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Topics:

• Conditional probability.

• Independent and dependent events.

• Bayes’ Theorem.

• Introduction to random variables.

• Binomial random variables.

• Expectation of a discrete random variable.
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Inclusion-Exclusion Theorem.

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• Proof: We proved the following lemma:

If E ⊆ F, then P (F ) = P (E) + P (F ∩ E).

Taking E = A and F = A ∪B, we obtain

P (A ∪B) = P (A) + P (B ∩A)

as F∩E = (A∪B)∩A = (A∩A)∪(B∩A) = ∅∪(B∩A) = B∩A

Also we proved the following proposition:

P (B) = P (B ∩A) + P (B ∩A)

Hence P (B ∩A) = P (B)− P (B ∩A) and

P (A∪B) = P (A)+P (B∩A) = P (A)+P (B)−P (A∩B)
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Inclusion-Exclusion Theorem.

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

• Example. Roll two fair dice.

Here S =

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

Let E = {the sum is divisible by three} (in orange),

and F = { the sum is ≥ 9 } (blue shading).

Then P (E) =
|E|
|S|

=
12

36
=

1

3
, P (F ) =

|F |
|S|

=
10

36
=

5

18
, and P (E∩F ) =

|E ∩ F |
|S|

=
5

36

Then P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) = 12
36

+ 10
36
− 5

36
= 17

36
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Conditional probability.

Given two events, A and B, in S. If P (B) 6= 0, the
conditional probability of A given B is defined as
follows

P (A|B) =
P (A ∩B)

P (B)

• Example. Roll two fair dice.

S =

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

E = {the sum is divisible by three} and F = { the sum is ≥ 9 }

P (E) =
|E|
|S|

=
12

36
=

1

3
, P (F ) =

|F |
|S|

=
10

36
=

5

18
, and P (E∩F ) =

|E ∩ F |
|S|

=
5

36

Then P (E|F ) = P (E∩F )
P (F )

= 5/36
10/36

= 5
10

= 1
2
6= P (E)
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Conditional probability.

P (A|B) =
P (A ∩B)

P (B)
⇒ P (A ∩B) = P (A|B)P (B)

• Example. Urn 1 contains 4 red and 2 green marbles, while
Urn 2 contains 3 red and 5 green marbles. We pick an urn at
random with probability 1/2, and then select a marble from the
urn with equal probability for each one. Find the probability that
a red marble was selected from the second urn.

Urn 1 Urn 2

Let U2 = {Urn 2 selected} and R = {red marble selected}.

Then P (U2) = 1
2

and P (R|U2) = 3
8
, and

P (R ∩ U2) = P (R|U2)P (U2) =
3

16
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Independent events. Two events, A and B, are said
to be independent if

P (A ∩B) = P (A)P (B)

The above is equivalent to P (A|B) = P (A) whenever
P (B) > 0.

• Example. Roll two fair dice.

S =

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

E = {the sum is divisible by three} and F = { the sum is ≥ 8 }

P (E) =
|E|
|S|

=
12

36
=

1

3
, P (F ) =

|F |
|S|

=
15

36
=

5

12
, and P (E∩F ) =

|E ∩ F |
|S|

=
5

36

Then P (E ∩ F ) = 5
36

= 1
3
· 5

12
= P (E)P (F ) ⇒ E and F are independent.
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Dependent events. Two events, A and B, are said
to be dependent if

P (A ∩B) 6= P (A)P (B)

The above is equivalent to P (A|B) 6= P (A) whenever
P (B) > 0.

• Example. Roll two fair dice.

S =

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

E = {the sum is divisible by three} and F = { the sum is ≥ 9 }

P (E) =
|E|
|S|

=
12

36
=

1

3
, P (F ) =

|F |
|S|

=
10

36
=

5

18
, and P (E∩F ) =

|E ∩ F |
|S|

=
5

36

Then P (E ∩ F ) = 5
36
6= 5

54
= P (E)P (F ) ⇒ E and F are dependent.
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Independent and dependent events.

• Example. Roll two fair dice.

