MTH 463/563

MTH 463/563
Lectures 11 - 16

Yevgeniy Kovchegov
Oregon State University



MTH 463/563 1

Topics:

e Introduction to random variables.

Binomial random variables.

Expectation of a discrete random variable.

Poisson random variables.

Poisson vs Binomial.

Geometric random variables.
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Examples with discrete random variables.

Variance and standard deviation.

Markov inequality.

Chebyshev inequality.

Review and examples.
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Introduction to random variables.

Consider a sample space & and a probability function P.
e Definition. A function from S to R is a random variable.
e Example. Roll two fair dice. Let X (i,7) =i+ 7 for each

outcome (7,5) in §. Then X is a random variable represent-

ing the sum of the digits on the dice.

4 2 )
13 | 1,4 | 15 | 1,6 3
22 |23 ] 24 ] 25 g
31| 32| 33] 3,4 g
41 | 42 | 4,3 3
51 | 52 [ 190
o) |l 1

Va
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Introduction to random variables.
e Example. Roll two fair dice. Let X (i,7) =i+ 5 for each

outcome (7,5) in §. Then X is a random variable represent-
ing the sum of the digits on the dice.

4 2 )
13 | 1,4 | 15 | 1,6 2
22 | 23| 24 | 2,5 5
31|32 ]33] 3,4 6

X : — T

4,1 | 42 | 4,3 3
51 | 5,2 190
6,1 ‘ 6,6 11

\ 12 J

Here, for example, X(3,1) =4 and X(5,6) = 11.
We are interested in finding the following probabilities:
p(a) =P(X =a) for a=2,3,...,12
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Introduction to random variables.

e Example. Roll two fair dice. Let X (i,7) = i+ 5 for
each outcome (¢,7) in S. Then X is a random variable
representing the sum of the digits on the dice.

A p(a)=P(x=a)

2 383 4 5 6 7 8 9 10 11 12

We are interested in finding the following probabilities:
p(a) =P(X =a) for a=2,3,...,12

p(2) =5, PB) =%, p(4) =%, p(5) =5, p(6) ==, p(7) ==

p(8) = =, p(9) = 2, p(10) ==, p(11) = =2, p(12) = &
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Introduction to random variables.

Let X a discrete random variable. That is X assumes
a discrete (countable) number of values.

Definition. Function p(a) = P(X = a) is called the
probability mass function (or distribution function).

Definition. Function F(a) = P(X < a) is called the
cumulative distribution function.

Note. >  pla)=1
a: p(a)>0
In the previous example, p(2)+p(3)+---+p(12) = 1.
Note. 0 < F(a) <1

Note. F(a)= > p(x)

. x<a
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Bernoulli trials and Bernoulli random variables.

For a given 0 < p < 1, a Bernoulli trial is an exper-
iment with exactly two possible outcomes, success
and failure, in which the probability of success is p
and probability of failure is 1 — p.

Here, the sample space S consists of the two out-
comes, success and failure, and

P(success) =p and  P(failure) =1-p
Bernoulli random variable X with parameter p counts

the number of successes after one Bernoulli trial, and
thus,

P(X=1)=p and PX=0)=1-p
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Expectation of a discrete random variable.

e Definition. Let X be a discrete random variable
with the probability mass function p(x). Then its
expected value is

BlX]= ) - p)

x:p(x)>0

e Example. Let X be a Bernoulli random variable
with parameter p. Then
p(1)=P(X=1)=p and pO0)=P(X=0)=1-p
and

E[X]=0-p(0) +1-p(1) =p

e Example. Roll two fair dice. Let X represent the
sum of the digits on the dice. Then
252

BE[X]=2-p(2)+3-p(3) 4+ +12:p(12) = —= =7
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Expectation of a discrete random variable.

e Definition. Let X be a discrete random variable with the
probability mass function p(z). Then its expected value is

EIX]= )  z-p)

z:p(z)>0

e Example. Roll two fair dice. Let X represent the sum of the
digits on the dice. Then

252
EX]=2-p(2) +3-p(3) - +12-p(12) = — = =7
A p(a)=P(x=a)
...
.. ..
>
a

This corresponds to a center of mass of p(a).
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Binomial random variable. Recall the following example.

e Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1 —p of failure.
Let X be a random variable representing the number of successes
in n Bernoulli trials. Find P(X = k) for k=0,1,...,n.

e Solution.
Each outcome with k successes and n — k failures, its probability

P(SFSS...FFS) = p*(1 —p)"*
k S's an?jrn—k F's

and P(X =k) = (Z)pk(l —p)"* foreach k=0,1,...,n

n

k) such outcomes.

because there are (

e Definition. The random variable X in the above example is
the binomial random variable with parameters (n,p).

n

Check: 3" p(k) = 3 (1)pH (1 o) = (p+ (1) =17 = 1.
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Expectation of a discrete random variable.

