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A B S T R A C T

Natural resource managers need better estimates of water storage and supply in forested landscapes. These
estimates would aid planning for management activities that maintain and enhance forest health and pro-
ductivity and help prepare forested landscapes for a changing climate. In particular, low soil moisture in
combination with high evaporative demands can induce significant stresses on forests, increasing vulnerability
to attacks of insect and disease, as well as increasing wildfire risk. Although high-resolution soils data exist for
much of the Pacific Northwest, regional-scale datasets that identify forested areas potentially vulnerable to soil
moisture-related drought do not exist. In this study, we used readily available spatial datasets depicting available
water supply, soil depth, and evapotranspiration to model the likelihood that soils experience prolonged summer
drying. To calibrate the model, we examined soil profile descriptions, lab data, and soil moisture curves for 25
sites throughout the Pacific Northwest and estimated the average annual number of days that soil moisture drops
to levels at or below the permanent wilting point, a theoretical lower limit of plant-available water. Using this
approach, we found statistically significant relationships between the independent variables and broad classes of
soil moisture levels representing the highest and lowest levels of plant-available moisture. We then used these
relationships to create a landscape-level droughty soil index for the Pacific Northwest. We expect that this
approach can be further developed to include additional soil moisture data outside Washington and Oregon and
enhanced with other explanatory variables such as topographic position, elevation, and vegetation type. With
the addition of vegetation-related data, in particular, the current modeling approach can aid in identifying
vulnerable landscapes in the context of managing for increased forest resiliency in the Pacific Northwest.

1. Introduction

Soil moisture modulates the complex dynamics of the climate–-
soil–vegetation system and controls temporal and spatial patterns of
vegetation (Noy-Meir, 1973). Soil plays a key role in this system by
controlling the partitioning of moisture between inputs and outflow
including runoff, evapotranspiration, and flow between organisms.
Different soil types store and transmit moisture inputs and outputs
differently based on their individual properties that govern water
holding capacity and climatic influences. The moisture storage function
of soils is particularly important in the Pacific Northwest, as over two-
thirds of the region’s precipitation occurs between October and March,
with an average of less than two inches of rainfall occurring in the
summer months.

Plants depend on soil water to carry out critical biological functions,
as plant physiology is directly linked to water availability. Insufficient

water supplies create a water-stressed condition in plants. Plants under
stress decrease both their transpiration and photosynthesis in an effort
to balance nutrient needs and water loss. The stressed condition leaves
them vulnerable to insect attack and, if prolonged, hydraulic failure and
death of the plant (Choat et al., 2012).

Loss of soil water by evaporation or transpiration or both is con-
trolled or at a minimum influenced by physico-chemical properties,
surface slope and aspect, and biological demand (Hillel, 2003). We
generally think of soils as “droughty” when the balance of inputs,
losses, and transformations of available soil water is frequently less than
the biological demand during the period of interest. Note that this
notion of “droughtiness” does not refer to drought conditions per se, i.e.
conditions of uncharacteristically long or severe moisture deficits. Ra-
ther, a droughty soil is one that consistently (chronically) has low
seasonal moisture levels, and may therefore be particularly vulnerable
when drought does strike. Keeping this distinction in mind, we will use
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the terms “droughty soil” and “drought-vulnerable soil” inter-
changeably, and refer to such soils as having a high soil moisture
drought potential. In the Pacific Northwest, we have a climate marked
by dry summers, and so we are interested in summer soil moisture in
particular, and its relationship to climate and soil properties.

In practice, the term “droughty soil” is often used imprecisely, re-
ferring to a fast-draining or coarse-textured soil, or one that does not
receive adequate water recharge relative to vegetation and evapo-
transpirational demands. The USDA Natural Resources Conservation
Service (NRCS) defines soil drought vulnerability in terms of agri-
cultural crops in their metadata for the gridded Soil Survey Geographic
Database (gSSURGO; Soil Survey Staff, 2016a): “Drought vulnerable
soil landscapes comprise those map units that have available water
storage within the root zone for commodity crops that is less than or
equal to 6 in. (152mm).” This definition, however, does not include any
consideration of climatic influence. In the metadata’s referenced pub-
lication (Dobos et al., 2012), it is stated that, “… If the soil receives
timely rainfall, AWC (available water-holding capacity) is less im-
portant.”, explicitly indicating that a full definition of a droughty soil
requires the consideration of at least the quantity of precipitation oc-
curring during the growing period. As climatic gradients in the Pacific
Northwest can be extremely sharp both seasonally and geographically,
we would argue that including climatic considerations in any definition
of soil droughtiness is critical. In this work we develop a definition of a
droughty soil derived from class breaks in our calibration dataset, and
show that this results in a better indication of soil droughtiness than
using available soil water storage alone.

