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Topics:

• Introduction to random variables.

• Binomial random variables.

• Expectation of a discrete random variable.

• Poisson random variables.

• Poisson vs Binomial.

• Geometric random variables.
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• Examples with discrete random variables.

• Variance and standard deviation.

• Markov inequality.

• Chebyshev inequality.

• Review and examples.
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Introduction to random variables.

Consider a sample space S and a probability function P .

• Definition. A function from S to R is a random variable.

• Example. Roll two fair dice. Let X(i, j) = i+ j for each

outcome (i, j) in S. Then X is a random variable represent-

ing the sum of the digits on the dice.

X :

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

−→



2
3
4
5
6
7
8
9

10
11
12
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Introduction to random variables.

• Example. Roll two fair dice. Let X(i, j) = i+ j for each

outcome (i, j) in S. Then X is a random variable represent-

ing the sum of the digits on the dice.

X :

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

−→



2
3
4
5
6
7
8
9

10
11
12


Here, for example, X(3,1) = 4 and X(5,6) = 11.

We are interested in finding the following probabilities:

p(a) = P (X = a) for a = 2,3, . . . ,12
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Introduction to random variables.

• Example. Roll two fair dice. Let X(i, j) = i + j for

each outcome (i, j) in S. Then X is a random variable

representing the sum of the digits on the dice.

p(a)=P(X=a)

a2 3 4 5 6 7 8 9 10 11 12

We are interested in finding the following probabilities:

p(a) = P (X = a) for a = 2,3, . . . ,12

p(2) = 1
36
, p(3) = 2

36
, p(4) = 3

36
, p(5) = 4

36
, p(6) = 5

36
, p(7) = 6

36

p(8) = 5
36
, p(9) = 4

36
, p(10) = 3

36
, p(11) = 2

36
, p(12) = 1

36
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Introduction to random variables.

Let X a discrete random variable. That is X assumes
a discrete (countable) number of values.

• Definition. Function p(a) = P (X = a) is called the
probability mass function (or distribution function).

• Definition. Function F (a) = P (X ≤ a) is called the
cumulative distribution function.

• Note.
∑

a: p(a)>0

p(a) = 1

In the previous example, p(2)+p(3)+ · · ·+p(12) = 1.

• Note. 0 ≤ F (a) ≤ 1

• Note. F (a) =
∑
x: x≤a

p(x)
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Bernoulli trials and Bernoulli random variables.

For a given 0 ≤ p ≤ 1, a Bernoulli trial is an exper-
iment with exactly two possible outcomes, success
and failure, in which the probability of success is p
and probability of failure is 1− p.

Here, the sample space S consists of the two out-
comes, success and failure, and

P (success) = p and P (failure) = 1− p

Bernoulli random variable X with parameter p counts
the number of successes after one Bernoulli trial, and
thus,

P (X = 1) = p and P (X = 0) = 1− p



MTH 361 8

Expectation of a discrete random variable.

• Definition. Let X be a discrete random variable
with the probability mass function p(x). Then its
expected value is

E[X] =
∑

x: p(x)>0

x · p(x)

• Example. Let X be a Bernoulli random variable
with parameter p. Then

p(1) = P (X = 1) = p and p(0) = P (X = 0) = 1−p
and

E[X] = 0 · p(0) + 1 · p(1) = p

• Example. Roll two fair dice. Let X represent the
sum of the digits on the dice. Then

E[X] = 2 · p(2) + 3 · p(3) + · · ·+ 12 · p(12) =
252

36
= 7
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Expectation of a discrete random variable.

• Definition. Let X be a discrete random variable with the
probability mass function p(x). Then its expected value is

E[X] =
∑
x: p(x)>0

x · p(x)

• Example. Roll two fair dice. Let X represent the sum of the
digits on the dice. Then

E[X] = 2 · p(2) + 3 · p(3) + · · ·+ 12 · p(12) =
252

36
= 7

p(a)=P(X=a)

a2 3 4 5 6 7 8 9 10 11 12

This corresponds to a center of mass of p(a).



MTH 361 10

Binomial random variable. Recall the following example.

• Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1−p of failure.
Let X be a random variable representing the number of successes
in n Bernoulli trials. Find P (X = k) for k = 0,1, . . . , n.

• Solution.