Let X be a binomial random variable with parameters (n,p).
Then its probability mass function is known to be

p(k) = (

n

k)pk(l —p)"* foreach k=0,1,...,n

e Definition. Let X be a discrete random variable with the
probability mass function p(z). Then its expected value is

EIX]= )  z-p)

z:p(z)>0

e Example. Let X be a binomial random variable with param-
eters (n,p). Then

BIX] =Y k-p(ky =Y k-()p'@-pt=7
k=0 k=0
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Expectation of a discrete random variable.

e Example. Let X be a binomial random variable with pa-
rameters (n,p). Then E[X] = np since

E[X] = Zk -p(k) = Zk (Z) pF(1 — p)k
k=0 k=0

‘ n! e - n! .
- Zk'k!(n— k)| p(A-p) = Z (k— DI(n—k)! p(1—p)""

. nel-j _ (n—1)! , ne1_j
—Z H e s PR SOl —npz e A Ol

where the new index j =k —1. Thus

E[X]—npz e TR J—npz N p(1—pyr i

=np-(p+ (1 —-p)"1=np by the Binomial theorem
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Binomial random variable.

Tl
i
e * p=0.5 and n=20
p=0.7 and n=20
&4 ® p=0.5 and n=40
o
T
-
=)
L]
L] L]
= . .
=)
L[] [ ]
[Tl L] L]
=g
© [ ] [ ]
L] L ]

8— seeseedoccloece® ‘e en ®ece0000cscee
< 1 1 1 I I

0 10 20 30 40

Picture credit: Wikipedia.org

p(k) = (Z)pk(l—p)n_k for each k=0,1,....,n and E[X]=np
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Poisson random variable.

e Recall that ) % =" for all —co < a < 400
k=0

e Definition. Let A > 0. A discrete random variable such that
its probability mass function

)\k
p(k) :e_A-F for each £k =0,1,...

is a Poisson random variable with parameter A > 0.

e Function p(k) =e . 2—]’; is Poisson distribution

.CheCk Zp(k)—Ze_A.z_Tze_)‘. %T:e—k.ekzl
k=0 k=0

e Expectation: Let X be a Poisson random variable with pa-
rameter \. Then E[X] = )\ since

> > Y o0 Lk B k-1
E[X]=kz:;k-p(k:)=;k~eA-Ezz:k:eA — Zk: " e /\Z(k—l)lz

k=1
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Poisson random variable.

0.40 .

0.35]
0.30}
< 0.25}
J 0.20}
5
0.15}
0.10}
0.05]
0.00

Picture credit: Wikipedia.org
k

A
p(k):e‘A-F for each k=0,1,...

and

E[X] = A
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Poisson vs Binomial.

Let A > O be given. Suppose Y is a Poisson random variable
with parameter X. Then its probability mass function

)\k
P(Y:k:):e‘A-y for each k=0,1,...

Now, let S,, be a Binomial random variable with parameters n
and p = 2. Then its probability mass function

P(S,=k) = (Z)pk(l—p)”_k = (n) (i)k (1 — i>n_k for each k=0,1,...,n

k n n

e Theorem. Consider integer kK > 0. Then for n large enough,

P(S, =k)~ P(Y =k)

Namely, lim P(S, =k) = P(Y = k)

n—o0
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Poisson vs Binomial.

0.204

0.154

0.104

0.05

Picture credit: Wikipedia.org

0 2 4 6 8 10
Dots: Poisson(A = 5) Red: Binomial(n =10, p = 2)
Blue: Binomial(n =20, p= %)

Green: Binomial(n = 1000, p = 5)
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Poisson vs Binomial.

Let A > 0 be given. Suppose Y is a Poisson random variable
with parameter X and S, is a Binomial random variable with
parameters n and p =

[>

e Theorem. For a giveninteger k > 0, lim P(S, =k) = P(Y = k).

n—o0

Thus, for n large enough, P(S, =k)~ P(Y = k).