The forest management benefits of understanding which landscapes
and which soil types have a high soil moisture drought potential are
many. Increasing forest growth potential, improving forest resiliency to
climate change induced drought and improving prediction of wildfire
potential are some key management applications of this work. In ad-
dition, knowledge of landscapes with droughty soil helps land managers
prioritize limited budget allocations. In this way, managers can ensure
that vegetation treatments which reduce forest stand density and de-
crease fuel loads are targeted to areas where they will be most effective
in improving forest health and resilience to climate change.

Chase et al. (2016) found that thinning of dense forest vegetation
increased soil moisture during the summer months on their study sites
in northern Idaho and northeastern Washington. They found that
“thinning high-density stands on low productivity sites will provide the
greatest stress relief and benefit to overall forest health because re-
sources are more limited and competition for those resources is high.
Alternatively, thinning high productivity, high density stands will
maximize the growth response of residual trees”. In addition, they
found that for the studied forest types, thinning had the greatest re-
lative impact on summer soil moisture, followed by soil N availability,
and light interception. Reduced tree water stress by thinning is a viable
option for increasing forest resiliency to drought induced by climate
change (D'Amato et al., 2013; Elkin et al., 2015; Sohn et al., 2013).
Other studies have found that similar soil moisture effects can be rea-
lized through prescribed burning (Hatten et al., 2012).

Knowledge of soil moisture conditions can also improve our ability
to estimate wildfire danger. Krueger et al. (2015) showed that weather
variables alone were insufficient to predict wildfire potential and that
fire danger predictions were enhanced when soil moisture data were
used. Although the authors recognized that many factors influence fire
occurrence and size such as weather, ignition source, fuel character-
istics, and suppression efforts, they found that soil moisture information
was significantly related to fire size during the growing season. By using
a measure of the fraction of available water holding capacity (FAW) of
the soil to understand the influence of soil moisture on fire occurrence,
they found that all size Class 5 (> 405 ha.) fires occurred at FAW less
than 50 percent and that 87% of the largest fires occurred when FAW
was less than 20 percent. Inclusion of soil moisture information in
wildfire prediction models could improve assessments of wildfire

danger, particularly as a possible surrogate for live fuel moisture. Al-
though the current model focusses on whole-column soil moisture, the
methodology could be adapted to consider only the top portion of the
column, which may be more closely associated with wildfire danger.

The primary objective of this effort was to produce a landscape-level
droughty soil index that could help inform forest managers which areas
are potentially vulnerable to soil moisture drought. Since we have fo-
cused here exclusively on modeling summer soil moisture levels, it is
important to note that the model does not speak directly to vegetation
stress, as plants are generally adapted to their site. Rather, we envision
that this index represents one variable among many that can be used in
helping managers select areas for treatment that will potentially pro-
vide the “best bang for their buck.”

2. Methods

2.1. Study area

The study covers the forested areas of the USDA Forest Service
Pacific Northwest Region, including Washington and Oregon and small
areas of National Forest land in northern California (the Siskiyou NF).
The Pacific Northwest is a highly diverse landscape both geographically
and climatically. The majority of National Forest System (NFS) lands
spans seven mountainous Pacific Northwest ecoregions described in
Omernik (1987) with minor components of NFS land present in four
lowland ecoregions (Fig. 1). Geological diversity is expressed in rocks of
different age classes dating from Jurassic to early Pleistocene and from
such diverse lithologies as basalt, diorite, andesitic breccia, massive
arkosic sandstone, greywacke, quartz-mica schist, peridotite and un-
consolidated alluvium. Weathering, tectonic activity, mass wasting,
glaciation, fluvial processes and volcanic eruptions have altered ex-
posure of the bedrock throughout most of the study area. Volcanic soils
from multiple eruptions and of varying ages and particle sizes blanket
the central and eastern Cascades and areas of eastern Oregon and
Washington north of Crater Lake. Common soil orders on forest lands
include Inceptisols, Andisols and Alfisols. Spodosols have locally de-
veloped in coastal areas and on some upper elevation slopes in the
Cascades (Heilman et al., 1979). Mollisols can be found in forested
areas that were once open savanna.

The study area has a Mediterranean climate with most moisture
falling in winter. The majority of the precipitation falls from October to
February, and less than 10% occurs during July through September
(Western Regional Climate Center, 2017). Two parallel mountain
ranges, the Coast Range and the Cascade Range separate the wetter and
cooler western half of the study area from the drier and warmer eastern
half of the study area. The Pacific Ocean, bordering the western edge of
the study area is responsible for moderating the climate from the coast
to the Cascade Mountains. Winter storms move from west to east and
drop significant rainfall on the windward slopes of the Coast Range and
Olympic Mountains, ranging from a mean annual precipitation of
1900–2290mm (75–90 in.) at the coast up to 5080mm (200 in.) at the
crest. Precipitation on the windward slopes of the Cascades is one half
to two thirds of the coastal rainfall. On the eastern, leeward slopes of
the Coast Range, Olympic, Cascade, and North Cascade mountains
rainfall amounts decline sharply from 5080mms (200 in.) in the Coast
Range to 1020mm (40 in.) in the Puget Lowlands and Willamette
Valleys and from 2030 to 2540mm (80–100 in.) at the crest of the
Cascade Range to a low of 203mm (8 in.) in the lowlands of the Co-
lumbia Plateau and Northern Basin and Range Ecoregions. The Rocky
Mountains ecoregion of NE Washington and the Blue Mountains of
eastern Oregon experience an increase in precipitation up to 900mm
(35 in.) due to orographic lifting and marine air moving up the Co-
lumbia River Basin.