Each outcome with k successes and n−k failures, its probability

P (SFSS . . . FFS︸ ︷︷ ︸
k S′s and n−k F ′s

) = pk(1− p)n−k

and P (X = k) =
(n
k

)
pk(1− p)n−k for each k = 0,1, . . . , n

because there are
(
n
k

)
such outcomes.

• Definition. The random variable X in the above example is
the binomial random variable with parameters (n, p).

Check:
n∑

k=0

p(k) =
n∑

k=0

(
n
k

)
pk(1− p)n−k =

(
p+ (1− p)

)n
= 1n = 1.
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Expectation of a discrete random variable.

Let X be a binomial random variable with parameters (n, p).
Then its probability mass function is known to be

p(k) =
(n
k

)
pk(1− p)n−k for each k = 0,1, . . . , n

• Definition. Let X be a discrete random variable with the
probability mass function p(x). Then its expected value is

E[X] =
∑
x: p(x)>0

x · p(x)

• Example. Let X be a binomial random variable with param-
eters (n, p). Then

E[X] =

n∑
k=0

k · p(k) =

n∑
k=0

k ·
(n
k

)
pk(1− p)n−k =?
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Expectation of a discrete random variable.

• Example. Let X be a binomial random variable with pa-
rameters (n, p). Then E[X] = np since

E[X] =

n∑
k=0

k · p(k) =

n∑
k=0

k ·
(n
k

)
pk(1− p)n−k

=

n∑
k=1

k ·
n!

k!(n− k)!
pk(1−p)n−k =

n∑
k=1

n!

(k − 1)!(n− k)!
pk(1−p)n−k

=

n−1∑
j=0

n!

j!(n− 1− j)!
pj+1(1−p)n−1−j = np·

n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1−p)n−1−j,

where the new index j = k − 1. Thus

E[X] = np·
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1−p)n−1−j = np·

n−1∑
j=0

(n− 1

j

)
pj(1−p)n−1−j

= np · (p+ (1− p))n−1 = np by the Binomial theorem
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Binomial random variable.

Picture credit: Wikipedia.org

p(k) =
(n
k

)
pk(1−p)n−k for each k = 0,1, . . . , n and E[X] = np
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Poisson random variable.

• Recall that
∞∑
k=0

ak

k!
= ea for all −∞ < a < +∞

• Definition. Let λ > 0. A discrete random variable such that
its probability mass function

p(k) = e−λ ·
λk

k!
for each k = 0,1, . . .

is a Poisson random variable with parameter λ > 0.

• Function p(k) = e−λ · λk
k!

is Poisson distribution

• Check
∞∑
k=0

p(k) =
∞∑
k=0

e−λ · λk
k!

= e−λ ·
∞∑
k=0

λk

k!
= e−λ · eλ = 1

• Expectation: Let X be a Poisson random variable with pa-
rameter λ. Then E[X] = λ since

E[X] =

∞∑
k=0

k·p(k) =

∞∑
k=0

k·e−λ·
λk

k!
=

∞∑
k=1

k·e−λ·
λk

k!
= e−λ·

∞∑
k=1

k·
λk

k!
= λ·e−λ·

∞∑
k=1

λk−1

(k − 1)!
= λ
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Poisson random variable.

Picture credit: Wikipedia.org

p(k) = e−λ ·
λk

k!
for each k = 0,1, . . . and E[X] = λ
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Poisson vs Binomial.

Let λ > 0 be given. Suppose Y is a Poisson random variable
with parameter λ. Then its probability mass function

P (Y = k) = e−λ ·
λk

k!
for each k = 0,1, . . .

Now, let Sn be a Binomial random variable with parameters n
and p = λ

n
. Then its probability mass function

P (Sn = k) =
(n
k

)
pk(1−p)n−k =

(n
k

)(λ
n

)k (
1−

λ

n

)n−k
for each k = 0,1, . . . , n

• Theorem. Consider integer k ≥ 0. Then for n large enough,

P (Sn = k) ≈ P (Y = k)

Namely, lim
n→∞

P (Sn = k) = P (Y = k)
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Poisson vs Binomial.

Picture credit: Wikipedia.org

Dots: Poisson(λ = 5) Red: Binomial(n = 10, p = 1
2
)

Blue: Binomial(n = 20, p = 1
4
)

Green: Binomial(n = 1000, p = 1
200

)
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Poisson vs Binomial.

