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Topics:

• Counting: Multiplicative rule.

• Permutations.

• Combinations.

• Generalized combinations.

• Binomial theorem. Multinomial theorem.

• Counting solutions of x1 + · · ·+ xk = n

• More combinatorial identities.
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COMBINATORICS
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Counting: Multiplicative rule
Two experiments are being performed.

• Experiment 1: Tossing a coin. Possible out-

comes are H (heads) and T (tails). The number of

outcomes n1 = 2.

• Experiment 2: Rolling a die. Possible outcomes

are 1,2,3,4,5 and 6. The number of outcomes n2 = 6.

The total number of possible outcomes is

n1 × n2 = 12

They are

(H,1), (H,2), (H,3), (H,4), (H,5), (H,6),

(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)
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Counting: Multiplicative rule

Similarly, if k experiments are being performed.

• Experiment 1: n1 possible outcomes

• Experiment 2: n2 possible outcomes (per each out-
come from experiment 1)

• Experiment 3: n3 possible outcomes (per each out-
come from experiments 1 and 2)

...

• Experiment k: nk possible outcomes (per each out-
come from experiments 1 through k − 1)

Then the total number of possible outcomes is

n1 × n2 × · · · × nk
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Permutations

Question: In how many ways can n distinct

objects be ordered?

Examples:

• The order in which n runners finish a race.

• The number of five letter strings (n = 5)

one can create with five letters, A, B, C,

D and E, if each letter is used exactly once

(BADCE is an example of such string).
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• The number of distinct strings one can cre-
ate with n distinct symbols, A1, A2, . . . , An, if
each symbol is used exactly once.

• The number of ways a deck of n distinct
cards can be ordered (card shuffling)

• The number of ways n distinct people can
be ordered in a line.

Each ordering of n distinct objects is called
a permutation. We want to find the total
number of possible permutations of n dis-
tinct objects.
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Permutations: Counting all n-permutations
can be done via n experiments.

Example. Count the number of five letter strings

one can create with five letters, A, B, C, D and E, if

each letter is used exactly once.

We have n = 5 spots to fill:

• Experiment 1: Placing A. There are five avail-
able spots, hence there are n1 = 5 possible outcomes
of the experiment.

After we place A there are still four vacant spots in
the string:

A
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• Experiment 2: Placing B. There are four avail-
able spots, hence there are n2 = 4 possible outcomes
of the experiment.

After we place B there are still three vacant spots in
the string:

B A

• Experiment 3: Placing C. There are n3 = 3
possible outcomes of the experiment.
After we place C there are still two vacant spots in
the string:

B C A



MTH 361 9

• Experiment 4: Placing D. There are n4 = 2
possible outcomes of the experiment.
After we place D there are still one vacant spots in
the string:

B C A D

• Experiment 5: Placing E. There are n5 = 1
possible outcomes of the experiment.
After we place E there are still no vacant spots in the
string:

B E C A D

By the multiplicative rule,

n1 × n2 × n3 × n4 × n5 = 5× 4× 3× 2× 1 = 120

is the total number of possible outcomes.
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Observe that each outcome is a distinct string,

and that each permutation is a possible out-

come. Thus we counted all permutations of

5 distinct objects:

5× 4× 3× 2× 1 = 120
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Permutations: Counting all permutations
of n distinct objects can be done via n ex-
periments. Therefore the multiplicative rule
implies the following.

Proposition. The total number of permu-
tations of n distinct objects is

n! = 1× 2× · · · × n

called n factorial.

Here, 1! = 1, 2! = 1× 2 = 2,
3! = 1×2×3 = 6, 4! = 1×2×3×4 = 24,
5! = 1 × 2 × 3 × 4 × 5 = 120 and so on.
Also we let 0! = 1.
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Combinations.

Question: How many n-long strings is pos-
sible to create with k A’s and n− k B’s ?

Answer: (n
k

)
=

n!

k!(n− k)!

Another way to denote
(
n
k

)
is C(n, k)

(reads “n choose k”).

Other alternative notations: Ck
n and nCk
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Combinations.

Example: How many strings of length 8 is it

possible to create with 5 As and 3 Bs (such

as BAAAABBA)?

Answer: (8
5

)
=

8!

5!3!
= 56
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Why 8!
5!3!? Let’s index the 5 As and 3 Bs as follows

A1, A2, A3, A4, A5, B1, B2, B3

So with the 8 different characters we can make 8!
different strings such as B2A3A5A2A1B1B3A4

Alternatively, we can count as follows:

(1) Arranging 5 As and 3 Bs into an eight letter string
such as BAAAABBA. There are

(8
5

)
ways.