Morning fog can occupy coastal and lowland valleys in the western
portion of the study area in late summer and early fall. Because of this,
solar flux is not a simple measure of aspect nor is surface soil moisture
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solely dependent on precipitation. In the coastal ecosystems of the
Pacific Northwest, fog drip and foliar uptake during fog events can be a
significant source of plant-available moisture during the drier summer
months (Azevedo and Morgan, 1974). In addition, this coastal fog acts
to increase relative humidity and suppress transpiration, and the re-
sulting “…increase in available water and reduction of evaporative
stress has a marked impact on overall ecosystem productivity” (Koračin
et al., 2014).

Snowfall increases with elevation with some of the high volcanic
peaks reaching a cumulative total of 20–25m (67–83 feet) of snowfall.
Snowfall begins in the high mountains in September with maximum
depths of 3–8m (10–25 feet) accumulating in the first half of March.
Pockets of snow remain on the ground at elevations above 1524m
(5000 feet) until early July.

Temperatures, too, are moderated by the Pacific Ocean in western
Oregon and Washington but reach temperature extremes in the high
mountains and high elevation arid deserts of eastern Oregon and
Washington. The average temperature near the coast in July is 21 °C
(70 °F) and 24 °C (75 °F) in the foothills, with average minimum

temperatures near 10 °C (50 °F). In the coastal regions and the western
foothills of the Cascade and North Cascade Mountains, the January
maximum temperatures range from 6 to 9 °C (43–48 °F) and minimum
temperatures from 0 to 3 °C (32–38 °F). In contrast, mean annual
summer temperatures in the inland valleys in SW Oregon and areas east
of the Cascades in both Oregon and Washington range from 32 to 41 °C
(90–105 °F). Mean maximum winter temperatures in those regions
range from −4 to 2 °C (25–35 °F) and mean minimum winter tem-
peratures range from −18 to −9 °C (0–15 °F). Mean minimum tem-
peratures from −18 to −27 °C (0 to −17 °F) have been recorded at
higher elevations.

2.2. Available water supply (AWS)

We began this analysis by assembling a geospatial dataset of
available water supply (AWS) for the Pacific Northwest region. AWS is
a measure of the total amount of plant-available moisture the soil
column is capable of holding to a given depth. Knowing AWS can
provide land managers with information to help them understand

Fig. 1. Study area and Omernik ecoregions.

C. Ringo et al. Forest Ecology and Management 424 (2018) 121–135

123



where on the landscape there is a high, moderate or low potential to
store water in order to attenuate runoff and flooding, to understand
where soil moisture may be available for plant use longer into the
growing season, and to improve fire-danger forecasts. For this analysis,
we adopted the standard soil survey soil profile depth of 150 cm (60 in.)
or to a root-restricting layer, whichever is less.

We calculated AWS using the best available soil information in the
region, which came from a combination of the National Cooperative
Soil Survey data published by NRCS and USDA Forest Service Soil
Resource Inventory (SRI) data (Noller et al., 2018). NRCS soils data are
available for immediate use in a Geographic Information System (GIS)
as either a Soil Survey Geographic (SSURGO) Database in polygon
format (Soil Survey Staff, 2016b) or as a gridded Soil Survey Geo-
graphic (gSSURGO) Database in raster format (Soil Survey Staff, 2016a)
at a scale of 1:24,000. Soil attributes accompany each of these data sets.
Approximately two-thirds of the forested area in the region is covered
by published SSURGO surveys (Fig. 2). In areas of active SSURGO
surveys, the gSSURGO dataset was supplemented by provisional (un-
published) SSURGO survey data, which were obtained from the

regional NRCS office. In areas without SSURGO surveys, information
from USFS SRIs at a scale of 1:63,360 was used. This merged dataset
helps fill in many of the gaps in available high-resolution datasets for
the Pacific Northwest (see Fig. 2).

The gSSURGO dataset includes estimates of AWS to a 150 cm
(60 in.) depth, and we used these estimates where available. In the
areas for which we were able to obtain provisional SSURGO data from
NRCS, we used the provided representative values for Available Water
Capacity (AWC) and horizon thickness for each soil horizon and cal-
culated AWS for the major soil component, according to formula (1)
below. AWC is a property of the soil horizon, and is calculated ac-
cording to formula (2).

