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Topics:

e Counting: Multiplicative rule.
e Permutations.

e Combinations.

e Generalized combinations.

e Binomial theorem. Multinomial theorem.
e Counting solutions of 1 + -+ =n

e More combinatorial identities.



MTH 361

COMBINATORICS
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Counting: Multiplicative rule
Two experiments are being performed.

e Experiment 1: Tossing a coin. Possible out-
comes are H (heads) and T (tails). The number of
outcomes ni = 2.

e Experiment 2: Rolling a die. Possible outcomes
are 1,2,3,4,5 and 6. The number of outcomes n, = 6.

The total number of possible outcomes is
n1y X no = 12

They are

(H,1), (H,2), (H,3), (H,4), (H,5), (H,6),

(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)
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Counting: Multiplicative rule
Similarly, if k experiments are being performed.
e Experiment 1: n1 possible outcomes

e Experiment 2: ny possible outcomes (per each out-
come from experiment 1)

e Experiment 3: n3 possible outcomes (per each out-
come from experiments 1 and 2)

e Experiment k: n, possible outcomes (per each out-
come from experiments 1 through k£ — 1)

Then the total number of possible outcomes is

Ny Xno X -+ XNk
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Permutations
Question: In how many ways can n distinct
objects be ordered?

Examples:
e [ he order in which n runners finish a race.

e The number of five letter strings (n = 5)
one can create with five letters, A, B, C,
D and E, if each letter is used exactly once
(BADCE is an example of such string).
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e T he number of distinct strings one can cre-
ate with n distinct symbols, A1, Ao, ..., Ap, if
each symbol is used exactly once.

e The number of ways a deck of n distinct
cards can be ordered (card shuffling)

e T he number of ways n distinct people can
be ordered in a line.

Each ordering of n distinct objects is called
a permutation. We want to find the total
number of possible permutations of n dis-
tinct objects.
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Permutations: Counting all n-permutations
can be done via n experiments.

Example. Count the number of five letter strings
one can create with five letters, A, B, C, D and E, if
each letter is used exactly once.

We have n = 5 spots to fill: - - _ _ _

e Experiment 1: Placing A. There are five avail-
able spots, hence there are n1 = 5 possible outcomes
of the experiment.

After we place A there are still four vacant spots in
the string:

A
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e ExXperiment 2: Placing B. There are four avail-
able spots, hence there are no, = 4 possible outcomes
of the experiment.

After we place B there are still three vacant spots in
the string:

B__A_

e Experiment 3: Placing C. There are n3 = 3
possible outcomes of the experiment.

After we place C there are still two vacant spots in
the string:

B_CA_
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e EXperiment 4: Placing D. There are ng = 2
possible outcomes of the experiment.

After we place D there are still one vacant spots in
the string:

B_CAD

e EXperiment 5: Placing E. There are ns = 1
possible outcomes of the experiment.

After we place E there are still no vacant spots in the
string:

BECAD

By the multiplicative rule,

NEXnoXn3XngXng=5x4x3x2x1=120

is the total number of possible outcomes.
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Observe that each outcome is a distinct string,
and that each permutation is a possible out-
come. Thus we counted all permutations of
5 distinct objects:

x4 x3x2x1=120
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Permutations: Counting all permutations
of n distinct objects can be done via n ex-
periments. Therefore the multiplicative rule
implies the following.

Proposition. The total number of permu-
tations of n distinct objects is

nl=1x2x.---Xn

called n factorial.

Here, 11 =1, 2l =1 x2 =2,

3l =1%x2%x3 =6, 41 =1 x2x3 x4 = 24,
5 =1Xx2x3x4x5=120 and so on.
Also we let 0! =1.
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Combinations.

Question: How many n-long strings is pos-
Sible to create with £k A'sand n—k B's 7

Answer:

n n!
<k> = kl(n—k)!

Another way to denote (Z) is C(n, k)
(reads “n choose k).

Other alternative notations: C¥ and ,,Cy
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Combinations.

Example: How many strings of length 8 is it
possible to create with 5 As and 3 Bs (such
as BAAAABBA)?

Answer:

8 8l
(5) = 5131 = 56
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Why %? Let's index the 5 As and 3 Bs as follows

A1, As, Az, Aa, As, B1, B>, B3

So with the 8 different characters we can make 8!
different strings such as B>A3As5A>A1B1B3A4

Alternatively, we can count as follows:

(1) Arranging 5 As and 3 Bs into an eight letter string

such as BAAAABBA. There are (3) ways.

(2) Ordering five As as in BA3AsA>A1BBA4. This
can be done in 5! different ways.

(3) Ordering three Bs as in BoA3AsA>A1B1B3A4. This
can be done in 3! different ways.

8

Therefore, 8! = (5

)53t and (8) S

5/~ 5131



Hence, n! = (Z) k! (n—k)!, and therefore, (
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n - 'rLI 2? y .
Why (k:) = Hn—F) ° Let's index k letters A and
n — k letters B as follows
Al,AQ,...,Ak,Bl,BQ,...,Bn_k

With this n different characters we can make n! dif-
ferent permutations.