Proof: k is fixed, and

P(snzk):k!(n”—ik)!.(i)k<1_i>n_k_A’“ nt 1 (1-2)

n n o g(n—k)'ﬁ (1 B %)k
N (n—k4+1)m—k+2)...n (1-2)" Ak
— H.(n )(Zk ) n.gl—éik s e A-H as n — 0o

since (1 — %)n oA, (nzkdl)nokd2)em g gpg (1 — %)k —~ 1k =1.

n



MTH 463/563 19

Geometric random variables.

e Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1 —p of failure.
Let X be a random variable representing the number of trials
until the first success. Find P(X = k) fork=1,2,....

e Solution.

The sample space S consists of the outcomes of infinitely many
Bernoulli trials. For example FFSFSSFS... is one such out-
come. Here X is a function from the sample space § to R, and
here

X(FFSFSSFS...) =3
P(X =3) = P(F1F»S3) = P(Fy) - P(F») - P(S3) =p- (1 —p)?

and P(X =k)=P(Fy)----- P(Fy_1)-P(S) =p-(1—p)* ! foreachk=1,2,...

e Definition. The random variable X in the above example is
called a geometric random variable with parameter p.
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Geometric random variables.
A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) =p- (1 —p)* ! foreach k=1,2,...

e We need to check that > p(k) = 1.
k=1

Geometric series: > z"=1+az+2>+ 23+ ...
k=0

n
Claim: Forz #1, Y af=14a+422+23+ . 42" = iiim

k=0

Proof: (1—2)(14z+4+2*4234+--42")=[14+z+ 2>+ 23+ 42" - [z+ 2>+ 23+ - 42"+ 2" T ]| =1—2" !

Summing the geometric series: For |z| < 1,

0.0} n

, , 1 — gntl 1
g zF = lim g 2] = lim =

k=0 k=0
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Geometric random variables.

Summing the geometric series: For |z| < 1,
o0 n xn—i—l

1-— 1
E zF = lim E zF | = lim =
n—o00 n—00 1—&7 1—33'

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) =p- (1 —p)¥ 1 foreach k=1,2,...

e We need to check that > p(k) = 1.
k=1

dopm =p- Yy (1-p =Y A= =p =1,
k=1 k=1 j=0

where j =k — 1.
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Geometric random variables.

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) =p- (1 —p)* 1 foreach k=1,2,...

We need to find its expectation FE[X] = Z k-p(k).
k=1

EIX]=) kep(k)=p-» k- (1-p)t=7
k=1 k=1
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Geometric random variables.

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) =p-(1—p)* 1 foreach k=1,2,...

We need to find its expectation FE[X] = Z k-p(k).
k=1

EIX]=) k-pk)=p- Y k-(1-p)it=7
k=1 k=1

Here > kat-1l= ﬁ for |z <1 as
k=1
o0

St = =3 e = (24 ) = ()~

k=0

_ = k-1 _ 1 1
and thereforeE[X]_p-g_:lk-(l—p) =D TG = >
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Geometric random variables.

Alternative proof of E kak—1 =
k=1

1422 +322+ 4234+ 524+ .- =

1+ 33"‘ CC2+ ;133—|— ;134—|—:

+ o+ o+ o+
x + 332"‘ 5183—|— x4—|—=

+ o+ o+
2+ 34+ 4
+ o+
$3+ x4+

_|_
.

1
 (1-2)?

-
[
8

= (1+z+a2+...

for |z| < 1.

)_

- (1-a2)?

1
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Geometric random variables.

Let X be geometric random variable with parameter p. Then
p(k) =p- (1 —p)* ' foreach k=1,2,...
and

Blx] =1
p

e Prove the following memorylessenss property:
P(X=n+4+k| X>n)=P(X =k)
for any two positive integers n and k.

We observe that here, P(X =n+k| X >n) = —ng;:%k)

e Apply the above to coin tossing. Give an example.
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Geometric random variables.

Let X be geometric random variable with parameter p. Then
p(k) =p- (1 —p)¥ 1 foreach k=1,2,...

and

Blx] =1
p

e Example. Find probability P(X > 10).

Find probability P(X > 20).

e Example. Let p= 1.
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Discrete random variables.

e Example. Let X be a Binomial random variable with param-
eters n = 200 and p = 0.035. Find probabilities P(X = 4) and
P(X =6).