∑= ×
=

thk AWCAWS
i

n

i i
1 (1)

thki= Thickness of horizon i
AWCi=AWC for horizon i

Fig. 2. Soils data sources for forested lands in the Pacific Northwest.
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= − × ×AWC (W W ) (Db ) Cm/1001/3 15 1/3 (2)

AWC=volume of water retained in 1 cm3 of whole soil between
⅓-bar and 15-bar tension; reported as cm/cm [numerically
equivalent to inches of water per inch of soil (in/in)]
W1/3=weight percentage of water retained at ⅓-bar tension
W15=weight percentage of water retained at 15-bar tension
Db1/3= bulk density of< 2-mm fraction at ⅓-bar tension
Cm= rock fragment conversion factor derived from: volume
moist< 2-mm fraction (cm3)/volume moist whole soil (cm3)

For areas with only SRI data, we first used Eq. (2) to compute AWC
for each of the two or three soil layers recorded for each map unit, and
then calculated AWS according to Eq. (1). To accomplish this, rock
fragment percentages, soil layer thicknesses, and soil textures were
compiled for all map units, and we then used a soil texture relationship
for W1/3 – W15 in Eq. (1) based on NRCS lab data for similar textures
(see Soil Survey Staff, 2007, pp. 115–116). Several forests included lab
data for bulk density for some or all map units, and we used these
values where available. For the remaining map units, we used estimated
bulk densities of 1.0 g/cc for surface layers and 1.25 g/cc for subsurface
layers for mineral soils, and 0.7 g/cc for surface layers and 1.0 g/cc for
subsurface layers for volcanic ash soils. The AWS values computed for
the SRI-only areas are based on the major soil component only. Aside
from making calculations easier, we use the dominant component be-
cause we generally have a low level of confidence in the percentages
given for the components. By selecting what the soil scientist identified
as the major component, we feel we are better representing AWS for the
majority of the landscape.

Finally, in areas with no SSURGO or SRI data, we used STATSGO
estimates (Soil Survey Staff, 2016c) in order to get a complete AWS
dataset for the region. Fig. 3 shows the resulting AWS raster dataset
(30m resolution) for the region based on the above calculations.

2.3. Evapotranspiration

In addition to knowing AWS, it is also important to look at and
understand the climatic factors that affect soil moisture availability.
This includes the precipitation inputs (rain and snow) and the outputs
(runoff and evapotranspiration) from the soil column. This improved
soils information can ultimately be used along with precipitation and
temperature data in hydrologic models, such as the Variable Infiltration
Capacity (VIC) model (Liang et al., 1994), to better examine the in-
teractions of climate, soil characteristics, and topography. For this
analysis however, we took the simpler approach of using these finer-
resolution AWS data to enhance the spatial resolution of existing broad-
scale climatic indicators of potential soil moisture limitation. The cli-
matic indicator we used is based on estimates of potential and actual
evapotranspiration.

Potential evapotranspiration (PET) is an estimate of the evaporation
and transpiration that would occur if an adequate supply of moisture
were available. Actual evapotranspiration (AET) measures the actual
loss of moisture from soil and plant surfaces, and so the degree to which
AET falls below PET may be interpreted an indicator of moisture lim-
itation (Nagarajan, 2010, e.g.). Therefore, we have used AET/PET in
our analysis as a broad-scale climatic indicator of potential moisture
deficit (Fig. 4).

We obtained modeled average monthly actual and potential eva-
potranspiration datasets at a 1 km resolution from the Numerical
Terradynamic Simulation Group at the University of Montana. (Mu
et al., 2011; data are available at http://www.ntsg.umt.edu/project/
modis/mod16.php). In their MODIS Global Evapotranspiration Project,
they used remotely sensed land cover, leaf area index (LAI), Fraction of
Absorbed Photosynthetically Active Radiation (FPAR), and albedo data
together with daily meteorological inputs of air temperature, air

pressure, humidity, and shortwave radiation to model AET and PET.
Since the Pacific Northwest experiences a predominantly Mediterra-
nean climate with very little summer precipitation, we are primarily
interested here in summer moisture limitation. Over Washington and
Oregon in particular, July, August, and September are the three driest
months (Western Regional Climate Center, 2017), and so we are use
these three months to represent summer in our model. We calculated
the average AET/PET ratio for July-August-September for the years
2000–2014, and used these datasets as the climatic input to our
droughty soil model (Fig. 4).

We chose AET/PET over average precipitation to represent climate
in the model for two main reasons. First, we were looking for a variable
that reflected the net result of the hydrologic cycle, rather than just
moisture inputs. We felt that if we used straight precipitation it would
be difficult to account for areas where snowmelt is an important
moisture input later into the season, or other hydrologic processes such
as surface runoff. Evapotranspiration on the other hand, reflects the
outcome of these processes. Secondly, early on in our data exploration,
it appeared from simple regression analyses that AET/PET would ac-
tually give a better model fit than precipitation.

