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Topics:

• Sets. Venn diagrams. De Morgan’s laws

• Propositional calculus and events.

• Axioms of probability.

• Probability by counting.

• Properties of probability function.

• Inclusion-exclusion formula of probability.



MTH 361 2

Sets: notions and examples.

• a set is a collection of objects (elements).

• Integers: Z = {. . . ,−3,−2,−1,0,1,2,3,4, . . . }

• Rational numbers:

Q = { nm : n and m are integers, and m 6= 0}

• Real numbers:

R = { all values between −∞ and +∞}

• Empty set ∅ = {}
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• U is called a universal set or a universe.

• a ∈ A denotes that a is an element of A.

• A = all elements in the universe U that do not
belong to A. Other notation: Ac.

• Intersection: A ∩ B = all elements in the universe
U that belong to A and B. Other notation: AB.

• Union: A ∪B = all elements in the universe U that
belong to A or B, or to both sets, A and B.

• A \ B = all elements in the universe U that belong
to A but do not belong to B. Other notation: A−B.

• A ⊆ B (A is a subset of B), i.e., all elements in A
also belong to B.
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Sets: notions and examples
Example.
Let the universe be the set of all digits

U = {0,1,2,3,4,5,6,7,8,9}

Let A = {0,1,2,3,4,5,6}, B = {2,3,5,7,9},
and E = {0,2,4,6,8}. Then

• A = U −A = {7,8,9}

• A ∪ E = {0,1,2,3,4,5,6,8}

• A ∩ E = {0,2,4,6}

• A−B = {0,1,4,6}
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Sets: notions and examples
Example.
Let the universe be the set of all digits

U = {0,1,2,3,4,5,6,7,8,9}

Let A = {0,1,2,3,4,5,6}, B = {2,3,5,7,9},
and E = {0,2,4,6,8}. Then

• A ∩ E ∩B = {1,3,5,7,8,9} ∩B = {3,5,7,9}

• A ∪ E ∩B = {7,9} ∩B = {7,9}

• A ∩ (B ∪ E) = A ∩ {0,2,3,4,5,6,7,8,9} = {0,2,3,4,5,6}

• (A ∩B) ∪ E = {2,3,5} ∪ E = {0,2,3,4,5,6,8}
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Sets: notions and examples

Example.

Let the universe be the set of all digits

U = {0,1,2,3,4,5,6,7,8,9}

Let A = {0,1,2,3,4,5,6}, B = {2,3,5,7,9},
and E = {0,2,4,6,8}. Then

• A− (B ∪ E) = A− {0,2,3,4,5,6,7,8,9} = {1}

• (B ∪ E)−A = {0,2,3,4,5,6,7,8,9} −A = {7,8,9}

• (B ∩ E)−A = {2} −A = ∅
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Venn diagrams
• Shade A ∩B

U

A B

A∩B = A−B represents all elements in the
universe U that belong to the set A, but do
not belong to B.
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Venn diagrams
• Shade (A ∪B)− (A ∩B)

U

A B

(A ∪ B) − (A ∩ B) represents all elements in
the universe U that belong to A, or B, but
do not belong to both A and B.
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Venn diagrams
• Shade A ∪B

U

A B

A ∪ B = (B −A) represents all elements in
the universe U that belong to A, or do not
belong to B, or both belong to A and do not
belong to B.
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Venn diagrams
• Shade (A ∩B) ∪ C

Here (A∩B)∪C = (A−B)∪C represents all
elements in the universe U that belong to C,
or that belong to A and do not belong to B.

U

A B

C

U

A B

C
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Venn diagrams
• Shade A ∩B ∩ C

Here A∩B ∩C represents all elements in the
universe U that belong to A and B and C
altogether.

U

A B

C
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Venn diagrams
• Shade A ∩ (B ∪ C)

Here A∩(B∪C) = (A∩B)∪(A∩C) represents
all elements in the universe U that belong to
A, and to at least one of the two other sets,
B or B.

U

A B

C
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Venn diagrams
• Shade (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C)

Here (A∩B)∪(A∩C)∪(B∩C) represents all
elements in the universe U that belong to at
least two of the three sets, A, B and C.

