;1 4+ Xo 4+ ... 4+ X,
equals

Mx(s) = Mx,(s) - Mx,(s)-...- Mx,(s).
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Moment generating functions.

Example. Consider a Bernoulli random variable X with param-
eter p € [0,1], i.e., X ~ Bernoulli(p). Then,

Mx(s) = Ele*] = Y e*p (k) =1-(1—p)+¢ p.
k=0,1
Hence,
Mx(s) =1—p+pe®* with the domain s &€ R.

Example. Consider a binomial random variable X with param-
eters (n,p), i.e., X ~ Binomial(n,p). Then,

X=X1+Xo+ ...+ X,,

where X1, X5,...,X, areindependent Bernoulli(p) random vari-
ables. Thus,
My (s) = M, (s)- My, (s)-. . .- My, (s) = (1 —p —|—pes) . seR

Hence, E[X] = M}(0) =np, E[X?] = M{(0) =np+ n(n—1)p?,
and  Var(X) = E[X?] - (E[X])” = np(1 - p).
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Moment generating functions.

Example. Consider a binomial random variable X with param-
eters (n,p), i.e., X ~ Binomial(n,p). Then,

Mx(s) = <1—p+pes) : s € R,

Alternative derivation via Binomial Theorem:

Mx(s) = 2”: et () pF(1—p)nF = Zn: (7) (pes)k(l—p)”"" = (1 —p -I-pes)n

k=0 k=0

Example. Consider a Poisson random variable X with parame-
ter A > 0. i.e., X ~ Poisson(\). Then,

oo 00 00 s k
Mx(s) = E[e**] = Z eFpu (k) = Z eSke_/\z—T = Z —()\Z') = e e,

k=0 k=0 k=0

Hence,
Mx(s) = exp{A(e’—1)}, s € R.
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Poisson vs Binomial.

0.204

0.154

0.104

0.05+

Picture credit: Wikipedia.org

Dots: Poisson(A = 5) Red: Binomial(n =10, p = 2)
Blue: Binomial(n =20, p= %)

Green: Binomial(n = 1000, p = 5i)
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Poisson vs Binomial.

Let A > 0 be given. Suppose Y is a Poisson random variable
with parameter X and S, is a Binomial random variable with
parameters n and p = 2

n"

e Theorem. For a given integer k > 0, lim P(S, =k) = P(Y = k).

n—o0

Thus, for n large enough, P(S, =k) ~ P(Y = k).

Alternative proof: Vs € R,

Ms, (s) = <1 —p+pes>n = (1 A 4 i65> = (1 + M)
n n n
Hence,
lim Mg, (s) = lim (1 + M) — A1) = M1y (s).
n—>00 n—>00 n

Theorem. The cumulative distribution function Fx(z) is unique
for a m.g.f. Mx(s). Moreover, if Iim My, (s) = Mx(s), then the

n— o0

cumulative distribution functions also converge, i.e.,
lim Fx (a) = Fx(a) Va € R

n—oo
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Moment generating functions.

Example. Consider a geometric random variable X with pa-
rameter p € (0,1), i.e., X ~ Geometric(p). Then,

e 9] ©.@)

Mx(s) = BleX] = " etp(k) = Y e (1-p)1p

S

> k—1
pe
= pe’ 1—p)ef = when (1 —p)e® < 1.
ey (A-mer) = (1 pe
k=1

Hence,

pe
My (s) =  se(—o0, —In(1=p)).
x() = Ty #€ (-0 —In(L-p))
Differentiating Mx(s) = %ﬁpw we obtain
pe’ pe’ + p(1 — p)e?
M (s) = (s) = :

(1 —(1 —p)eS)Q,

Therefore, E[X] = M’ (0) =1, FE[X?2]= M"(0)= 22, and
X P X p

— P
P2

Var(X) = E[X?] (E[X])2 1



MTH 464/564 52

Moment generating function for X ~ Exponential()\)

Example. Consider a exponential random variable X with pa-
rameter A\ > 0, i.e., X ~ Exzponential(\). Then, for s < A,

Mx(s) = /6333)\6_” dr = 3 i . /(A —5)e" (=2 gy
0 0
Let y = (A — s)z, then
Mx(s) = ﬁ/ey dy = %, s € (—o0, ).
0
Here,
M (s) = M mplies E[X" = M™(0) = n_!’
(A —s)ntt X A\

and therefore, E[X] =1 and Var(X) = 3.
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Moment generating function for X ~ Gamma(a, \)

Example. Consider a gamma random variable X with parame-
ters (a, N\), i.e., X ~ Gamma(a,\). Then, for s < A,
oo

0.@)

—s/) MNlw)
0

Mx(s) = %a)/esxk()\x)a_le_’\xdm — ()\ A )a 1 (A—s)(()\—s)x)a_le_(/\_s)z o

Let y = (A — s)z, then

e = () s [ = (2 e
0

Here,
gy = Mot D). (atn-DX* _ Tlatmir
MX (8) = = .
(A —s)otn M) (A — s)otn
Hence,
Mo+ n)
= MO = Ty
Therefore, E[X] = ‘gi) =2 and Var(X) =2 o = o
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Moment generating function for X ~ Gamma(a, \).

o If X and Y are independent gamma random variables with the
respective parameters (a,\) and (B,\). Their sum X 4+ Y is a
gamma random variable with parameters (a + 3, ).