Let λ > 0 be given. Suppose Y is a Poisson random variable
with parameter λ and Sn is a Binomial random variable with
parameters n and p = λ

n
.

•Theorem. For a given integer k ≥ 0, lim
n→∞

P (Sn = k) = P (Y = k).

Thus, for n large enough, P (Sn = k) ≈ P (Y = k).

Proof: k is fixed, and

P (Sn = k) =
n!

k!(n− k)!
·
(
λ

n

)k (
1−

λ

n

)n−k
=
λk

k!
·

n!

(n− k)!
·

1

nk
·

(
1− λ

n

)n(
1− λ

n

)k
=

λk

k!
·
(n− k + 1)(n− k + 2) . . . n

nk
·

(
1− λ

n

)n(
1− λ

n

)k −→ e−λ·
λk

k!
as n→∞

since
(

1− λ
n

)n
→ e−λ, (n−k+1)(n−k+2)...n

nk
→ 1, and

(
1− λ

n

)k
→ 1k = 1.
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Geometric random variables.

• Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1−p of failure.
Let X be a random variable representing the number of trials
until the first success. Find P (X = k) for k = 1,2, . . . .

• Solution.

The sample space S consists of the outcomes of infinitely many
Bernoulli trials. For example FFSFSSFS . . . is one such out-
come. Here X is a function from the sample space S to R, and
here

X(FFSFSSFS . . .) = 3

P (X = 3) = P (F1F2S3) = P (F1) · P (F2) · P (S3) = p · (1− p)2

and P (X = k) = P (F1) · · · · · P (Fk−1) · P (Sk) = p · (1− p)k−1 for each k = 1,2, . . .

• Definition. The random variable X in the above example is
called a geometric random variable with parameter p.
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Geometric random variables.

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

• We need to check that
∞∑
k=1

p(k) = 1.

Geometric series:
∞∑
k=0

xk = 1 + x+ x2 + x3 + . . .

Claim: For x 6= 1,
n∑

k=0

xk = 1 + x+ x2 + x3 + · · ·+ xn = 1−xn+1

1−x

Proof: (1−x)(1+x+x2+x3+···+xn)=[1+x+x2+x3+···+xn]−[x+x2+x3+···+xn+xn+1]=1−xn+1

Summing the geometric series: For |x| < 1,

∞∑
k=0

xk = lim
n→∞

(
n∑

k=0

xk

)
= lim

n→∞

1− xn+1

1− x
=

1

1− x
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Geometric random variables.

Summing the geometric series: For |x| < 1,

∞∑
k=0

xk = lim
n→∞

(
n∑

k=0

xk

)
= lim

n→∞

1− xn+1

1− x
=

1

1− x

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

• We need to check that
∞∑
k=1

p(k) = 1.

∞∑
k=1

p(k) = p ·
∞∑
k=1

(1− p)k−1 = p ·
∞∑
j=0

(1− p)j = p ·
1

1− (1− p)
= 1,

where j = k − 1.
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Geometric random variables.

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

We need to find its expectation E[X] =
∞∑
k=1

k · p(k).

E[X] =

∞∑
k=1

k · p(k) = p ·
∞∑
k=1

k · (1− p)k−1 =?
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Geometric random variables.

A geometric random variable with parameter p is characterized
by a probability mass function,

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

We need to find its expectation E[X] =
∞∑
k=1

k · p(k).

E[X] =

∞∑
k=1

k · p(k) = p ·
∞∑
k=1

k · (1− p)k−1 =?

Here
∞∑
k=1

kxk−1 = 1
(1−x)2 for |x| < 1 as

∞∑
k=1

kxk−1 =

∞∑
k=0

kxk−1 =

∞∑
k=0

(xk)′ =

(
∞∑
k=0

xk

)′
=
(

1

1− x

)′
=

1

(1− x)2

and therefore E[X] = p ·
∞∑
k=1

k · (1− p)k−1 = p · 1
(1−(1−p))2 = 1

p
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Geometric random variables.

Alternative proof of
∞∑
k=1

kxk−1 = 1
(1−x)2 for |x| < 1.

1 + 2x+ 3x2 + 4x3 + 5x4 + · · · =

1 + x+ x2 + x3 + x4 + · · · = 1
1−x

+ + + +
x+ x2 + x3 + x4 + · · · = x

1−x
+ + +
x2 + x3 + x4 + · · · = x2

1−x
+ +
x3 + x4 + · · · = x3

1−x
+

x4 + . . .
...