S =

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

A = {the first die ≤ 3} and B = { the second die is ≥ 5 }

P (A) =
18

36
=

1

2
, P (B) =

12

36
=

1

3
, and P (A∩B) =

|A ∩B|
|S|

=
6

36
=

1

6

P (A ∩B) = 1
6

= 1
2
· 1

3
= P (A)P (B) ⇒ A and B independent.

Also notice P (A|B) = 1/6
1/3

= 1
2

= P (A).
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Independent and dependent events.

• Proposition. If the events E and F are

independent, then so are E and F

• Proof: We proved the following proposition

P (E) = P (E ∩ F ) + P (E ∩ F )

Since E and F are independent, P (E∩F ) = P (E)P (F )
and therefore

P (E) = P (E ∩F ) +P (E ∩F ) = P (E)P (F ) +P (E ∩F )

So, P (E) = P (E)P (F ) + P (E ∩ F ) and

P (E ∩ F ) = P (E)− P (E)P (F ) = P (E)
(
1− P (F )

)
= P (E)P (F )

as 1− P (F ) = P (F ).
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Conditional probability.

P (A|B) =
P (A ∩B)

P (B)
⇒ P (A ∩B) = P (A|B)P (B)

• Example. Urn 1 contains 4 red and 2 green marbles, while
Urn 2 contains 3 red and 5 green marbles. We pick an urn at
random with probability 1/2, and then select a marble from the
urn with equal probability for each one. Find the probability that
a red marble was selected from the second urn.

Urn 1 Urn 2

Let U2 = {Urn 2 selected} and R = {red marble selected}.

Then P (U2) = 1
2

and P (R|U2) = 3
8
, and

P (R ∩ U2) = P (R|U2)P (U2) =
3

16
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Conditional probability.

• Example. Urn 1 contains 4 red and 2 green marbles, while
Urn 2 contains 3 red and 5 green marbles. We pick an urn at
random with probability 1/2, and then select a marble from the
urn with equal probability for each one. Find the probability that
a red marble was selected.

Urn 1 Urn 2

Let U1 = {Urn 1 selected}, U2 = {Urn 2 selected}, and
R = {red marble selected}. Then R = (R ∩ U1) ∪ (R ∩ U2), and

P (R) = P (R∩U1)+P (R∩U2) = P (R|U1)P (U1) + P (R|U2)P (U2) =
2

3
·
1

2
+

3

8
·
1

2
=

25

48
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Bayes’ Theorem.

• Example. Urn 1 contains 4 red and 2 green marbles, while
Urn 2 contains 3 red and 5 green marbles. We pick an urn at
random with probability 1/2, and then select a marble from the
urn with equal probability for each one. We learned that a red
marble was selected (but we don’t know from what urn). Find
the probability that it was taken from Urn 2.

Urn 1 Urn 2
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Bayes’ Theorem.

• Example. Urn 1 contains 4 red and 2 green marbles, while
Urn 2 contains 3 red and 5 green marbles. We pick an urn at
random with probability 1/2, and then select a marble from the
urn with equal probability for each one. We learned that a red
marble was selected (but we don’t know from what urn). Find
the probability that it was taken from Urn 2.

Urn 1 Urn 2

Let U1 = {Urn 1 selected}, U2 = {Urn 2 selected}, and
R = {red marble selected}. We need to compute P (U2|R).

P (R) = P (R∩U1)+P (R∩U2) = P (R|U1)P (U1)+P (R|U2)P (U2) =
2

3
·
1

2
+

3

8
·
1

2
=

25

48

P (U2|R) =
P (R ∩ U2)

P (R)
=

P (R|U2)P (U2)

P (R|U1)P (U1) + P (R|U2)P (U2)
=

3/16

25/48
=

9

25
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Bayes’ Theorem.

Urn 1 Urn 2

P (R) = P (R∩U1)+P (R∩U2) = P (R|U1)P (U1) + P (R|U2)P (U2) =
2

3
·
1

2
+

3

8
·
1

2
=

25

48

P (U2|R) =
P (R ∩ U2)

P (R)
=

P (R|U2)P (U2)

P (R|U1)P (U1) + P (R|U2)P (U2)
=

3/16

25/48
=

9

25

Choices

↙ ↘

Urn 1 Urn 2

↙ ↘ ↙ ↘

RED GREEN RED GREEN

1

2
·

2

3

1

2
·

1

3

1

2
·

3

8

1

2
·

5

8
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Bayes’ Theorem.

