\mathbf{O}

MTH 463/563 - Lecture 29

Yevgeniy Kovchegov Oregon State University

1

Topics:

- Examples.
- Review.

Problem 5 on p.71. Suppose you are watching a radioactive source that emits particles at a rate described by the exponential density

$$f(x) = \lambda e^{-\lambda x} \qquad (x \ge 0),$$

where $\lambda = 1$, so that the probability $P(0 \le X \le T)$ that a particle will appear in the next T seconds is $P(0 \le X \le T) = \int_{0}^{T} \lambda e^{-\lambda x} dx$ Find the probability that a particle will appear

- (a) within the next second.
- (b) within the next 3 seconds.
- (c) between 3 and 4 seconds from now.
- (d) after 4 seconds from now.

Problem 1 on p.278. Let X be a random variable with range [-1,1] and let $f_x(x)$ be the density function of X. Find E[X] and Var(X) if, for |x| < 1,

(a)
$$f_x(x) = \frac{1}{2}$$

(b)
$$f_x(x) = |x|$$

(c)
$$f_x(x) = 1 - |x|$$

(d) $f_x(x) = \frac{3}{2}x^2$

Problem 3 on p.278. The lifetime, measured in hours, of the ACME super light bulb is a random variable T with density function $f(x) = \lambda^2 x e^{-\lambda x}$, where $\lambda = 0.05$. What is the expected lifetime of this light bulb? What is its variance?

Problem 4 on p.278. Let X be a random variable with range [-1, 1] and density function $f_x(x) = ax + b$ if |x| < 1,

(a) Show that if
$$\int_{-1}^{1} f_x(x) dx = 1$$
, then $b = \frac{1}{2}$

(b) Show that if
$$f_x(x) \ge 0$$
, then $-\frac{1}{2} \le a \le \frac{1}{2}$.

(c) Show that $E[X] = \frac{2}{3}a$, and hence that $-\frac{1}{3} \le E[X] \le \frac{1}{3}$.

(d) Show that
$$Var(X) = \frac{2}{3}b - \frac{4}{9}a^2 = \frac{1}{3} - \frac{4}{9}a^2$$
.

Problem. Let X and Y be two independent random variables, each exponential with the same parameter $\lambda > 0$. Show that their sum, X + Y is distributed via the following density function

$$f_{x+y}(x) = \lambda^2 x e^{-\lambda x}$$
 $(x \ge 0)$

7

Review.

Problem 2 on p.219. Choose a number U from the interval [0, 1] with uniform distribution. Find the cumulative distribution and density for the random variables

(a)
$$Y = \frac{1}{U+1}$$

(b)
$$Y = \log(U+1)$$

8

Review.

Problem 10 on p.220. Let U, V be random numbers chosen independently from the interval [0,1]. Find the cumulative distribution and density for the random variables

- (a) $Y = \max(U, V)$
- (b) $Y = \min(U, V)$

Problem 16 on p.221. Let X be a random variable with density function

$$f_{\mathrm{x}}(x) = \left\{ egin{array}{cl} cx(1-x) & ext{if } 0 < x < 1, \\ 0 & ext{otherwise.} \end{array}
ight.$$

- (a) What is the value of c?
- (b) What is the cumulative distribution function F_x for X?
- (c) What is the probability that $X < \frac{1}{4}$?