(2) Ordering five As as in BA3A5A2A1BBA4. This
can be done in 5! different ways.

(3) Ordering three Bs as in B2A3A5A2A1B1B3A4. This
can be done in 3! different ways.

Therefore, 8! =
(8

5

)
5!3! and

(8

5

)
=

8!

5!3!
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Why
(
n
k

)
= n!

k!(n−k)!? Let’s index k letters A and

n− k letters B as follows

A1, A2, . . . , Ak, B1, B2, . . . , Bn−k

With this n different characters we can make n! dif-
ferent permutations.

Alternatively, we can count as follows:

(1) Arranging k letters A and n−k letters B into an
n letter string can be done in

(
n
k

)
different ways.

(2) Ordering k letters A can be done in k! different
ways.

(3) Ordering n− k letters B can be done in (n− k)!
different ways.

Hence, n! =
(n
k

)
k! (n−k)! , and therefore,

(n
k

)
=

n!

k!(n− k)!
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Properties of
(
n
k

)
.

•
(
n
k

)
=
(

n
n−k

)

•
(
n
0

)
=
(
n
n

)
= 1

•
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
for 0 < k < n
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Combinatorial proof:
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
Recall that

(
n
k

)
is the number of distinct n-long words

one can create with k letters A and n− k letters B.
Let us count them as follows.

• First let’s count the words that begin with an A.
There the first spot is occupied

A . . .

and we need to fill in the remaining n− 1 spots with
(k−1) As and (n−k) Bs. Thus, there

(
n−1
k−1

)
of them.

• Then let’s count the words that begin with a B.
There the first spot is also occupied

B . . .

and we need to fill in the remaining n− 1 spots with

k As and (n− k− 1) Bs. Thus, there
(
n−1
k

)
of them.
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Algebraic proof:
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
(n− 1

k

)
+
(n− 1

k − 1

)
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!

=
n− k

n
·

n!

k!(n− k)!
+

k

n
·

n!

k!(n− k)!

as (n−1)! = n!/n, (k−1)! = k!/k, and (n− k − 1)! = (n− k)!/(n− k)

Thus,(n− 1

k

)
+
(n− 1

k − 1

)
=

(
n− k

n
+

k

n

)
·

n!

k!(n− k)!
=

n!

k!(n− k)!
=
(n
k

)
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Pascal’s triangle.
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
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Generalized combinations.

Question: How many n-long strings is pos-

sible to create with

k1 A’s, k2 B’s and n− k1 − k2 C’s ?

Answer:( n

k1 + k2

)
·
(k1 + k2

k1

)
=

n!

k1!k2!(n− k1 − k2)!
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Proof: There are two experiments.
(i) Placing k = k1 + k2 Œs and n − k Cs in
the n-long string:

Œ Œ C Œ C C C Œ Œ C C

This can be done in
(
n
k

)
ways.

(ii) Replacing Œs with k1 As and k2 Bs:

A B C A C C C A B C C

This can be done in
(
k
k1

)
ways.

Answer:(n
k

)
·
( k
k1

)
=

n!

k1!k2!(n− k1 − k2)!
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Generalized combinations.

Example: How many 24-long strings is pos-

sible to create with

7 A’s, 11 B’s and 6 C’s ?

(e.g. BCBBCABAACCCBBBAABBBBACA)

Answer: (24

18

)
·
(18

7

)
=

24!

7! · 11! · 6!
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Generalized combinations.

Question: Count the number of different
ways in which n objects of r different types
can be ordered if there are

k1 objects of type 1,
k2 objects of type 2,

. . .
kr objects of type r.

All in all the total of k1 + k2 + · · ·+ kr = n objects.

Answer:( n

k1, k2, . . . , kr

)
=

n!

k1! · k2! · . . . · kr!
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Binomial Theorem

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k

• Example. For n = 2,

(x + y)2 =
(2
0

)
x0y2 +

(2
1

)
x1y1 +

(2
2

)
x2y0

= y2 + 2xy + x2
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Binomial Theorem

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k

• Example. For n = 3,

(x+y)3 =
(

3
0

)
x0y3+

(
3
1

)
x1y2+

(
3
2

)
x2y1+

(
3
3

)
x3y0

= y3 + 3xy2 + 3x2y + x3
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Binomial Theorem: (x+y)n =
n∑

k=0

(
n
k

)
xkyn−k

• Proof. The Binomial theorem follows easily from
the definition of

(
n
k

)
.