Alternatively, we can count as follows:

(1) Arranging k letters A and n—k letters B into an
n letter string can be done in (}) different ways.

(2) Ordering k letters A can be done in k! different
ways.

(3) Ordering n — k letters B can be done in (n —k)!
different ways.
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16

Properties of (Z)

forO<k<n
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Combinatorial proof: (Z’) = <n;1> + (Z:})

Recall that (Z) is the number of distinct n-long words
one can create with k letters A and n — k letters B.
Let us count them as follows.

e First let's count the words that begin with an A.
There the first spot is occupied

A___ ... __
and we need to fill in the remaining n — 1 spots with
(k—1) As and (n—k) Bs. Thus, there (!~}) of them.

e Then let's count the words that begin with a B.
There the first spot is also occupied

B ___ ... __

and we need to fill in the remaining n — 1 spots with

k As and (n—k—1) Bs. Thus, there (" ') of them.
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: —1 —1
Algebraic proof: (Z) — (nk, ) + (2_1)

n — n — (n—1)! (n—1)!
( k1>+(k—i> - k!(n—kl—ll)!+(k—1)!(ilk)!
_ n—k n! -|-— n!

n k'(n E)!  n k'(n-—k)!
as (n—)!=mnl/n, (k—=)!I=Fk!'/k, and (n—k—1)!=((n—-k)!/(n—k)

Thus,

(" 1>+(Z: D = (n;k +§>'k!(nni Y k!(nni Y ()
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Pascal’s triangle.
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Generalized combinations.

Question: How many n-long strings is pos-
sible to create with
ki1 A's, koB's and n—ky—ky C's?

Answer:
n k1 + ko n!
(k1+k2)'( k1 )_kl!kQ!(n—kl—kQ)!
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Proof: There are two experiments.

(i) Placing k = k1 + k> (Es and n— k Cs in

the n-long string:
EECECCCEE&COCC

This can be done in (Z) Ways.

(ii) Replacing (Es with k1 As and ko Bs:

ABCACCCABCC

This can be done in (,fl) ways.

Answer:

n k n!
<k) | (kl) T kol (n — ky — ko)!
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Generalized combinations.

Example: How many 24-long strings is pos-
sible to create with

7 A's, 11 B's and 6 C's 7

(e.g. BCBBCABAACCCBBBAABBBBACA)

Answer:

<24) ' (18) 7. ii: . 6!

18/ '\7/) =
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Generalized combinations.

Question: Count the number of different
ways in which n objects of r different types
can be ordered if there are

k1 objects of type 1,
k> objects of type 2,

k, objects of type r.

All in all the total of k1 + k> + --- + k- = n objects.

Answer:

ki,ko, ... kr kil - kol - ... k!
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Binomial T heorem

n

@+t =3 () )aky

k=0 k

e Example. For n = 2,

(z+y)° = (i)woyz + (f)fvlyl T @)xzyo

=y2—|—2:cy—|—332
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Binomial T heorem

n

@+ =3 ()ziyn*

k=0 k
e Example. For n = 3,

(z4v)3 = (3)2%3+ (322 + (3)22yt +(3) 230

= y3 4 3zy? + 3z°%y + 23
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n
Binomial Theorem: (z+y)" = kgo (Z)a;kyn—k

e Proof. The Binomial theorem follows easily from
the definition of (}).
Take n = 2,

(z+y)’=@E+y)(z+y) =zx+ 2y +yz+yy

Observe that we sum up over all possible 2-long strings
that can be created with x and vy,

xx, xy, yr, and yy

2

2
2

1
2

0

e There are (
e There are (
e There are (

) = 1 strings with two z and no y
) = 2 strings with one = and one y
) = 1 strings with no z and two y

We consolidate the terms to obtaining

(x +y)? = 22 + 2zy + ¢°
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Take n = 3,

(z4+y)3P=@C+y)(e+y(z+y) =2z + zzy + zyz + zyy + yrz + yzy + yyz + yyy

Observe that we sum up over all possible 3-long strings
that can be created with x and y.

3

3
3

2
3

1
3

0

e There are (
e There are (
e There are (
e There are (

) = 1 strings with three z and no y
) = 3 strings with two z and one y
) = 3 strings with one z and two y
) = 1 strings with no z and three y

We consolidate the terms to obtaining
(z+y)® =2° 4+ 32%y + 3vy° + °
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When we factor (z + y)", each (z + y) contributes
either x or y to the resulting n-long string:

(z+y)z+y)z+y)...(z+vy)
! l Loy
rxrOory xOry xoOry ... x Oy

Multiplying out (z4+y)(z+y)(z+vy)...(x+vy) we end
up with all possible distinct n-long strings made of x

and y.