1
1−x + x

1−x + x2

1−x + x3

1−x + · · · = 1
1−x · (1 + x+ x2 + . . . ) = 1

(1−x)2
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Geometric random variables.

Let X be geometric random variable with parameter p. Then

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

and

E[X] =
1

p

• Prove the following memorylessenss property:

P (X = n+ k | X > n) = P (X = k)

for any two positive integers n and k.

We observe that here, P (X = n+ k | X > n) = P (X=n+k)
P (X>n)

• Apply the above to coin tossing. Give an example.
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Geometric random variables.

Let X be geometric random variable with parameter p. Then

p(k) = p · (1− p)k−1 for each k = 1,2, . . .

and

E[X] =
1

p

• Example. Find probability P (X ≥ 10).

• Example. Let p = 1
2
. Find probability P (X ≥ 20).
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Discrete random variables.

• Example. Let X be a Binomial random variable with param-
eters n = 200 and p = 0.035. Find probabilities P (X = 4) and
P (X = 6).

Here P (X = 4) =
(

200
4

)
(0.035)4(0.965)196 = 0.09003862196 . . .

and P (X = 6) =
(

200
6

)
(0.035)6(0.965)194 = 0.1508966957 . . .

• Example. Let X be a Poisson random variable with parameter
λ = 7. Find probabilities P (X = 4) and P (X = 6).

Here P (X = 4) = e−7 · 74

4!
= 0.09122619167 . . .

and P (X = 6) = e−7 · 76

6!
= 0.1490027797 . . .

• Example. Let X be a geometric random variable with param-
eter p = 1

7
. Find probabilities P (X = 4) and P (X = 6).

Here P (X = 4) = 1
7
· 63

73 = 0.08996251562 . . .

and P (X = 6) = 1
7
· 65

75 = 7776
117649

= 0.06609490943 . . .
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Variance and standard deviation.

• Theorem. Let X be a discrete random variable characterized
by its probability mass function p(x). Then, for any real valued
function g, g(X) will also be a random variable, and

E[g(X)] =
∑

x: p(x)>0

g(x) p(x)

• Example. We roll a fair die once, and square the outcome.
Let X be a random variable representing the outcome. Then
Y = X2 will be a random variable representing the square of the
outcome. Here

pX(1) = pX(2) = pX(3) = pX(4) = pX(5) = pX(6) =
1

6

will be the probability mass function for X, and

pY (1) = pY (4) = pY (9) = pY (16) = pY (25) = pY (36) =
1

6

will be the probability mass function for Y . Then

E[Y ] = 1 ·
1

6
+ 4 ·

1

6
+ 9 ·

1

6
+ 16 ·

1

6
+ 25 ·

1

6
+ 36 ·

1

6
=

91

6
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Variance and standard deviation.

• Theorem. Let X be a discrete random variable characterized
by its probability mass function pX(x). Then, for any real valued
function g, g(X) will also be a random variable, and

E[g(X)] =
∑

x: pX(x)>0

g(x) pX(x)

Proof: Let Y = g(X). We find the probability mass function
pY (y) of Y :

pY (y) = P
(
g(X) = y

)
=

∑
x: g(x)=y

P (X = x) =
∑

x: g(x)=y

pX(x)

as
{
g(X) = y

}
=
⋃

x: g(x)=y

{X = x} is a union of disjoint events.

Thus, E[Y ] =
∑
y

y pY (y) =
∑
y

(
y
∑

x: g(x)=y

pX(x)

)
=
∑
y

( ∑
x: g(x)=y

y pX(x)

)

=
∑
y

( ∑
x: g(x)=y

g(x) pX(x)

)
=
∑
x

g(x) pX(x)
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Variance and standard deviation.