Here P(X =4) = (%,°)(0.035)#(0.965)'% = 0.09003862196 ...
and P(X = 6) = (*2°)(0.035)°(0.965)'%* = 0.1508966957 ...

e Example. Let X be a Poisson random variable with parameter
A = 7. Find probabilities P(X = 4) and P(X = 6).

Here P(X =4) =e¢ 7. 1 = 0.09122619167 ...
and P(X =6) =e 7 - L =0.1490027797 ...

e Example. Let X be a geometric random variable with param-

eter p = % Find probabilities P(X = 4) and P(X = 6).

Here P(X =4) = 1.5 =0.08996251562. ..

and P(X =6) =1 -& = TI76. = 0.06609490943.. ..
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Variance and standard deviation.

e Theorem. Let X be a discrete random variable characterized
by its probability mass function p(x). Then, for any real valued
function ¢, ¢(X) will also be a random variable, and

Elg()]= ) g(@)p()

z:p(x)>0

e Example. We roll a fair die once, and square the outcome.
Let X be a random variable representing the outcome. Then
Y = X2 will be a random variable representing the square of the
outcome. Here

px(1) = px(2) = px(3) = px(4) = px(5) = px(6) = %

will be the probability mass function for X, and
1
py (1) =py(4) =py(9) = py(16) = py(25) = py(36) = 5

will be the probability mass function for Y. Then

1 1 1 1 1 1 91
EY :1-— 4-— 9-— 16-— 25._ 36._:_
[Y] 6+ 6-|— 6-|— 6-|— 6—|— c= ¢
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Variance and standard deviation.

e Theorem. Let X be a discrete random variable characterized
by its probability mass function px(x). Then, for any real valued
function g, ¢(X) will also be a random variable, and

Elg()]= Y g(z)px(=)

z:px(z)>0
Proof: Let Y = g(X). We find the probability mass function
py(y) of Y
) =P(e(X)=y)= Y PX=2)= ) px(@)
z: g(x)=y z: g(x)=y
as {g(X) = y} = U {X =z} is a union of disjoint events.
z: g(x)=y
Thus, E[Y]= Zypy(y) = Z yz px(z)] = Z Z ypx(x)
Yy Yy z: g(x)=y Yy z: g(xz)=y

= Y s@wx@) =D 9@ px @)

z: g(x)=y
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Variance and standard deviation.
Elg(X)]= )  g(@)p()

z:p(x)>0

e Example. We roll a fair die once, and square the outcome.
Let X be a random variable representing the outcome. Then
Y = X2 will be a random variable representing the square of the

outcome. Here
px(1) =px(2) = px(3) = px(4) =px(5) =px(6) = %

will be the probability mass function for X, and
1
py (1) =py(4) = py(9) = py(16) = py(25) = py(36) = 5

will be the probability mass function for Y. Then

1 1 1 1 1 1 91
EY]=1-244-249.2416-2+425-2436-—- = —
Y] s T T T2t gt T30 5=%

6
Observe that Z k2 px(k) = % as well. Also observe that
k=1

91 7)2 49
4

BX?] == # (E[X])2:(§
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Examples.

e Problem. Random variable X has the following probability
mass function
4

1 _
g |f Tr = —2
% ifx =2
px(l’) — < )
Z |f xr = 3
O otherwise

\

That is px(=2) = 3, px(2) = § and px(3) = 3.

Compute E[X] and E[X?]. Hint: Recall that E[g(X)] = Z g(x) px(x).
z:px(x)>0

Solution: E[X] = (-2) -px(—2) +2-px(2) + 3 -px(3) = *

B[X?] = (=2)2 - px(~2) + 2% - px(2) + 3% - px(3) = 2741
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Examples.

e Example. Let X be binomial random variable with parameters

n =20 and p = %. Use the binomial theorem to compute E[2X].
Solution:
X1 k. _ k(™Y . k(1 _m\n—k — ny k(1 _ . \n—k
BRY =) 2Mpk) =) 2%() - F = () @nFa-p)
k=0 k=0 k=0

5 20
=C2p+Q-p)"=0Q+p)" = (Z) = 86.7361738
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Variance and standard deviation.
e Given constants « and g,

ElaX 4 8] = aE[X] + 8
Proof:

ElaX+8l= > (ak+8)p() =a- Y kp()+8 Y p(k) = aE[X]+8
k:p(k)>0 k:p(k)>0 k:p(k)>0
Now, let X be a random variable with mean E[X] = p.

e Definition. The variance of X is
Var(X) = E[(X — n)?]

