Schedule:
Wednesday, September 23 Introduction. Counting: Multiplication rule. Permutations. Combinations. Grinstead and Snell: Sections 3.1 and 3.2 Lectures 1-3 slides (PDF)
Friday, September 25 Combinations. Pascal's triangle. Generalized combinations. Binomial theorem. Examples. Grinstead and Snell: Sections 3.1 and 3.2 Lectures 1-3 slides (PDF)
Monday, September 28 Generalized combinations. Multinomial theorem. More combinatorial identities. Examples. Grinstead and Snell: Sections 3.1 and 3.2 Lectures 1-3 slides (PDF)
Wednesday, September 30 Sets. De Morgan's laws. Introduction to discrete probability. Sample space. Events. Axioms of probability. Probability by counting. Examples. Grinstead and Snell: Section 1.2 Huber: Chapter 41 Lectures 4-7 slides (PDF)
Friday, October 2 Introduction to discrete probability. Sample space. Events. Axioms of probability. Probability by counting. Examples. Properties of probability function. Grinstead and Snell: Sections 1.2 and 4.1 Huber: Chapters 1 and 2 Lectures 4-7 slides (PDF)
Monday, October 5 Probability by counting. Examples. Properties of probability function. Inclusion-exclusion formula. Grinstead and Snell: Section 4.1 Huber: Chapters 1 and 2 Lectures 4-7 slides (PDF)
Wednesday, October 7 Properties of probability function. Inclusion-exclusion formula. Grinstead and Snell: Section 4.1 Huber: Chapters 1 and 2 Lectures 4-7 slides (PDF)
Friday, October 9 Conditional probability. Independent and dependent events. Bayes' formula. Examples. Grinstead and Snell: Section 4.1 Huber: Chapters 6 and 7 Lectures 8-10 slides (PDF)
Monday, October 12 Conditional probability is a probability. Independent events. Bernoulli trials and tossing coins. Introduction to random variables. Expectation of a random variable. Bernoulli random variable. Binomial random variable. Examples. Grinstead and Snell: Sections 5.1 and 6.1 Huber: Chapter 3 Lectures 8-10 slides (PDF)
Wednesday, October 14 Introduction to random variables. Expectation of a random variable. Bernoulli random variable. Binomial random variable. Poisson random variable. Grinstead and Snell: Sections 5.1 and 6.1 Huber: Sections 7.1, 10.1, and 11.1 Lectures 8-10 slides (PDF)
Friday, October 16 Introduction to random variables. Expectation of a random variable. Bernoulli random variable. Binomial random variable. Poisson random variable. Grinstead and Snell: Sections 5.1 and 6.1 Huber: Sections 7.1, 10.1, and 11.1 Lectures 11-16 slides (PDF)
Monday, October 19 Poisson random variable. Geometric random variables. Examples with discrete random variables. Variance and standard deviation. Grinstead and Snell: Sections 5.1 and 6.2 Huber: Sections 7.1, 10.1, and 11.1 Lectures 11-16 slides (PDF)
Wednesday, October 21 Expectation of a function of a random variable. Variance and standard deviation of discrete random variables. Examples. Grinstead and Snell: Section 6.2 Huber: Sections 7.1, 10.1, and 11.1 Lectures 11-16 slides (PDF)
Friday, October 23 Variance and standard deviation. Examples. Grinstead and Snell: Section 6.2 Huber: Sections 7.1, 10.1, and 11.1 Lectures 11-16 slides (PDF)
Monday, October 26 Variance and standard deviation of discrete random variables. Markov inequality. Chebyshev inequality. Grinstead and Snell: Sections 6.2 and 8.1 Huber: Chapters 11 and 25 Lectures 11-16 slides (PDF)
Wednesday, October 28 Markov inequality. Chebyshev inequality. Grinstead and Snell: Sections 6.2 and 8.1 Huber: Chapters 11 and 25 Lectures 11-16 slides (PDF)
Friday, October 30 Review. Examples. Grinstead and Snell: Sections 3.1, 3.2, 1.2, 4.1, 5.1, and 6.1 Lecture 17 slides (PDF)
Monday, November 2 Continuous random variables. Probability density function. Examples: uniform and exponential random variables. Grinstead and Snell: Sections 2.2, 6.3, and 8.1 Huber: Chapters 4 and 8 Lectures 18-22 slides (PDF)
Wednesday, November 4 Continuous random variables. Probability density function. Normal random variables. Expectations of continuous random variables. Grinstead and Snell: Sections 2.2 and 6.3 Huber: Chapters 4 and 8 Lectures 18-22 slides (PDF)
Friday, November 6 Normal random variables. Expectation and variance of continuous random variables. Examples. Grinstead and Snell: Sections 2.2 (page 61), 5.2 and 6.3 Huber: Chapters 8 and 18 Lectures 18-22 slides (PDF)
Monday, November 9 Expectation and variance of continuous random variables. Distribution of a function of a random variable. Examples. Grinstead and Snell: Sections 2.2 (page 61), 5.2 and 6.3 Huber: Chapters 8 and 18 Lectures 18-22 slides (PDF)
Friday, November 13 Expectation and variance of continuous random variables. Distribution of a function of a random variable. Examples. Grinstead and Snell: Sections 2.2 (page 61), 5.2 and 6.3 Huber: Chapters 8 and 18 Lectures 18-22 slides (PDF)
Monday, November 16 Independent random variables. Sums of independent random variables. Grinstead and Snell: Sections 7.1 and 7.2 Lectures 23-28 slides (PDF)
Wednesday, November 18 No class.
Friday, November 20 Sums of independent random variables. Examples. Grinstead and Snell: Sections 7.1 and 7.2 Lectures 23-28 slides (PDF)
Monday, November 23 Sums of independent random variables. Examples. Grinstead and Snell: Sections 7.1 and 7.2 Lectures 23-28 slides (PDF)
Wednesday, November 25 Law of Large Numbers. Central Limit Theorem. Grinstead and Snell: Sections 7.1, 7.2, 9.1, and 9.2 Lectures 23-28 slides (PDF)
Monday, November 30 Central Limit Theorem. De Moivre-Laplace Theorem. Stirling's formula. Examples. Grinstead and Snell: Sections 9.1, and 9.2 Lectures 23-28 slides (PDF)
Wednesday, December 2 Central Limit Theorem. De Moivre-Laplace Theorem and its proof. Stirling's formula. Grinstead and Snell: Sections 9.1, and 9.2 Lectures 23-28 slides (PDF)
Friday, December 4 Examples. Review. Lecture 29 slides (PDF)
|