We consolidate the terms that have the same number
of x and y:

e There are (}) strings with k letters z and n — k letters y.

n

Hence (z+y)"= > (Z)xky”_k
k=0
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n
Binomial Theorem: (z4y)" = 3 (@xkyn—k
k=0

This is why the numbers (Z) are also known

as binomial coefficients.

e Example. Find the coefficient in front of
'y in the expansion of (x + v)1°.

e Answer: () = 11,440
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n
Binomial Theorem: (z+y)" = 3 (Zf)azky”_k
k=0

n
e Example. Find Y (Z)
k=0

e Solution: Observe that if we use the Bi-
nomial Thoerem with x = y = 1, the left

hand side kXZ:O (Z)a:ky”_k becomes kZ::o (Z)

Thus

®)= L @) rrr=atn=2
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Generalized combinations.

Question: Count the number of different
ways in which n objects of r different types
can be ordered if there are

k1 objects of type 1,
k> objects of type 2,

k, objects of type r.

All in all the total of k1 + k> + --- + k- = n objects.

Answer:

ki,ko, ... kr kil - kol - ... k!
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Multinomial T heorem

(rtoot-do) = ¥ pghogeierep
k>0, k>0
kit kot 4k, =n
Example:
21 21 21
2 229020 204220 102,02
(+y+2)°” = 2|o|o| +o|2|0| +o|o|2| yz
2! O 1 1 2! 1 0.1 2! 1 1.0
T oonnr® T ot Y Tt V2

= w2+y2+z2—|—2yz—|—2wz—|—2xy
Multinomial Theorem can be proved in the
same way as the Binomial Theorem. Alter-
natively, it can be proved using the Binomial
Theorem.
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Question: How many strings can be formed with
the following letters?

SHESFELLSSEASHELLS

Solution: There are

ki = 1 letter A,
ko = 4 letters E,
k3 = 2 letters H,
ks = 4 letters L,
ks = 6 letters S

T herefore there must be
17!
1141214161
different strings made with these letters.
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Question: In how many ways can 52 different
cards be dealt between four players (call them Player A,
Player B, Player C, and Player D) where each gets ex-
actly 13 cards?

Solution: Line up the cards: |1} |2 ..., |52

Each card is assigned a player. Thus there will be 4
types of cards: the ones that belong to Player A, the
ones that belong to Player B, the ones that belong
to Player C, and the ones that belong to Player D.

|
Hence there are 13!_1353213!_13! ways to deal the deck.
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Counting solutions of z; 4+ ---+ . =n
Question: Count the number of integer solutions of
x1+ T2+ 23+ 24 =15

subjecttox1 > 1, 220> 1, xz3> 1, and x4 > 1.

Solution: Represent the devision of 15 marbles into
the four groups containing x1, 2, x3, and x4 marbles
respectively, as follows.

Q00 |Q000 |00 |Q00000

T o T3 x4
Now, there are 15-1=14 spaces between the marbles
and we need to place 4-1=3 divisors | into three of

the spaces. Two divisors cannot occupy the same

space since each z; > 1.
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Counting solutions of 1 + -+ xp. =n

Q00| Q000|009 |Q00000
1 o T3 T4

Thus there are (145__11) = (134) = 364 ways to
split the 15 marbles.

n—1

In general, for 0 < k < n, there are (k_l)
integer solutions of

1 +To+ -+ T =n
subject to z1,xo,...,x; Deing positive:

r1 21, 2021, ... ;zn2>1
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Counting solutions of z; 4+ - -+ . =n
Question: Count the number of integer solutions of

1+ 22+ 23+ x4 =15
subject to x1 > 0, 22 > 0, 3 > 0, and x4 > 0.

Solution: Representing the divisors is very difficult
since now the two or three divisors may end up in the
same space. Instead we use the previous result.

Let yi=x1+ 1, yo =220+ 1, y3 =23+ 1, and ya = x4 + 1.
Then x1+ 22+ 234+ 24 =15 subject to x1, xo, 3, x4 >0
if and only if

y1 + y2 +y3 +ya =19 subject to wv1, y2, y3, ya > 1,
where 19 was obtained as 15 + 4.
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Counting solutions of 1 + -+ xp. =n

So, x1+ x>+ 23+ x4 =15 subject to z1, xo, 23, x4 >0
if and only if

y1 +vy2 +ys+ya =19 subject to w1, y2, y3, ya > 1,
where 19 was obtained as 15 + 4.

18

The latter problem has (3

) solutions.

In general, using the same trick, we show that there
are ("F*71) integer solutions of

k-1
r1+z2o+ -tz =n
subject to

513120, CUQZOa 7xk20
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More combinatorial identities.
Question: For 0 < k£ < n, find

> ()= + )+ ()

m=k

Solution: Recall (™1 = (M)4(,™,). Thus (7) = (") - (™))

G=01) D =0D-6) D) =G0
() =G -6 - () =64) -G () =G = G4

Adding together both sides of the above, we obtain

> (0=@+(E) (=61

m=k
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> () =)+ )+ () + (=G50

Application. Find the sum
1.2.342-3:44+---4+(n—2)(n—1)n

Solution: Observe that ( ) N (:n”' o — (m-2). (6m 1)-m
Thus
1.2-3 2-3-4 (n—2)(n—1)n

S s -

=)+ Q)+ +G)=GI)="7)

]_.2.3_|_2.3.4_|_..._|_(n_2)(n_1)n:6_(n-:1>:(n—Q)(n—l)n(n-l-l)

4