E[g(X)] =
∑

x: p(x)>0

g(x) p(x)

• Example. We roll a fair die once, and square the outcome.
Let X be a random variable representing the outcome. Then
Y = X2 will be a random variable representing the square of the
outcome. Here

pX(1) = pX(2) = pX(3) = pX(4) = pX(5) = pX(6) =
1

6
will be the probability mass function for X, and

pY (1) = pY (4) = pY (9) = pY (16) = pY (25) = pY (36) =
1

6
will be the probability mass function for Y . Then

E[Y ] = 1 ·
1

6
+ 4 ·

1

6
+ 9 ·

1

6
+ 16 ·

1

6
+ 25 ·

1

6
+ 36 ·

1

6
=

91

6

Observe that
6∑

k=1

k2 · pX(k) = 91
6

as well. Also observe that

E[X2] =
91

6
6=

(
E[X]

)2
=
(

7

2

)2

=
49

4
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Examples.

• Problem. Random variable X has the following probability
mass function

pX(x) =



1
8

if x = −2

5
8

if x = 2

1
4

if x = 3

0 otherwise

That is pX(−2) = 1
8
, pX(2) = 5

8
and pX(3) = 1

4
.

Compute E[X] and E[X2]. Hint: Recall that E[g(X)] =
∑

x: pX(x)>0

g(x) pX(x).

Solution: E[X] = (−2) · pX(−2) + 2 · pX(2) + 3 · pX(3) = 7
4

E[X2] = (−2)2 · pX(−2) + 22 · pX(2) + 32 · pX(3) =
21

4
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Examples.

• Example. Let X be binomial random variable with parameters
n = 20 and p = 1

4
. Use the binomial theorem to compute E[2X].

Solution:

E[2X] =

n∑
k=0

2k ·p(k) =

n∑
k=0

2k ·
(n
k

)
·pk(1−p)n−k =

n∑
k=0

(n
k

)
·(2p)k(1−p)n−k

= (2p+ (1− p))n = (1 + p)n =
(

5

4

)20

= 86.7361738
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Variance and standard deviation.

• Given constants α and β,

E[αX + β] = αE[X] + β

Proof:

E[αX+β] =
∑

k: p(k)>0

(αk+β)·p(k) = α·
∑

k: p(k)>0

kp(k)+β·
∑

k: p(k)>0

p(k) = αE[X]+β

Now, let X be a random variable with mean E[X] = µ.

• Definition. The variance of X is

V ar(X) = E
[
(X − µ)2

]
Note that the variance is a mean square displacement from the
mean µ.

• Definition. The standard deviation of X is

SD(X) =
√
V ar(X) =

√
E
[
(X − µ)2

]
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Variance and standard deviation.

Let X be a random variable with mean E[X] = µ.

• Definition. The standard deviation of X is

SD(X) =
√
V ar(X) =

√
E
[
(X − µ)2

]
Another notation: σ(X) and σ.

• Intuition: X = µ± σ

• Example. Let X be a Binomial random variable with param-
eters n and p. We know that E[X] = np. It will be shown that
the variance

V ar(X) = np(1− p)
Thus

X = np±
√
np(1− p)
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Let X be a Binomial random variable with n = 100 and p = 1
2
.

X = np±
√
np(1− p) = 50± 5

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
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Variance and standard deviation.

Let X be a random variable with mean E[X] = µ.

• Theorem. The variance of X equals

V ar(X) = E[X2]− µ2

Proof:

V ar(X) = E
[
(X−µ)2

]
=

∑
a: p(a)>0

(a−µ)2·p(a) =
∑

a: p(a)>0

(a2−2µa+µ2)·p(a)

=
∑

a: p(a)>0

a2 · p(a)− 2µ ·
∑

a: p(a)>0

a · p(a) + µ2 ·
∑

a: p(a)>0

p(a)

=
∑

a: p(a)>0

a2 · p(a)− 2µ · µ+ µ2 · 1 = E[X2]− 2µ2 + µ2

= E[X2]− µ2
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Variance and standard deviation.

• Example. Let X be a Binomial random variable with param-
eters n and p. Show that

V ar(X) = np(1− p)

Solution: Here µ = np and

V ar(X) = E[X2]− µ2 =

n∑
k=0

k2 ·
(n
k

)
pk(1− p)n−k − µ2

=

n∑
k=0

(k2 − k) ·
(n
k

)
pk(1− p)n−k +

n∑
k=0

k ·
(n
k

)
pk(1− p)n−k − µ2

=

n∑
k=2

k(k−1)·
(n
k

)
pk(1−p)n−k+µ−µ2 =

n∑
k=2

k(k−1)·
n!

k!(n− k)!
·pk(1−p)n−k+µ−µ2

=

n∑
k=2

n!