• Theorem. Suppose B1, B2, . . . , Bk are disjoint events such
that

B1 ∪B2 ∪ · · · ∪Bk = S

Then, for any event A,

• P (A) = P (A|B1)P (B1)+P (A|B2)P (B2)+· · ·+P (A|Bk)P (Bk)

• (Bayes’ Theorem) P (Bj|A) = P (A|Bj)P (Bj)
P (A|B1)P (B1)+P (A|B2)P (B2)+···+P (A|Bk)P (Bk)

for any j = 1,2, . . . , k.

• Proof.

A = A∩S = A∩(B1∪B2∪· · ·∪Bk) = (A∩B1)∪(A∩B2)∪· · ·∪(A∩Bk)

is a union of disjoint events. Thus

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bk)

= P (A|B1)P (B1)+P (A|B2)P (B2)+· · ·+P (A|Bk)P (Bk)

Next, P (Bj|A) = P (A∩Bj)
P (A)

= P (A|Bj)P (Bj)
P (A)

.
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Bayes’ Theorem.

• Example. Let U1 = {Urn 1 selected}, U2 = {Urn 2 selected},
U3 = {Urn 3 selected}, and R = {red marble selected}. We
need to compute P (R), P (U2|R), and P (U3|R).

Urn 1 Urn 2 Urn 3

P (R) = P (R|U1)P (U1)+P (R|U2)P (U2)+P (R|U3)P (U3) =
2

3
·
1

3
+

3

8
·
1

3
+

2

5
·
1

3
=

173

360

P (U2|R) =
P (R|U2)P (U2)

P (R|U1)P (U1) + P (R|U2)P (U2) + P (R|U3)P (U3)
=

1/8

173/360
=

45

173

P (U3|R) =
P (R|U3)P (U3)

P (R|U1)P (U1) + P (R|U2)P (U2) + P (R|U3)P (U3)
=

2/15

173/360
=

48

173
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Examples.

• Example. We are given two coins. We know that
one of the coins is fair (with probability 1/2 for each
outcome), and one is fake, with probability 3/5 for
heads and 2/5 for tails. We don’t know which one is
fair and which one is fake.

We randomly picked a coin (with equal probability for
each one of the two), and tossed it once. The result
was heads. With what probability can we conclude
the coin we picked was the fake coin?
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Examples.

• Solution: Let F = { the coin is fake },

and H = { coin toss yields heads }.

Then P (H|F ) = 3
5
, P (H|F ) = 1

2
, and P (F ) = P (F ) = 1

2
.

Therefore, by Bayes’ Theorem,

P (F |H) =
P (H|F ) · P (F )

P (H|F ) · P (F ) + P (H|F ) · P (F )
=

3
5
· 1

2
3
5
· 1

2
+ 1

2
· 1

2

=
6

11

is the probability that the coin we picked is fake.
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Examples.

• Example. We are given three coins. We know that
two of the coins are fair (with probability 1/2 for each
outcome), and one is fake, with probability 7/8 for
heads and 1/8 for tails. We don’t know which one is
fake.

We randomly picked a coin (with equal probability
for each one of the three), and tossed it twice. The
result was two heads. With what probability can we
conclude the coin we picked was the fake coin?
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Examples.

• Solution: Let F = { the coin is fake },

and D = { double heads }.

Then P (D|F ) = 7
8
· 7

8
= 49

64
, P (D|F ) = 1

2
· 1

2
= 1

4
,

P (F ) = 1
3
, and P (F ) = 2

3
.

Therefore, by Bayes’ Theorem,

P (F |D) =
P (D|F ) · P (F )

P (D|F ) · P (F ) + P (D|F ) · P (F )
=

49
64
· 1

3
49
64
· 1

3
+ 1

4
· 2

3

=
49

81
≈ 0.6049

is the probability that the coin we picked is fake.
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Conditional probability

• Example. Let A and B be events of positive prob-
ability. Show that P (A|B) > P (A) if and only if
P (B|A) > P (B).