U

A B

C
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Rules of set theory:

• Commutative laws:

E ∪ F = F ∪ E E ∩ F = F ∩ E

• Associative laws:

(E∪F )∪G = E∪(F∪G) (E∩F )∩G = E∩(F∩G)

• Distributive laws:

(E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G)

(E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G)
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Notations:
n⋃

j=1

Aj = A1 ∪A2 ∪ . . . ∪An

n⋂
j=1

Aj = A1 ∩A2 ∩ . . . ∩An

Example.
3⋃

j=1
Aj = A1 ∪A2 ∪A3

Example.
5⋂

j=1
Aj = A1 ∩A2 ∩A3 ∩A4 ∩A5
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De Morgan’s laws:

Consider sets E1, E2, . . . , En, then n⋃
j=1

Ej

 =
n⋂

j=1

Ej

and  n⋂
j=1

Ej

 =
n⋃

j=1

Ej



MTH 361 17

De Morgan’s laws: n⋃
j=1

Ej

 =
n⋂

j=1

Ej

Proof:

x ∈

 n⋃
j=1

Ej

 ⇔ x 6∈
n⋃

j=1

Ej ⇔ x 6∈ Ej for all j = 1, . . . , n

⇔ x ∈ Ej for all j = 1, . . . , n ⇔ x ∈
n⋂

j=1

Ej

Hence

(
n⋃

j=1
Ej

)
=

n⋂
j=1

Ej
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Propositional calculus

Consider propositions, p and q. Then

• ¬p is a proposition “ not p ”

• p ∧ q is a proposition “ p and q ”

• p ∨ q is a proposition “ p or q ” meaning

“p or q, or both”

• p → q (conditional implication) means

that the truth of p implies the truth of q
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Propositional calculus and sets

¬p corresponds to A: (x ∈ A) ⇔ ¬(x ∈ A)

p∧q corresponds to A∩B: (x ∈ A ∩B)⇔ (x ∈ A) ∧ (x ∈ B)

p∨q corresponds to A∪B: (x ∈ A ∪B)⇔ (x ∈ A) ∨ (x ∈ B)

and

p→ q corresponds to A ⊆ B: A ⊆ B ⇔ (x ∈ A)→ (x ∈ B)

Finally, the truth tables are similar to Venn diagrams.
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Truth thabels

• Given proposition p, here is the truth table for ¬p

p ¬p
T F
F T

• Given propositions p and q, here is the truth table for p ∨ q

p q p ∨ q
T T T
T F T
F T T
F F F

• Given propositions p and q, here is the truth table for p ∧ q

p q p ∧ q
T T T
T F F
F T F
F F F
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Introduction to discrete probability.

• Sample space S = the space of all possible outcomes.

• Event = a set in the sample space S.

• Let E ⊆ S be an event. Its complement E = S \ E
is the event not E

• E ∩ F = event E and F

• E ∪ F = event E or F

• Events E and F are said to be mutually exclusive
or disjoint if

E ∩ F = ∅
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Axioms of probability.

• 0 ≤ P (E) ≤ 1 for any event E ⊆ S

• P (S) = 1

• If E1, E2, . . . is a countable collection of

disjoint events, then

P

 ∞⋃
j=1

Ej

 =
∞∑

j=1

P (Ej)
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Probability by counting.

• Example. A fair die is the one producing each
outcome with equal probability. If we roll a fair die,
the sample space will consist of six outcome

S = {1,2,3,4,5,6}, with probabilities

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =
1

6
Let E = {1,2} be the event of a low score (i.e. 2 or
lower). Its probability will be

P (E) = P (1) + P (2) =
2

6
=

1

3

Here, since every outcome in the sample space is
equally likely,

P (A) =
|A|
|S|

for each event A ⊆ S



MTH 361 24

Probability by counting.
In general, in case when every outcome in the
sample space S is equally likely,

P (A) =
|A|
|S|

for every event A ⊆ S,

where |A| denotes the number of elements in A.

• Example. Roll two fair dice. Find the probability
of the sum being divisible by three.