(k − 2)!(n− k)!
· pk(1− p)n−k + µ− µ2
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Variance and standard deviation.

• Example. Let X be a Binomial random variable with param-
eters n and p. Show that

V ar(X) = np(1− p)

Solution (continued): Here µ = np and

V ar(X) =

n∑
k=2

n!

(k − 2)!(n− k)!
·pk(1−p)n−k+µ−µ2

= p2 · n(n− 1) ·
n∑

k=2

(n− 2)!

(k − 2)!(n− k)!
· pk−2(1− p)n−k + µ− µ2

= p2·n(n−1)·
n−2∑
j=0

(n− 2

j

)
·pj(1−p)(n−2)−j+µ−µ2, where j = k−2

= p2 · n(n− 1) · (p+ (1− p))n−2 + µ− µ2 = p2 · n(n− 1) + µ− µ2

= p2 · (n2 − n) + np− (np)2 = −np2 + np = np(1− p)
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Variance and standard deviation.
• Example. Let X be a Poisson random variable with parameter
λ > 0. Show that

V ar(X) = λ

Solution: Here µ = λ and

V ar(X) = E[X2]− µ2 =

∞∑
k=0

k2 · e−λ
λk

k!
− µ2

=

∞∑
k=0

(k2 − k) · e−λ
λk

k!
+

∞∑
k=0

k · e−λ
λk

k!
− µ2

=

∞∑
k=2

k(k − 1) · e−λ
λk

k!
+ µ− µ2 =

∞∑
k=2

e−λ
λk

(k − 2)!
+ µ− µ2

=

∞∑
j=0

e−λ
λj+2

j!
+µ−µ2 = λ2·e−λ·

∞∑
j=0

λj

j!
+µ−µ2, where j = k−2

= λ2 · e−λ · eλ + λ− λ2 = λ
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Variance and standard deviation.

• Example. Let X be a geometric random variable with param-
eter p. Show that

V ar(X) =
1− p
p2

Solution: Here µ = 1
p

and

V ar(X) = E[X2]− µ2 =

∞∑
k=1

k2 · p · (1− p)k−1 − µ2

=

∞∑
k=1

k(k − 1) · p · (1− p)k−1 +

∞∑
k=1

k · p · (1− p)k−1 − µ2

= p · (1− p) ·
∞∑
k=0

k(k − 1) · (1− p)k−2 + µ− µ2
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Variance and standard deviation.

• Example. Let X be a geometric random variable with param-
eter p. Show that

V ar(X) =
1− p
p2

Solution (continued): Here µ = 1
p

and

V ar(X) = p · (1− p) ·
∞∑
k=0

k(k − 1) · (1− p)k−2 + µ− µ2

Now, for |x| < 1,

∞∑
k=0

k(k−1)·xk−2 =

∞∑
k=0

(
xk
)′′

=
d2

dx2

(
∞∑
k=0

xk

)
=

d2

dx2

(
1

1− x

)
=

2

(1− x)3

Hence,

V ar(X) = p · (1− p) ·
2

p3
+ µ− µ2 = 2 ·

1− p
p2

+
1

p
−

1

p2
=

1− p
p2
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Variance and standard deviation.

• Theorem. The variance of X equals

V ar(X) = E[X2]− µ2

• Example. Let X be a Binomial random variable with param-
eters n and p. Then

V ar(X) = np(1− p)

• Example. Let X be a Poisson random variable with parameter
λ > 0. Then

V ar(X) = λ

• Example. Let X be a geometric random variable with param-
eter p. Then

V ar(X) =
1− p
p2
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Markov inequality.

• Example. When a certain lab experiment is performed, the
outcome is an integer number on the scale from 0 to 20,000.
Analyzing the outcomes of multiple identical experiments per-
formed independently of each other it was noticed that the av-
erage value stays around 440. Suppose the threshold value is
10,000. If this is all we know, can we estimate how small is
the probability that the outcome of one such experiment yields
a value greater or equal to 10,000.

Same stated in terms of random variables: Let X be a ran-
dom variable, taking integer values from 0 to 20,000. We don’t
know its probability mass function p(k) (k = 0,1,2, . . . ,20K).
However we know that its expectation E[X] = 440. What can
we say about the probability of going above the threshold

P (X ≥ 10,000) ?