Solution: Because P (A|B) = P (A∩B)
P (B)

and P (B|A) = P (A∩B)
P (A)

,

each of the two inequalities in the example is equivalent to

P (A ∩B) > P (A)P (B)

Comment: In this case we say that the events A and B are

of positive correlation. Think of A being the event that your

friend is eating a cookie, and B the event that the same friend

is drinking coffee. Then knowing one increases the chances for

the other.
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Conditional probability

• Multiplication Rule.

P (E1∩E2∩. . .∩En) = P (E1)·P (E2|E1)·P (E3|E1∩E2)·. . .·P (En|E1∩E2∩. . .∩En−1)

Proof:

P (E1) · P (E2|E1) · P (E3|E1 ∩ E2) · . . . · P (En|E1 ∩ E2 ∩ . . . ∩ En−1)

= P (E1) · P (E1∩E2)
P (E1)

· P (E1∩E2∩E3)
P (E1∩E2)

· . . . · P (E1∩E2∩...∩En)
P (E1∩E2∩...∩En−1)

= P (E1 ∩ E2 ∩ . . . ∩ En)
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Independent events.

• Two events, E and F , are said to be independent if

P (E ∩ F ) = P (E)P (F )

• Three events, E, F and G, are said to be independent if

P (E ∩ F ∩G) = P (E)P (F )P (G)

P (E ∩ F ) = P (E)P (F )

P (E ∩G) = P (E)P (G)

P (F ∩G) = P (F )P (G)

Note: E is independent of the events formed of F and G:

P
(
E ∩ (F ∪G)

)
= P (E)P (F ∪G) and

P

(
E ∩

(
(F ∩G) ∪ (G ∩ F )

))
= P (E)P

(
(F ∩G) ∪ (G ∩ F )

)
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Independent events.

• Example. Toss two fair coins. Let E be the event that that
the first coin lands heads side up, F be the event that that the
second coin lands tails side up, and G be the event that one coin
lands heads side up and one lands tails side side up.

Here S = {HH,HT, TH, TT} with equal probability of each out-
come, and

E = {HH,HT} F = {HT, TT} G = {HT, TH}

Then E, F , and G are pairwise independent:

P (E ∩ F ) = P (E)P (F )

P (E ∩G) = P (E)P (G)

P (F ∩G) = P (F )P (G)

However, together, they are dependent:

P (E ∩ F ∩G) =
1

4
6=

1

8
= P (E)P (F )P (G)

and

P (G|E ∪ F ) =
1

3
6=

1

2
= P (G)
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Independent events.

In general, n events, E1, E2, . . . , En, are said to be
independent if for each k, Ek is independent of the
events formed of

E1, . . . , Ek−1, Ek+1, . . . , En

In other words, consider two non-overlapping subcol-
lections

Ei1, . . . , Ei` and Ej1, . . . , Ejm

If is A an event created from the events in Ei1, . . . , Ei`

and if B is an event created from the events in Ej1, . . . , Ejm.
Then, A and B are independent.
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Conditional probability.

• Example. If P (A) > 0, show that

P (A ∩B|A) ≥ P (A ∩B|A ∪B)
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Bernoulli trials and Bernoulli random variables.

For a given 0 ≤ p ≤ 1, a Bernoulli trial is an exper-
iment with exactly two possible outcomes, success
and failure, in which the probability of success is p
and probability of failure is 1− p.

Here, the sample space S consists of the two out-
comes, success and failure, and

P (success) = p and P (failure) = 1− p

• Example. Consider tossing a coin such that it will
fall heads up with some probability p, and tails up
with probability 1− p.

Bernoulli random variable X counts the number of
successes after one Bernoulli trial, and thus, can equal
either 0 or 1, with probabilities 1− p and p.

Here, P (X = 0) = 1− p and P (X = 1) = p.
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Bernoulli trials

• Example. Consider performing independent Bernoulli
trials, each with probability p of success and probabil-
ity 1 − p of failure. Let X be a random variable rep-
resenting the number of successes in two Bernoulli
trials. Find P (X = k) for k = 0,1,2.

• Solution. Let
S1 = {trial 1 ⇒ success} and F1 = S1 = {trial 1 ⇒ failure}

S2 = {trial 2 ⇒ success} and F2 = S2 = {trial 2 ⇒ failure}.

