In the Wright-Fisher model, the $2N$ copies of a locus in consideration could come either from N diploid individuals (who have two copies of their genetic material in each cell) or $2N$ haploid individuals (who have one copy of their genetic material in each cell). Consider Moran model with one type of mutation. We think of $n = 2N$ haploid individuals, and a genetic locus with two alleles A and a that have the same fitness. This model evolves as following:

(i) At each time step, an individual chosen uniformly at random out of n individuals is being “replaced”.

(ii) To replace individual x, we choose at random from the set of individuals, including x itself.

(iii) An allele A that is chosen mutates to allele a with probability $\rho > 0$, while a doesn’t mutate to A.

Problem 1. Let $S = \{0, 1, 2, \ldots, n\}$ be the sample space and X_t be the number of alleles A at time t. Write down the transition probabilities for the Markov chain X_t over the state space S. Next, properly define the fixation time T_f.

Problem 2. Compute the average fixation time given that the Markov chain begins with j alleles A, i.e. find

$$E[T_f \mid X_0 = j].$$

Is there a differential equations approach?