Still, there are certainly downsides to using AET/PET for this ap-
plication. Perhaps most obviously, it is a global-scale dataset with a one
kilometer pixel size, and so its utility for regional-scale studies such as
this one may certainly be questioned. But maybe more importantly, it is
itself a modeled dataset with many inherent sources of uncertainty,
including uncertainties stemming from biases in the model’s input
MODIS LAI/FPAR and daily meteorological datasets; inaccuracies in the
eddy covariance flux tower data used to calibrate the model outputs;
and basic limitations in the model algorithms themselves (Mu et al.,
2011). On balance however, we felt it was a better choice for this initial
study given that in theory at least, it would reflect moisture conditions
on the ground in a way that precipitation alone cannot. In future ver-
sions of this model however, we will take a closer look at incorporating
in-situ temperature and precipitation datasets collected at the SNOTEL
site locations themselves.

2.4. Soil depth

Soil depth is an important variable in determining AWS. We as-
sembled a spatial dataset of soil depth at a 30m pixel size from
gSSURGO data (where available), and then used SRI data to backfill,
using the midpoint of the range of depths given for major soil compo-
nents. Most map units in the STATSGO dataset do not have depth es-
timates, and so we were unable to fill in the remaining holes in the data.
See Fig. 5 (note that blank areas are either non-forest areas, areas un-
mapped in the SSURGO and SRI datasets, or mapped SSURGO areas for
which the data are not released to the public from tribal governments).
As NRCS normally describes soil properties to a standard depth of
150 cm (60 in.), we recorded depths only to 150 cm or to a root-re-
stricting layer. It should be noted that even though very few plant roots
are found below this depth (Gilman, 1990), it is known that many tree
species develop roots over great distances and are able to access deep
water sources such as deep soil layers, deep water tables, and even
weathered bedrock (Maeght et al., 2013; Stone and Kalisz, 1991; Rempe
and Dietrich, 2018). However, available regional soils datasets do not
describe these deeper layers and so we are not able to include these
effects in our model.

2.5. Calibration dataset

To calibrate the model we used daily soil moisture data from the
network of Snow Telemetry (SNOTEL) stations in Washington and
Oregon. In order to arrive at a precise definition of soil droughtiness, we
looked at the relationship between permanent wilting point (PWP) and
soil moisture at each site. Permanent wilting point is defined as the
moisture content of a soil at which plants wilt and fail to recover when
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supplied with sufficient moisture (NRCS, 2008). Using lab data pub-
lished for each SNOTEL site, we computed a depth-weighted average
PWP for each site, which we then compared to the soil moisture curves.
We used the standard pressure of −15 bar (1.5MPa) to compute PWP
values, the theoretical pressure above which plants can no longer ex-
tract any remaining moisture from the soil. While we realize that this
pressure certainly varies by plant species, our intent here is only to
model soil moisture content, and not vegetative stress. See Figs. 6 and 7
for example soil moisture curves and PWP for two contrasting sites.

Of the 46 SNOTEL sites in Oregon and Washington that had soil
moisture information, we used 25 sites (Fig. 8). We rejected sites for use
in the calibration dataset for the following reasons: the site had less
than 3 years of nearly continuous soil moisture record (small data gaps
were allowed); the soil moisture sensors at the site were erratic, having
long and/or frequent periods with no data; the soil moisture sensors at
the site did not cover enough of the soil column to accurately calculate
PWP and AWS for the entire soil column; the site is non-forested (less
than 10% canopy cover); or the site had incomplete or inconsistent lab
data and/or pedon description that prevented accurate calculations of

PWP and AWS.
For each SNOTEL site in the calibration dataset, we calculated the

average annual number of days that the soil moisture dropped below
PWP. We then calculated AWC for each soil horizon from the lab data
and calculated AWS to a maximum depth of 150 cm. Then for each site
we determined the modeled value of the average July-August-
September AET/PET, averaged over the years matching the soil
moisture record for the site. Table 1 gives the values of AWS, AET/PET,
soil depth, and the years of record and annual number of days for which
soil moisture was below PWP for each SNOTEL site in our calibration
dataset.

3. Results

Without taking soil depth into account, initial plots of AET/PET
versus AWS values for our calibration dataset indicated that as a group
at least, the sites with the lowest AET/PET and AWS values correspond
fairly closely with those that have the greatest number of days below
PWP, at least as a group (Fig. 9).

Fig. 3. Available Water Supply to a 150 cm depth or to a root restricting layer for forested lands in the Pacific Northwest.
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Initially we attempted to quantitatively predict the average annual
number of days a site is below PWP using a weighted multiple linear
regression, with the weights accounting for the number of years of the
soil moisture record for each site (more years of record means more a
robust estimate of annual average days below PWP). Using this ap-
proach however, the optimal model based on the Akaike Information
Criterion (AIC) (Cavanaugh and Neath, 2011, e.g.) has limited pre-
dicting power, with only 42.1% of the variability across sites captured
by the explanatory variables (AWC, AET/PET, and soil depth).