Alternative derivation: the moment generating functions are

My (s) = (Ais)a and My (s) = (A;)B, s <A

By independence of X and Y,
A\ >a+5

My (s) = M(s) My () = (2

Since the cumulative distribution function Fxiy(x) of X +Y is
uniquely determined by the m.g.f. Mx4y(s), the sum X +Y is
a gamma random variable with parameters (a4 8, ).

s < A.

o Let X1, Xo,... be independent exponential random variables
n

with parameter A > 0. Then T, = > X; (n = 1,2,...) is a
k=1

gamma random variable with parameters (n, ).
Alternative derivation:

M () = M) o My () = (52)
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Moment generating functions.

Example. Consider a standard normal random variable Z, i.e.,
Z ~N(0,1). Then, its moment generating function equals

Mz(s) = E[e?] = / e f(x) dxr = \/% /Oo T3

—0o0

0.}

(©. 9] ©.9)

1 10,2 12 1 1 2
— —2(x°—2sx) — =8 —=(x—s)
- e 2 dr = e2% ——— e 2 dx
Vo J_ Vo |
Hence,
52
My (s) = exp S5 (0 seR

Theorem. The cumulative distribution function Fx(z) is unique
for a m.g.f. Mx(s). Moreover, if lim My (s) = Mx(s), then the

n—oo

cumulative distribution functions also converge, i.e.,
lim Fx (a) = Fx(a) Va € R

n—o0
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Central Limit Theorem.

e Central Limit Theorem (CLT). Let X3, X5,... bei.i.d. ran-
dom variables with mean p and variance ¢2. Then,

b
1 1.2
im P(a <Y, <b)= /—e_ix dr < lim Fy, (a) = ®(a),
J— — @ n

n—o0 n—oo

a
where Y, = XlJFX?J%;“X“_”“ and ®(a) = [ \/%7@_%“32 dz is the
— OO

standard normal cumulative distribution function.

The de Moivre-Laplace Theorem is a case of CLT when X;, Xo,...
are independent Bernoulli random variables with the same pa-
rameter p € (0, 1).

e de Moivre-Laplace Theorem. Let S, be a binomial random
variable with parameters (n,p), then

Sn -
lim Fy (a) = ®(a), where Y, = e
e v/ np(1l —p)

Thus, it is sufficient to show that

2
lim My, (s) = exp {%} - m.g.f. for N(0,1).

n—oo
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de Moiver-Laplace Theorem via m.gd.f.

Proof. Consider S, ~ Binomial(n,p) and let Y, = %.
np{l—p

Then, FE[Y,]=0 and Var(Y, =1.

The moment generating function

My, (s) =exp{ —s op - Mg, i
’ { \/np(l—p)} ’ (x/np(l—p)>

~os i) (o el i) ])

and

In My, (s) = —s np +nin| 1-— 1 —exp i
"’ v/ np(1 —p) ( p[ {\/np(l—p)}]>
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de Moiver-Laplace Theorem via m.g.f.

Proof (cont.): S, ~ Binomial(n,p) and Y, = —22="2_
( ) (n, p) T

n

)

In My, (s) = —s

Here,

4 S _ S B s2 1
T exp{vnp(l—p)}_ v/ np(l —p) 2np(1—p)+0 <n3/2)

and therefore,

. p2a 1 . ps 52 ps? 1
In{1=pa) = —pa- 2 +O (W) B v/ np(1 —p)+2n(1 —p)_Qn(l _p)+o (m)

2
2oL

Vnp(l—p) 27 n3/2
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de Moiver-Laplace Theorem via m.g.f.
Proof (cont.): S, ~ Binomial(n,p) and Y, = —22—"2

Vnp(1—p)

np + nin(l — pa),

v/ np(1 —p)

In My, (s) = —s

where

S S 82
a=1l—exp = — — +
{ v/ np(1l —p) } V/np(1 —p) 2np(1—p)

and
2 1
In(1 - pa) = ——2= +f—+0(—_>
Vrp(l—p) 20 n/2

Thus,

| . 52 1 52

nMYn(S)—E-i‘O m —>E as n — oQ.
and

n—o0

Hence, Iim Fy (a) = ®(a).

n— 00

dl

2
lim My, (s) = exp {%} - m.g.f. for N(0,1).

1
n3/2

)