Here S =

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

Let E = {the sum is divisible by three}. Then

P (E) =
|E|
|S|

=
12

36
=

1

3
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Probability by counting.

• Example. Toss a fair coin three times. There each
outcome in the sample space

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
is equally likely. We need to find the probability of
one head (H) and two tails (T) in the outcome of the
three tosses.

Let the event E = {one H and two T}:

S = {HHH, HHT, HTH, HTT , THH, THT , TTH, TTT}
Since in this example, every outcome in S is equally
likely,

P (E) =
|E|
|S|

=

(3
1

)
23

=
3

8
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Probability by counting.

• Example. Toss a fair coin n times. There each
outcome in the sample space

S = {n-long words of H and T}
is equally likely. We need to find the probability of k
heads (H) and n− k tails (T) in the outcome of the
three tosses.

Let the event

E = {n-long words of H and T with k Hs and n− k Ts}
Since in this example, every outcome in S is equally
likely,

P (E) =
|E|
|S|

=

(
n
k

)
2n
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Probability by counting.

• Example. A deck of 52 cards is dealt among four
players. What is the probability that each player gets
exactly one ace?

• Solution. Here the cards can be dealt in

|S| =
52!

13! · 13! · 13! · 13!
=

52!

(13!)4

different ways, each outcome being equally likely.

Let E = {each player gets one ace}. Next, we find the number
|E| of the outcomes in E.

We deal the cards in two steps. First, we distribute the four
aces among the four player so that each gets exactly one ace.
We can do it in 4! ways. Second, we distribute the rest 48 cards
to the four players, each getting 12 cards. This can be done in

48!

12! · 12! · 12! · 12!
=

48!

(12!)4

ways. Thus, by the multiplicative rule of counting, |E| = 4!· 48!
(12!)4 .
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Probability by counting.

• Example. A deck of 52 cards is dealt among four
players. What is the probability that each player gets
exactly one ace?

• Solution (continued). We have

|S| =
52!

(13!)4
and |E| = 4! ·

48!

(12!)4

Now, since every outcome in S is equally likely,

P (E) =
|E|
|S|

=
4! · 48!

52!
· (13)4 ≈ 0.1055
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Probability by counting.

• Example. An urn contains G green and B blue
balls. If a random sample of size n is chosen, what is
the probability that it contains k green balls?

• Solution: We answer the question by counting the

number of ways to select k green and n−k blue balls,

and then dividing by the total number of possible se-

lections: (
G
k

)(
B

n−k
)

(
G+B

n

)
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Examples.

• Example. An urn contains n green and m black
balls. The balls are withdrawn one at a time until
only those of the same color are left. Show that with
probability n

n+m
they are all green.

Solution: The outcome of the experiment will not
change if you withdraw out all but one last marble
from the urn, and then check its color. Now, remov-
ing n+m−1 marbles from the urn, and checking the
color of the last marble is no different from selecting
one marble and checking its color. Both are equiv-
alent to separating marbles into two groups, one of
size one, and the other of size n + m − 1. Thus the
marble is green with probability n

n+m
.
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Axioms of probability.

• 0 ≤ P (E) ≤ 1 for any event E ⊆ S

• P (S) = 1

• If E1, E2, . . . is a countable collection of

disjoint events, then

P

 ∞⋃
j=1

Ej

 =
∞∑

j=1

P (Ej)
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Properties of probability function.

• Proposition. P (∅) = 0 (∅ - the empty set).

• Proposition. P (E) = 1− P (E)

• Lemma. If E ⊆ F , then

P (F ) = P (E) + P (F ∩ E)

• Proposition. If E ⊆ F , then P (E) ≤ P (F )

• Inclusion-Exclusion Theorem.

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )
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Properties of probability function.

• Proposition. P (∅) = 0 (∅ - the empty set).

• Proof: The third axiom of probability states:

If E1, E2, . . . is a countable collection of disjoint events,
then

P

 ∞⋃
j=1

Ej

 =
∞∑

j=1

P (Ej)

Here S ∩ ∅ = ∅, and therefore

P (S) = P (S ∪ ∅ ∪ ∅ . . .) = P (S) + P (∅) + P (∅) + . . .