We then classified the sites into three categories based on the
average annual number of days below permanent wilting point for that
soil and defined them as: “not droughty” (not more than
3weeks< PWP); “marginally droughty” (more than 3weeks, but less
than 10weeks< PWP); and “droughty” (more than 10weeks< PWP).
The class breaks were chosen to give us three classes of approximately
equal size, which also happened to break the dataset at reasonable gaps
in the dataset. Among the 25 sites included in the analysis, nine sites are
not droughty, eight are marginally droughty, and eight sites are
droughty by these definitions. Fig. 8 shows the location and “droughty

status” of the calibration dataset.
In addition to AWS, AET/PET, and soil depth, we tested several

related variables for inclusion in the categorical model as well. These
included mean canopy cover at the site and within different radii (45m,
90m, and 700m), the fraction of soil depth reached by the sensors, and
whether the field capacity (FC) lab data was clod-based or based on a
sieved sample. Canopy cover estimates were tested as an attempt to
account for variability in evapotranspiration within a 1 km pixel, ran-
ging in distance from a 30m pixel at the SNOTEL site itself, up to a
radius encompassing the entire 1 km pixel. Canopy cover estimates
were obtained from the Gradient Nearest Neighbor (GNN) dataset
(Ohmann and Gregory, 2002). The fraction of soil depth reached by the
sensors was included as a possible measure of uncertainty of the column
estimates of soil moisture content. Lab data for FC were derived using
measurements of either sieved or clod soil samples, and since clod-
based estimation of FC is preferred (Soil Survey Staff, 2014; Young and
Dixon, 1966), this was included as a possible measure of uncertainty of
the FC and AWS estimates. However, none of these variables turned out
to contribute significantly to the model.

Fig. 4. Actual evapotranspiration divided by potential evapotranspiration on forested lands in the Pacific Northwest, July-August-September average, 2000–2014.
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We used ordered ordinal logistic regression to model the ordered
categorical response for droughtiness using the R statistical package (R
Core Team, 2016). In the optimal model based on the AIC, droughtiness
is negatively associated with AWS (two-sided p-value=0.00028),
AET/PET (two-sided p-value=0.00046), and soil depth (two-sided p-

value= 0.010). To evaluate the fit of the model, for each site in the
analysis, we take the category with the highest fitted probability as the
fitted classification. It is worth noting that although AWS and soil depth
are somewhat correlated (correlation coefficient of 0.48), including
them both improved the model by reducing the residual deviance. And

Fig. 5. Soil depth to 150 cm (60 in.), forested lands in the Pacific Northwest.

Fig. 6. Example of SNOTEL site with soil moisture remaining above PWP for most of the year (PWP∼ 13.2% for the Moss Springs site).
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although the model fit was improved significantly less with the addition
of soil depth than with either AWS or AET/PET (as evidenced by soil
depth’s higher p-value), we elected to keep soil depth in the model since
it did improve the fit somewhat.

As shown in Table 2, the ordered logistic model is able to capture

most of the sites with non-ambiguous droughty status, with eight out of
the nine not droughty sites correctly fitted, and seven out of the eight
droughty sites correctly fitted. As would be expected due to the way the
sites are classified, the model is not as accurate for the sites with a less
definite droughty status (six of the eight marginally droughty sites are

Fig. 7. Example of SNOTEL site with soil moisture dropping below PWP for significant periods of time annually (PWP∼ 6.0% for the Chemult Alternate site).

Fig. 8. Final calibration dataset: SNOTEL site droughty status.
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classified as marginally droughty, while two sites are classified as not
droughty). It is worth noting that none of the droughty sites was mis-
fitted to be not droughty, and none of the not droughty sites was mis-
fitted to be droughty. These results suggest that our model is able to
distinguish between droughty and non-droughty sites with high con-
fidence.

Fig. 10 shows the corresponding graphs of the modeled probabilities
for each individual site within the three droughty classes. In each of the
three graphs, the y-axis gives the modeled probability of being in each
of the three classes as indicated by the color of the bars.

Fig. 10A shows the modeled probabilities for the nine “not
droughty” sites, and as can be seen, it is the Mt Howard site that models
incorrectly as “marginally droughty”. The Mt. Howard site is a rela-
tively high-elevation (7900’) site located in a small forested depression
on an otherwise sparsely vegetated mountain top in northeastern
Oregon. During the period of record, this site never drops below 30%
soil moisture (with a PWP around 10%), likely due to late snowpack,
cooler temperatures, and local topographic position. Addition of both
topographic position and elevation variables could help this site to
model correctly.

In addition, note that although the Snow Mountain site models
correctly, it is fairly close to modeling in the “marginally droughty”
class. This site is at the edge of a narrow densely forested swale in an
area of otherwise open canopy forest on the Malheur National Forest in

Table 1
Site data for the 25 SNOTEL sites in the final calibration dataset, ordered by
increasing number of days for which soil moisture is less than PWP.