Note that the variance is a mean square displacement from the
mean pu.

e Definition. The standard deviation of X is

SD(X) = \/Var(X) = \/E[(X — 11)?]
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Variance and standard deviation.
Let X be a random variable with mean E[X] = u.

e Definition. The standard deviation of X is

SD(X) = \/Var(X) = \/E[(X — 11)?]

Another notation: ¢(X) and o.

e Intuition: X=uxo

e Example. Let X be a Binomial random variable with param-
eters n and p. We know that E[X] = np. It will be shown that
the variance

Var(X) = np(1 —p)

X =np++/np(l—p)

Thus



MTH 463/563 35

1

Let X be a Binomial random variable with n =100 and p = 3.

X=npt+/np(l—-—p)=50+5

0.08 *

0.07} -

0.06 -

0.05f |

0.04} * * ]

0.03+ * * B

0.02- _

0.01 * * |

0 10 20 30 40 50 60 70 80 90 100
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Variance and standard deviation.
Let X be a random variable with mean E[X] = pu.

e Theorem. The variance of X equals

Var(X) = E[X?] — p?

Proof:
Var(x) = B[((X-p)?| = Y (a=w?pa) = > (a>~2ua+p?)-p(a)
a:p(a)>0 a:p(a)>0
= > @p@-2u Y apl@)+u > pa)
a:p(a)>0 a:p(a)>0 a:p(a)>0

= ) a®pa) = 2u pt p? 1= BIX?] - 2p% + 2
a:p(a)>0

= B[X?] — p?
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Variance and standard deviation.

e Example. Let X be a Binomial random variable with param-
eters n and p. Show that

Var(X) = np(1l — p)

Solution: Here y=np and

Var(X) = BIX?] - > =) 1 ()@ —p)" " =47

k=0

=Y W=k ()PrQ-p" ) k() -p) -
k=0

k=0

= kGk-1)-()pFQ-p) M’ =) k(k—l)-wnn—ik)!pk(l—p)""%u—f
k=2

k=2

n ol
=> ' PP =) -
2 G—2)1(n— !
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Variance and standard deviation.

e Example. Let X be a Binomial random variable with param-
eters n and p. Show that

Var(X) = np(1 — p)
Solution (continued): Here p=np and

Var(X) =} o P A e
k=2

=% n(n—1)- Z(k e R A (RO

= p*n(n—1)- Z p7(1 —p)"D T2, where j = k—2

=p 'n(n—l)-(p+(1—p))”‘2+u—u2=p2~n(n—1)+u—u2

= p?- (n® —n) +np — (np)* = —np® + np = np(1 — p)
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Variance and standard deviation.

e Example. Let X be a Poisson random variable with parameter
A > 0. Show that

Var(X) = A\
Solution: Here u= X and

Var(X) = E[X?] — u? = ZkQ - e_Ay — u?

=§:(k2_ —A>‘k+§: ——,u2

> k
Z (k—1)-e" k|+ﬂ ,U Z _Aﬁ‘FM—MQ

— k=2
2\
Z +u—p? = A2 .—,+u—u2, where j = k—2
7=0 7=0 J:

)\J+2

=XN.e AN =)
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Variance and standard deviation.

e Example. Let X be a geometric random variable with param-
eter p. Show that

1-p

Var(X) = 5
p

Solution: Here u=% and

Var(X) = BIX?] =2 = k- p- (1 —p)*1 — 42
k=1

= k(=1 p- Q="+ kop Q-p) 42
k=1 k=1

=p-(1-p)- Yy k(k—1)- (1 =p) 24 pu—p

k=0
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Variance and standard deviation.

e Example. Let X be a geometric random variable with param-
eter p. Show that

1—p

Var(X) = —;
p

1

Solution (continued): Here p = 5 and

Var(X)=p-(1=p)- Y k(k—1)- Q1 -p)" 2 +p—p?

k=0

Now, for |z| < 1,

> B R [ = 2 /1 2
;k(k_l)"”’k 2=Z<xk> T da? Zxk = da? (1—a:> T (1-2)3

Hence,

2
Var(X)=p-(1—p)-1;+u—u2=2-
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Variance and standard deviation.

e T heorem. The variance of X equals

Var(X) = E[X?] — u?