Can we bound it?
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Markov inequality.

Same stated in terms of random variables: Let X be a ran-
dom variable, taking integer values from 0 to 20,000. We don’t
know its probability mass function p(k) (k = 0,1,2, . . . ,20K).
However we know that its expectation E[X] = 440. What can
we say about the probability of going above the threshold

P (X ≥ 10,000) ?

Can we bound it?

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any α > 0,

P (X ≥ α) ≤
E[X]

α

Solution to the above example:

P (X ≥ 10,000) ≤
440

10,000
= 0.044
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Markov inequality.

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any α > 0,

P (X ≥ α) ≤
E[X]

α

Proof:

P (X ≥ α) =
∑
k: k≥α

p(k) ≤
∑
k: k≥α

k

α
·p(k) =

1

α
·
∑
k: k≥α

k·p(k) ≤
1

α
·
∑
k: k≥0

k·p(k) =
E[X]

α

• Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Use Markov inequality to give an
upper bound on the following probability

P (X ≥ 540) =

2,500∑
k=540

(2500

k

)
· (0.2)k · (0.8)2,500−k
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Markov inequality.

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any α > 0,

P (X ≥ α) ≤
E[X]

α

• Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Use Markov inequality to give an
upper bound on the following probability

P (X ≥ 540) =

2,500∑
k=540

(2500

k

)
· (0.2)k · (0.8)2,500−k

Solution: Here E[X] = np = 500. Thus

P (X ≥ 540) ≤
500

540
= 0.925 . . .

• Comment: Here we also know the standard deviation σ =
√
np(1− p) = 20.

Thus we know that X = µ ± σ = 500 ± 20, making us believe that
P (X ≥ 540) is much smaller than 92.5%.
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We know that X = µ±σ = 500±20, making us believe that P (X ≥ 540)
is much smaller than 92.5%.
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In fact, P (X ≥ 540) ≈ 0.0249 << 0.925.
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Chebyshev inequality.

Theorem. (Chebyshev inequality.) If X is a random variable
with finite mean µ and variance, then for any κ > 0,

P (|X − µ| ≥ κ) ≤
V ar(X)

κ2

• Example. Let X be a Binomial random variable with param-
eters n = 2,500 and p = 0.2. Give an upper bound on the
following probability

P (X ≥ 540) =

2,500∑
k=540

(2500

k

)
· (0.2)k · (0.8)2,500−k

Solution: Here µ = np = 500 and V ar(X) = np(1− p) = 400.
Thus

P (X ≥ 540) = P (X−µ ≥ 40) ≤ P (|X−µ| ≥ 40) ≤
400

402
= 0.25
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Markov and Chebyshev inequalities.

Theorem. (Markov inequality.) If X is a random variable that
takes only nonnegative values, then for any α > 0,

P (X ≥ α) ≤
E[X]

α

Theorem. (Chebyshev inequality.) If X is a random variable
with finite mean µ and variance, then for any κ > 0,

P (|X − µ| ≥ κ) ≤
V ar(X)

κ2

Proof: Let Y = (X − µ)2, then E[Y ] = V ar(X) and

P (|X−µ| ≥ κ) = P ((X−µ)2 ≥ κ2) = P (Y ≥ κ2) ≤
E[Y ]

κ2
=
V ar(X)

κ2

using Markov inequality for Y , since Y is a nonnegative random
variable.
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Review problems.

• Problem. Prove that if P (A) = P (B) = 3
4
, then P (A|B) ≥ 2

3
.

Hint: Use the inclusion-exclusion formula.

Solution:

P (A|B) =
P (A ∩B)

P (B)
=

P (A) + P (B)− P (A ∪B)

P (B)

= 2−
P (A ∪B)

3/4
≥ 2−

1

3/4
= 2−

4

3
=

2

3

as P (A∪B)
3/4

≤ 1
3/4
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Review problems.

• Problem. Let S = {a, b, c} be the sample space for the ex-
periment with positive probabilities for each outcome. Given
three events A1 = {a, b}, A2 = {b, c}, and B = {b}. Check if
the following is true regardless of the probability values for the
outcomes:

P (A1 ∪A2|B) = P (A1|B) + P (A2|B)

Solution: A1 ∪A2 = S = {a, b, c}

Hence,

P (A1 ∪A2|B) = P (S|B) =
P (S ∩B)

P (B)
=
P (B)

P (B)
= 1

While,

P (A1|B) =
P (A1 ∩B)

P (B)
=
P (B)

P (B)
= 1

and

P (A2|B) =
P (A2 ∩B)

P (B)
=
P (B)

P (B)
= 1

Hence P (A1 ∪A2|B) 6= P (A1|B) + P (A2|B)
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Review problems.