SNOTEL site
name

Years of soil
moisture
record

Jul-
Aug-
Sep
AET/
PET

AWS (cm) Soil
depth
(cm)

Annual # of
days<PWP

Cayuse Pass 2012–2014 0.44 18.77 84 0
High Ridge 2004–2014 0.38 28.78 150 0
Miller Woods 2008–2014 0.57 14.34 150 0
Mt Howard 2004–2014 0.17 14.63 150 0
Schneider

Meadows
2011–2014 0.33 24.36 150 0

Snow
Mountain

2005–2007 0.14 21.84 150 0

Moss Springs 2004–2014 0.28 22.93 127 2
Burnt

Mountain
2009–2014 0.51 12.03 104 10

Holland
Meadows

2011–2014 0.51 22.33 150 21

Brown Top 2010–2014 0.45 7.56 90 30
Sentinel Butte 2007–2014 0.36 5.62 150 37
Sasse Ridge 2005–2014 0.41 11.96 150 45
Buckinghorse 2009–2014 0.54 10.22 71 60
Harts Pass 2011–2014 0.33 20.42 106 64
Quartz Peak 2010–2014 0.47 8.64 81 66
Annie Springs 2004–2014 0.21 8.89 150 67
Touchet 2011–2014 0.30 15.59 79 73
Gold Axe Camp 2012–2014 0.18 10.54 64 88
Silver Creek 2012–2014 0.13 4.75 60 97
Lost Horse 2005–2012 0.18 4.99 48 101
Salt Creek Falls 2012–2014 0.50 4.60 53 101
Madison Butte 2009–2014 0.25 4.82 108 124
Chemult

Alternate
2004–2014 0.21 14.70 150 158

Tipton 2004–2012 0.24 11.93 69 166
Quartz

Mountain
2004–2014 0.17 8.59 150 174

Fig. 9. AET/PET plotted against AWS for each SNOTEL site. Plots are grouped into three sets according to the number of weeks that soil moisture drops below PWP.

Table 2
True and fitted classification using the ordered logistic model.

Fitted droughty status

Not droughty Marginally
droughty

Droughty Total

Actual
droughty
status

Not droughty 8 1 0 9
Marginally
droughty

2 6 0 8

Droughty 0 1 7 8
Total 10 8 7 25
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Fig. 10. Modeled soil moisture drought potential for each site. In each graph the y-axis is the fitted probability of being in each of the three classes as indicated by the
color of the bars. Graph A shows the “not droughty” sites; graphs B & C show the “marginally droughty” and “droughty” sites, respectively.
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eastern Oregon. For both this site and the Mt. Howard site, the broad-
scale evapotranspiration data are not able to capture vegetation
changes smaller than the 1-km resolution. Addition of a finer-scale
canopy cover variable may then help to refine the model in these si-
tuations.

The Chemult Alternate site, shown in Fig. 10C, may indicate a dif-
ferent problem. This site is the one droughty site that does not model
correctly. The site is located just northeast of Crater Lake and has deep
ash soils with 25–30% pumice fragments from past eruptions of Mt.
Mazama. Many authors have investigated the challenges of calibrating
soil moisture sensors in coarse volcanic soils (e.g., Comegna et al.,
2013; Regalado et al., 2003; Weitz et al., 1997). In particular, Stenger
et al. (2005) demonstrated that standard calibrations of soil moisture
sensors typically underestimate soil moisture held within pumice
fragments, and so the actual available soil moisture at this site may
possibly be significantly higher than that indicated by the site’s soil
moisture sensors (Fig. 7). Hence the number of days below PWP may
well be considerably fewer in number than indicated by the sensors for
this site. It is worth noting that Hydra Probe® moisture sensors by

Stevens Water Monitoring Systems (http://www.stevenswater.com/
products/sensors/soil/hydraprobe/) are installed at all Washington
and Oregon SNOTEL sites, using one of the four factory calibrations
(Deborah Harms, NRCS, personal communication, March 9, 2018).
According to the Hydra Probe®manual however, “Andisols, gelisols and
histosols are soil that may have soil moistures and properties that de-
part from the Hydra Probe’s built in calibration curves. If the bulk
density is extremely low giving the soil an effective porosity greater
than 0.5, the user will need a custom calibration”. Geist and Cochran
(1991) give a generalized porosity value of .77 for central Oregon pu-
mice soils, which suggests that a custom calibration at this site may well
be warranted.

In the final landscape model, the fitted probabilities p1 (not
droughty), p2 (marginally droughty), and p3 (droughty) satisfy the
three equations:

+ + =(1) p p p 11 2 3

+ = + ∗ + ∗ + ∗(2) log(p /(p p )) α β x β x β x1 2 3 1 1 1 2 2 3 3

Fig. 11. Droughty soil index for forested landscapes in the Pacific Northwest.
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+ = + ∗ + ∗ + ∗(3) log((p p )/p ) α β x β x β x ,1 2 3 2 1 1 2 2 3 3

where x1 is AWS, x2 is AET/PET, x3 is soil depth, α1=−16.60,
α2=−12.82, β1= 0.4065, β2= 14.95, β3= 0.04138.

Given values for AWS, AET/PET, and soil depth, these three equa-
tions can be explicitly solved for p1, p2, and p3, giving us the basis for

our landscape model of droughty soils. We are primarily interested here
in calculating p3 across the landscape, the probability that a given pixel
is “droughty” (i.e., that soil moisture< PWP for at an average of least
10 weeks annually). Fig. 11 shows the result of that landscape calcu-
lation.