Take n = 2,

(x + y)2 = (x + y)(x + y) = xx + xy + yx + yy

Observe that we sum up over all possible 2-long strings
that can be created with x and y,

xx, xy, yx, and yy

• There are
(2

2

)
= 1 strings with two x and no y

• There are
(2

1

)
= 2 strings with one x and one y

• There are
(2

0

)
= 1 strings with no x and two y

We consolidate the terms to obtaining

(x + y)2 = x2 + 2xy + y2
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Take n = 3,

(x + y)3 = (x + y)(x + y)(x + y) = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy

Observe that we sum up over all possible 3-long strings
that can be created with x and y.

• There are
(3

3

)
= 1 strings with three x and no y

• There are
(3

2

)
= 3 strings with two x and one y

• There are
(3

1

)
= 3 strings with one x and two y

• There are
(3

0

)
= 1 strings with no x and three y

We consolidate the terms to obtaining

(x + y)3 = x3 + 3x2y + 3xy2 + y3
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When we factor (x + y)n, each (x + y) contributes
either x or y to the resulting n-long string:

(x + y)(x + y)(x + y) . . . (x + y)

↓ ↓ ↓ . . . ↓

x or y x or y x or y . . . x or y

Multiplying out (x+y)(x+y)(x+y) . . . (x+y) we end
up with all possible distinct n-long strings made of x
and y.

We consolidate the terms that have the same number
of x and y:

• There are
(
n
k

)
strings with k letters x and n− k letters y.

Hence (x + y)n =
n∑

k=0

(
n
k

)
xkyn−k
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Binomial Theorem: (x+y)n =
n∑

k=0

(
n
k

)
xkyn−k

This is why the numbers
(
n
k

)
are also known

as binomial coefficients.

• Example. Find the coefficient in front of

x7y9 in the expansion of (x + y)16.

• Answer:
(

16
7

)
= 11,440
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Binomial Theorem: (x+y)n =
n∑

k=0

(
n
k

)
xkyn−k

• Example. Find
n∑

k=0

(
n
k

)
.

• Solution: Observe that if we use the Bi-

nomial Thoerem with x = y = 1, the left

hand side
n∑

k=0

(
n
k

)
xkyn−k becomes

n∑
k=0

(
n
k

)
.

Thus

n∑
k=0

(
n
k

)
=

n∑
k=0

(
n
k

)
· 1k · 1n−k = (1 + 1)n = 2n
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Generalized combinations.

Question: Count the number of different
ways in which n objects of r different types
can be ordered if there are

k1 objects of type 1,
k2 objects of type 2,

. . .
kr objects of type r.

All in all the total of k1 + k2 + · · ·+ kr = n objects.

Answer:( n

k1, k2, . . . , kr

)
=

n!

k1! · k2! · . . . · kr!
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Multinomial Theorem

(x1 +x2 + · · ·+xr)n =
∑

k1≥0,...,kr≥0
k1+k2+···+kr=n

n!
k1!·k2!·····kr!

xk1

1 xk2

2 . . . xkr
r

Example:

(x + y + z)2 =
2!

2!0!0!
x2y0z0 +

2!

0!2!0!
x0y2z0 +

2!

0!0!2!
x0y0z2

+
2!

0!1!1!
x0y1z1 +

2!

1!0!1!
x1y0z1 +

2!

1!1!0!
x1y1z0

= x2 + y2 + z2 + 2yz + 2xz + 2xy

Multinomial Theorem can be proved in the
same way as the Binomial Theorem. Alter-
natively, it can be proved using the Binomial
Theorem.
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Question: How many strings can be formed with
the following letters?

S H E S E L L S S E A S H E L L S

Solution: There are

k1 = 1 letter A,
k2 = 4 letters E,
k3 = 2 letters H,
k4 = 4 letters L,
k5 = 6 letters S

Therefore there must be

17!

1!4!2!4!6!

different strings made with these letters.
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Question: In how many ways can 52 different

cards be dealt between four players (call them Player A,

Player B, Player C, and Player D) where each gets ex-

actly 13 cards?

Solution: Line up the cards: 1 , 2 , . . . , 52

Each card is assigned a player. Thus there will be 4

types of cards: the ones that belong to Player A, the

ones that belong to Player B, the ones that belong

to Player C, and the ones that belong to Player D.

Hence there are 52!
13!·13!·13!·13!

ways to deal the deck.
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Counting solutions of x1 + · · ·+ xk = n
Question: Count the number of integer solutions of

x1 + x2 + x3 + x4 = 15

subject to x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, and x4 ≥ 1.