• Problem. Consider two urns, one containing 1 black and 7
red marble, the other containing 6 black and 1 red marble. An
urn is selected at random, and a marble is drawn at random
from the selected urn. What is the probability that the first urn
was the one selected, given that the marble is red?

Hint: use Bayes’ formula, P (F |E) = P (E|F )P (F )

P (E|F )P (F )+P (E|F )P (F )

Solution: Let U1 = {Urn 1 selected}, U2 = {Urn 2 selected},
and R = {red marble selected}. Then

P (R) = P (R∩U1)+P (R∩U2) = P (R|U1)P (U1) + P (R|U2)P (U2) =
7

8
·
1

2
+

1

7
·
1

2
=

57

112

P (U1|R) =
P (R ∩ U1)

P (R)
=

P (R|U1)P (U1)

P (R|U1)P (U1) + P (R|U2)P (U2)
=

7/16

57/112
=

49

57
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Review problems.

• Problem. If 17 people are to be divided into two committees
of respective sizes 5, and 12, how many divisions are possible?
Here each person can serve only on one committee.

Solution: We are splitting 17 people into two groups: commit-
tee A of five and committee B of 12. Since the 17 people are
different individuals, it is the same as making 17-long strings of
5 A’s and 12 B’s. Thus there are(17

5

)
ways to do so.
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Review problems.

• Problem. Use the Binomial Theorem to show

n∑
k=0

(n
k

)
(−1)k = 0

Solution: Recall the Binomial Theorem:

(x+ y)n =

n∑
k=0

(n
k

)
xkyn−k

Plugging in x = −1 and y = 1, we obtain

n∑
k=0

(n
k

)
(−1)k =

n∑
k=0

(n
k

)
xkyn−k = (x+ y)n = (−1 + 1)n = 0
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Review problems.

• Problem. Compute
n∑

k=0

(
n
k

)
2n−k

Solution: Recall the Binomial Theorem:

(x+ y)n =

n∑
k=0

(n
k

)
xkyn−k

Plugging in x = 1 and y = 2, we obtain

n∑
k=0

(n
k

)
2n−k =

n∑
k=0

(n
k

)
xkyn−k = (x+ y)n = (1 + 2)n = 3n
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Review problems.

• Problem. If a fair die is rolled five times, what is the proba-
bility that 6 comes up exactly three times?

Solution: Since this is a fair die, the probability that 6 comes
up when the die is rolled is

p =
1

6

So, we perform n = 5 independent experiments with probability
p = 1

6
of success. Then the probability of exactly k = 3 successes

in the n = 5 trials is Binomial

P (X = k) =
(n
k

)
· pk · (1− p)n−k =

(5
3

)
·
(

1

6

)3

·
(

5

6

)2

=
(5

3

)
·

25

65
=

125

3,888
= 0.032150

Alternatively, it can be solved via counting.
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Review problems.

• Problem. Consider a walk on the grid pictured below, orig-
inating at the point labelled A. Each time the walker can go
one step up or one step to the right . This is continued un-
til the point labeled B is reached. How many different paths
from A to B are possible? Here is an example of such path:
Up-Up-Right-Right-Right-Up-Right-Right-Up-Right-Up-Right

Solution: Each distinct path corresponds to a distinct string
made of 5 U’s and 7 R’s, where U and R stand for Up and Right

respectively. Thus there are
(

12
5

)
such paths.
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Review problems.

• Example: Birthday Problem. Find the probability that
among n persons, at least two have birthdays on the same day
(but not necessarily in the same year). Assume all days of the
year are equally likely to be one’s birthday, and ignore February
29th.

Solution: There are two cases: when n ≤ 365 and when
n > 365.

If n ≤ 365, then we find the probability that they all have differ-

ent birthdays: 365·364...(365−n+1)
365n

and subtract it from 1, obtaining

1−
365 · 364 . . . (365− n+ 1)

365n

When n > 365, this probability is equal to 1.