Then P (S1) = P (S2) = p and P (F1) = P (F2) = 1− p, and

P (X = 0) = P (no successes) = P (F1 ∩ F2) = P (F1)P (F2) = (1− p)2

P (X = 1) = P (one success and one failure) = P (S1 ∩ F2) + P (F1 ∩ S2) = 2p(1− p)

P (X = 2) = P (two successes) = P (S1 ∩ S2) = P (S1)P (S2) = p2

by independence.
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Bernoulli trials.

• Example. Consider performing independent Bernoulli
trials, each with probability p of success and probabil-
ity 1 − p of failure. Let X be a random variable rep-
resenting the number of successes in three Bernoulli
trials. Find P (X = k) for k = 0,1,2,3.

• Solution. Let
S1 = {trial 1 ⇒ success} and F1 = S1 = {trial 1 ⇒ failure}
S2 = {trial 2 ⇒ success} and F2 = S2 = {trial 2 ⇒ failure}
S3 = {trial 3 ⇒ success} and F3 = S3 = {trial 3 ⇒ failure}.

Then, by independence,

P (X = 0) = P (F1 ∩ F2 ∩ F3) =
(

3
0

)
(1− p)3

P (X = 1) = P (S1 ∩ F2 ∩ F3) + P (F1 ∩ S2 ∩ F3) + P (F1 ∩ F2 ∩ S3) =
(

3
1

)
p(1− p)2

P (X = 2) = P (S1 ∩ S2 ∩ F3) + P (S1 ∩ F2 ∩ S3) + P (F1 ∩ S2 ∩ S3) =
(

3
2

)
p2(1− p)

P (X = 3) = P (S1 ∩ S2 ∩ S3) =
(

3
3

)
p3
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Bernoulli trials

• Example. Consider performing independent Bernoulli
trials, each with probability p of success and proba-
bility 1 − p of failure. Let X be a random variable
representing the number of successes in n Bernoulli
trials. Find P (X = k) for k = 0,1, . . . , n.

• Solution. Let
S1 = {trial 1 ⇒ success} and F1 = S1 = {trial 1 ⇒ failure}
S2 = {trial 2 ⇒ success} and F2 = S2 = {trial 2 ⇒ failure}

...
...

...
Sn = {trial n ⇒ success} and Fn = Sn = {trial n ⇒ failure}.

Then, for each outcome with k successes and n−k failures, its probability

P (SFSS . . . FFS︸ ︷︷ ︸
k S′s and n−k F ′s

) = P (S1)P (F2)P (S3)P (S4) . . . P (Fn−2)P (Fn−1)P (Sn) = pk(1−p)n−k

and P (X = k) =
(n
k

)
pk(1− p)n−k for each k = 0,1, . . . , n

because there are
(
n
k

)
such outcomes.
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Introduction to random variables.

Consider a sample space S and a probability function P .

• Definition. A function from S to R is a random variable.

• Example. Roll two fair dice. Let X(i, j) = i + j for each

outcome (i, j) in S. Then X is a random variable represent-

ing the sum of the digits on the dice.

X :

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

−→



2
3
4
5
6
7
8
9

10
11
12


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Introduction to random variables.

• Example. Roll two fair dice. Let X(i, j) = i + j for each

outcome (i, j) in S. Then X is a random variable represent-

ing the sum of the digits on the dice.

X :

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

−→



2
3
4
5
6
7
8
9

10
11
12


Here, for example, X(3,1) = 4 and X(5,6) = 11.

We are interested in finding the following probabilities:

p(a) = P (X = a) for a = 2,3, . . . ,12



MTH 361 33

Introduction to random variables.

• Example. Roll two fair dice. Let X(i, j) = i + j for

each outcome (i, j) in S. Then X is a random variable

representing the sum of the digits on the dice.

p(a)=P(X=a)

a2 3 4 5 6 7 8 9 10 11 12

We are interested in finding the following probabilities:

p(a) = P (X = a) for a = 2,3, . . . ,12

p(2) = 1
36
, p(3) = 2

36
, p(4) = 3

36
, p(5) = 4

36
, p(6) = 5

36
, p(7) = 6

36

p(8) = 5
36
, p(9) = 4

36
, p(10) = 3

36
, p(11) = 2

36
, p(12) = 1

36
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Introduction to random variables.