Solution: Represent the devision of 15 marbles into

the four groups containing x1, x2, x3, and x4 marbles

respectively, as follows.

ooo︸ ︷︷ ︸
x1

|oooo︸ ︷︷ ︸
x2

| oo︸︷︷︸
x3

|oooooo︸ ︷︷ ︸
x4

Now, there are 15-1=14 spaces between the marbles

and we need to place 4-1=3 divisors | into three of

the spaces. Two divisors cannot occupy the same

space since each xj ≥ 1.
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Counting solutions of x1 + · · ·+ xk = n

ooo︸ ︷︷ ︸
x1

|oooo︸ ︷︷ ︸
x2

| oo︸︷︷︸
x3

|oooooo︸ ︷︷ ︸
x4

Thus there are
(

15−1
4−1

)
=
(

14
3

)
= 364 ways to

split the 15 marbles.

In general, for 0 < k ≤ n, there are
(
n−1
k−1

)
integer solutions of

x1 + x2 + · · ·+ xk = n

subject to x1, x2, . . . , xk being positive:

x1 ≥ 1, x2 ≥ 1, . . . , xn ≥ 1
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Counting solutions of x1 + · · ·+ xk = n

Question: Count the number of integer solutions of

x1 + x2 + x3 + x4 = 15

subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and x4 ≥ 0.

Solution: Representing the divisors is very difficult
since now the two or three divisors may end up in the
same space. Instead we use the previous result.

Let y1 = x1 + 1, y2 = x2 + 1, y3 = x3 + 1, and y4 = x4 + 1.

Then x1 + x2 + x3 + x4 = 15 subject to x1, x2, x3, x4 ≥ 0

if and only if

y1 + y2 + y3 + y4 = 19 subject to y1, y2, y3, y4 ≥ 1,

where 19 was obtained as 15 + 4.
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Counting solutions of x1 + · · ·+ xk = n

So, x1 + x2 + x3 + x4 = 15 subject to x1, x2, x3, x4 ≥ 0
if and only if
y1 + y2 + y3 + y4 = 19 subject to y1, y2, y3, y4 ≥ 1,

where 19 was obtained as 15 + 4.

The latter problem has
(18

3

)
solutions.

In general, using the same trick, we show that there
are

(
n+k−1
k−1

)
integer solutions of

x1 + x2 + · · ·+ xk = n

subject to

x1 ≥ 0, x2 ≥ 0, . . . , xk ≥ 0
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More combinatorial identities.

Question: For 0 < k ≤ n, find

n∑
m=k

(m
k

)
=
(k
k

)
+
(k + 1

k

)
+ · · ·+

(n− 1

k

)
+
(n
k

)

Solution: Recall
(
m+1
k+1

)
=
(
m
k

)
+
(

m
k+1

)
. Thus

(
m
k

)
=
(
m+1
k+1

)
−
(

m
k+1

)
(
k
k

)
=
(
k+1
k+1

) (
k+1
k

)
=
(
k+2
k+1

)
−
(
k+1
k+1

) (
k+2
k

)
=
(
k+3
k+1

)
−
(
k+2
k+1

)
(
k+3
k

)
=
(
k+4
k+1

)
−
(
k+3
k+1

)
. . .

(
n−1
k

)
=
(

n
k+1

)
−
(
n−1
k+1

) (
n
k

)
=
(
n+1
k+1

)
−
(

n
k+1

)
Adding together both sides of the above, we obtain

n∑
m=k

(m
k

)
=
(k
k

)
+
(k + 1

k

)
+ · · ·+

(n− 1

k

)
+
(n
k

)
=
(n + 1

k + 1

)
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n∑
m=k

(m
k

)
=
(k
k

)
+
(k + 1

k

)
+ · · ·+

(n− 1

k

)
+
(n
k

)
=
(n + 1

k + 1

)

Application. Find the sum

1 · 2 · 3 + 2 · 3 · 4 + · · ·+ (n− 2)(n− 1)n

Solution: Observe that
(
m
3

)
= m!

3!(m−3)!
= (m−2)·(m−1)·m

6
.

Thus

1 · 2 · 3
6

+
2 · 3 · 4

6
+ · · ·+

(n− 2)(n− 1)n

6

=
(3

3

)
+
(4

3

)
+ · · ·+

(n
3

)
=
(n + 1

3 + 1

)
=
(n + 1

4

)

1 · 2 · 3 + 2 · 3 · 4 + · · ·+ (n− 2)(n− 1)n = 6 ·
(
n+1

4

)
= (n−2)(n−1)n(n+1)

4