e Example. Let X be a Binomial random variable with param-
eters n and p. Then

Var(X) = np(1 —p)

e Example. Let X be a Poisson random variable with parameter
A > 0. Then

Var(X) = A
e Example. Let X be a geometric random variable with param-
eter p. Then

1—-p

Var(X) = —;
p




MTH 463/563 43

Markov inequality.

e Example. When a certain lab experiment is performed, the
outcome is an integer number on the scale from 0 to 20, 000.
Analyzing the outcomes of multiple identical experiments per-
formed independently of each other it was noticed that the av-
erage value stays around 440. Suppose the threshold value is
10,000. If this is all we know, can we estimate how small is
the probability that the outcome of one such experiment vyields
a value greater or equal to 10,000.

Same stated in terms of random variables: Let X be a ran-
dom variable, taking integer values from 0 to 20,000. We don’t
know its probability mass function p(k) (k= 0,1,2,...,20K).
However we know that its expectation E[X] = 440. What can
we say about the probability of going above the threshold

P(X > 10,000) ?

Can we bound it?
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Markov inequality.

Same stated in terms of random variables: Let X be a ran-
dom variable, taking integer values from 0 to 20,000. We don't
know its probability mass function p(k) (k= 0,1,2,...,20K).
However we know that its expectation E[X] = 440. What can
we say about the probability of going above the threshold

P(X > 10,000) ?

Can we bound it?

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any a > 0,

P(X >a) < 2

Solution to the above example:

440
P(X >10,000) < ——— = 0.044
10,000
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Markov inequality.

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any o > 0,

P(X>a) < 22
Proof:
P(X >a)= Z p(k) < Z E-p(kj) =1 Z kp(k) < L Z kp(k) = ElX]
ki k>a kik>a @ @ kik>a @ k:k>0 @

e Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Use Markov inequality to give an
upper bound on the following probability

2,500

2500
P(X > 540) = Z ( . ) . (0.2)F . (0.8)2500-*
k=540
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Markov inequality.

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any o > 0,

P(x >a) < 2

e Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Use Markov inequality to give an
upper bound on the following probability

2,500
2500
P(X >540) = Z ( . ) . (0.2)F . (0.8)2500-*
k=540

Solution: Here E[X] = np = 500. Thus

500 __
P(X >540) < —— =0.925...
540

e Comment: Here we also know the standard deviation o = /np(1 — p) = 20.

Thus we know that X = pu 4+ 0 = 500 £ 20, making us believe that
P(X > 540) is much smaller than 92.5%.
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We know that X = uto = 500+£20, making us believe that P(X > 540)
is much smaller than 92.5%.
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In fact, P(X > 540) ~ 0.0249 << 0.925.
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Chebyshev inequality.

Theorem. (Chebyshev inequality.) If X is a random variable
with finite mean p and variance, then for any « > 0O,

X
POX —pl > ) < YO
K

e Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Give an upper bound on the
following probability

2,500

P(X > 540) = Z (

k=540

2500

) (02)F - (0.8)25007

Solution: Here p=np =500 and Var(X) = np(1l—p) = 400.
Thus

400
P(X > 540) = P(X — > 40) < P(IX—pu|>40) < 5 =025



MTH 463/563 50

Markov and Chebyshev inequalities.
Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any a > 0,

P(x >a) < 2]

Theorem. (Chebyshev inequality.) If X is a random variable
with finite mean p and variance, then for any x > 0O,

Var(X)

P(X —p[>2k) < 5
KR

Proof: Let Y = (X —p)?, then E[Y] =Var(X) and

P(|X—p| > k) = P((X—p)? > k%) = P(Y > k%) < E/g/] _ Val:gX)

using Markov inequality for Y, since Y is a nonnegative random
variable.
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St. Petersburg paradox.

Suppose one plays a gambling game with probability of winning
equal to the probability of losing. Think of tossing a fair coin.
If the player bets M dollars on one of the two outcomes, then
either the player wins another M dollars or looses the M dollars
already at stake.

In the St. Petersburg paradox , the player begins with betting
$1. The strategy is to double the stake amount, betting $2 in
the second game, $4 in the third game, $8 in the fourth game,
and so on. The player quits after the first win.