Hence P (∅) = 0.
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Properties of probability function.

• Proposition. P (E) = 1− P (E)

• Proof: The third axiom of probability states:

If E1 ∩ E2 = ∅, then

P (E1 ∪ E2) = P (E1) + P (E2)

Here E ∩ E = ∅, and therefore

P (S) = P (E ∪ E) = P (E) + P (E),

where P (S) = 1 by the second axiom of probability.

Hence P (E) +P (E) = 1, implying P (E) = 1−P (E).
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Properties of probability function.

• Proposition. For any two events A and B

in S, P (A) = P (A ∩B) + P (A ∩B).

• Proof: Since A ⊆ S,

A = A ∩ S = A ∩ (B ∪B) = (A ∩B) ∪ (A ∩B)

by the distributivity law of set theory.

Thus A = (A∩B)∪ (A∩B), where A∩B is a subset
of B and A ∩B is a subset of B.

Therefore (A ∩B) ∩ (A ∩B) = ∅, and

P (A) = P
(
(A ∩B) ∪ (A ∩B)

)
= P (A ∩B) + P (A ∩B)

by the third axiom of probability.
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Properties of probability function.

Lemma. If E ⊆ F , then

P (F ) = P (E) + P (F ∩ E)

• Proof: The preceding proposition states that

P (A) = P (A ∩B) + P (A ∩B)

Now, since E ⊆ F , E ∩ F = E and therefore

P (F ) = P (F ∩ E) + P (F ∩ E) = P (E) + P (F ∩ E)



MTH 361 37

Properties of probability function.

• Proposition. If E ⊆ F , then P (E) ≤ P (F )

• Proof: The preceding lemma states that if E ⊆ F ,
then

P (F ) = P (E) + P (F ∩ E),

where P (F ∩ E) ≥ 0 by the first axiom of probability.

Hence

P (F ) = P (E) + P (F ∩ E) ≥ P (E) + 0
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Examples.

• Example. Show that the probability that exactly
one of the two events, E or F , occurs is

P (E) + P (F )− 2P (E ∩ F )

Solution: (E ∩ F ) ∪ (E ∩ F ) is the event that ex-
actly one of the two occurs. The inclusion-exclusion
formula implies

P
(
(E∩F )∪(E∩F )

)
= P (E∩F )+P (E∩F ) = P (E)+P (F )−2P (E∩F )

as

P (E ∩ F ) = P (E)− P (E ∩ F )

and

P (E ∩ F ) = P (F )− P (E ∩ F )



MTH 361 39

Inclusion-Exclusion Theorem.

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• Proof: We proved the following lemma:

If E ⊆ F, then P (F ) = P (E) + P (F ∩ E).

Taking E = A and F = A ∪B, we obtain

P (A ∪B) = P (A) + P (B ∩A)

as F∩E = (A∪B)∩A = (A∩A)∪(B∩A) = ∅∪(B∩A) = B∩A

Also we proved the following proposition:

P (B) = P (B ∩A) + P (B ∩A)

Hence P (B ∩A) = P (B)− P (B ∩A) and

P (A∪B) = P (A)+P (B∩A) = P (A)+P (B)−P (A∩B)
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Inclusion-Exclusion Theorem.

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

• Example. Roll two fair dice.

Here S =

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

Let E = {the sum is divisible by three} (in orange),

and F = { the sum is ≥ 9 } (blue shading).

Then P (E) =
|E|
|S|

=
12

36
=

1

3
, P (F ) =

|F |
|S|

=
10

36
=

5

18
, and P (E∩F ) =

|E ∩ F |
|S|

=
5

36

Then P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) = 12
36

+ 10
36
− 5

36
= 17

36
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Bonferroni’s inequality

• Example. Let us prove Bonferroni’s inequality:

P (E ∩ F ) ≥ P (E) + P (F )− 1

Solution: The Inclusion-Exclusion Theorem implies

P (E∩F ) = P (E)+P (F )−P (E∪F ) ≥ P (E)+P (F )−1

Comment: Thus we can show that if P (E) = 0.85

and P (F ) = 0.75, then P (E ∩ F ) ≥ 0.6.