Let X a discrete random variable. That is X assumes
a discrete (countable) number of values.

• Definition. Function p(a) = P (X = a) is called the
probability mass function (or distribution function).

• Definition. Function F (a) = P (X ≤ a) is called the
cumulative distribution function.

• Note.
∑

a: p(a)>0

p(a) = 1

In the previous example, p(2)+p(3)+ · · ·+p(12) = 1.

• Note. 0 ≤ F (a) ≤ 1

• Note. F (a) =
∑
x: x≤a

p(x)
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Binomial random variable. Recall the following example.

• Example. Consider performing independent Bernoulli trials,
each with probability p of success and probability 1−p of failure.
Let X be a random variable representing the number of successes
in n Bernoulli trials. Find P (X = k) for k = 0,1, . . . , n.

• Solution.

Each outcome with k successes and n−k failures, its probability

P (SFSS . . . FFS︸ ︷︷ ︸
k S′s and n−k F ′s

) = pk(1− p)n−k

and P (X = k) =
(n
k

)
pk(1− p)n−k for each k = 0,1, . . . , n

because there are
(
n
k

)
such outcomes.

• Definition. The random variable X in the above example is
the binomial random variable with parameters (n, p).

Check:
n∑

k=0

p(k) =
n∑

k=0

(
n
k

)
pk(1− p)n−k =

(
p + (1− p)

)n
= 1n = 1.
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Expectation of a discrete random variable.

• Definition. Let X be a discrete random variable
with the probability mass function p(x). Then its
expected value is

E[X] =
∑

x: p(x)>0

x · p(x)

• Example. Let X be a Bernoulli random variable
with parameter p. Then

p(1) = P (X = 1) = p and p(0) = P (X = 0) = 1−p
and

E[X] = 0 · p(0) + 1 · p(1) = p

• Example. Roll two fair dice. Let X represent the
sum of the digits on the dice. Then

E[X] = 2 · p(2) + 3 · p(3) + · · ·+ 12 · p(12) =
252

36
= 7
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Expectation of a discrete random variable.

• Definition. Let X be a discrete random variable with the
probability mass function p(x). Then its expected value is

E[X] =
∑

x: p(x)>0

x · p(x)

• Example. Roll two fair dice. Let X represent the sum of the
digits on the dice. Then

E[X] = 2 · p(2) + 3 · p(3) + · · ·+ 12 · p(12) =
252

36
= 7

p(a)=P(X=a)

a2 3 4 5 6 7 8 9 10 11 12

This corresponds to a center of mass of p(a).
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Expectation of a discrete random variable.

Let X be a binomial random variable with parameters (n, p).
Then its probability mass function is known to be

p(k) =
(n
k

)
pk(1− p)n−k for each k = 0,1, . . . , n

• Definition. Let X be a discrete random variable with the
probability mass function p(x). Then its expected value is

E[X] =
∑

x: p(x)>0

x · p(x)

• Example. Let X be a binomial random variable with param-
eters (n, p). Then

E[X] =

n∑
k=0

k · p(k) =

n∑
k=0

k ·
(n
k

)
pk(1− p)n−k =?
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Expectation of a discrete random variable.

• Example. Let X be a binomial random variable with pa-
rameters (n, p). Then E[X] = np since

E[X] =

n∑
k=0

k · p(k) =

n∑
k=0

k ·
(n
k

)
pk(1− p)n−k

=

n∑
k=1

k ·
n!

k!(n− k)!
pk(1−p)n−k =

n∑
k=1

n!

(k − 1)!(n− k)!
pk(1−p)n−k

=

n−1∑
j=0

n!

j!(n− 1− j)!
pj+1(1−p)n−1−j = np·

n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1−p)n−1−j,

where the new index j = k − 1. Thus

E[X] = np·
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1−p)n−1−j = np·

n−1∑
j=0

(n− 1

j

)
pj(1−p)n−1−j

= np · (p + (1− p))n−1 = np by the Binomial theorem
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Binomial random variable.

Picture credit: Wikipedia.org

p(k) =
(n
k

)
pk(1−p)n−k for each k = 0,1, . . . , n and E[X] = np