Fig. 12. North slope of Ochoco Mountains detail area.
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4. Discussion

Soil information adds value to assessments of drought potential.
Throughout the Pacific Northwest Region, soil-forming properties have
resulted in a wide variety of soil types ranging from areas scoured to
bedrock by glacial action with little to no soil formation, to areas of
deep fine-grained lakebed deposits, to areas with thick deposits of pu-
mice and ash. As a result, there are widely different abilities of different
soil types to absorb, store, and supply moisture to vegetation
throughout the year. Climatic stressors play a significant role in de-
termining how much water plants need to perform critical physiologic
functions. In this paper we have demonstrated that the combination of
climatic information (evapotranspiration) and information on physical
soil characteristics (AWS and soil depth) does a better job of identifying
soils that experience prolonged periods of low summer moisture levels
than either set of information does by itself. Combining soil resource
characteristics with climatic information through this model improves
the understanding of which portions of the landscape have a high
probability to restrict moisture to plants (Fig. 11). The following ex-
ample illustrates these relationships.

Referring to the maps of the north slope of the Ochoco Mountains in
Fig. 12, broad-scale climatic information would lead one to conclude
that actual evapotranspiration (AET) of vegetation is occurring at a low
to very low rate, at less than 15% of potential evapotranspiration rates
(PET) (the red areas in Fig. 11A). In the orange areas on the map, only
slightly higher rates of AET are occurring at 15–30% of PET. However,
when one brings in soil resource information as described above, a
different picture emerges. More detailed soil information (Fig. 11B and
C) in combination with the climatic information helps one understand
that there are portions of this area where the soil type, in this case deep
deposition of volcanic ash, results in a low probability (less than 20%)
of droughty soils These areas are indicated in dark blue on the map in
Fig. 11D. These forests have higher growth potential and presumably a
higher resilience to drought. In this area, volcanic ash deposition and
subsequent weathering increases the ability of the soil to store and
transmit moisture to plants throughout dry periods of the year.

The greater the ability of forest managers to understand which
landscapes have a tendency to be droughty, the greater is their ability to
improve forest management strategies. As fire frequency and size is
increasing in the western United States (Dennison et al., 2014), the
ability to predict fire danger is critical. Adding a soil moisture variable
to that prediction improves forecasting abilities (Krueger et al., 2015).
This model can help fire managers identify sites to install soil moisture
sensors to assist in fire danger modeling (though as noted above, basing
the analysis on just the top portion of the soil column may produce
better results for this purpose). The model performed well identifying
sites with the highest and lowest soil moisture drought probability. It is
the areas in the middle, with less definitive soil moisture drought
probabilities where a more thorough vetting of soil and climatic para-
meters, through establishment of a soil moisture assessment network,
would gain the most information for fire managers.

Foresters too can use this modeling approach to prioritize thinning
of forest vegetation to reduce soil moisture stress of high density stands.
The resulting thinning operations will not only reduce fuel loads but
will improve forest resilience to climate change induced drought. For
areas where sustainable timber production is deemed the highest eco-
system service value, this model can assist forest managers in identi-
fying highest priority thinning sites to increase forest growth (Chase
et al., 2016). With limited budgets focused on fuels treatment and forest
health improvement, tools such as this droughty soil index can provide
valuable information for forest managers to use in prioritizing land
management treatments to areas where they can be most effective in
maintaining forest health and resilience to climate change.

5. Conclusions

This study refined our understanding of the diversity and patterns of
droughty soils across forested areas of the Pacific Northwest states of
Oregon and Washington. By combining NRCS and newly-acquired “le-
gacy” USFS soil survey information, using site specific soil information
from SNOTEL sites, and by using AET/PET models across the region, we
were able to both develop a definition of a droughty soil and extra-
polate those findings to produce a preliminary map of drought-vul-
nerable soils for most of the region.

There is much to be understood about soil moisture drought, and we
suggest a few avenues here that could prove fruitful in helping to
quantify the role of soils in drought processes affecting forested en-
vironments in the Pacific Northwest.

In terms of this specific modeling effort, there are almost 500
SNOTEL and SCAN (Soil Climate Analysis Network) sites with soil
moisture data across the Western US that could be used to build a more
robust model of drought-vulnerable soils. This dataset would include
enough sites to partition the data into calibration and validation data-
sets and could be used to validate this model, and to expand it to in-
clude both forested and non-forested environments across the western
US.

Another consideration is that the Pacific Northwest is unique in the
western US with its volcanic landscapes. Soil moisture release curves
are unique for pumice and volcanic ash-influenced soils and estimating
soil moisture parameters in these soil types is difficult and not com-
pletely understood. Soil moisture and vegetative response studies in
pumice and volcanic ash-influenced soils could greatly improve our
knowledge of drought-vulnerable soils throughout much of the Pacific
Northwest region.

Lastly, it is important to again emphasize that an indication that a
soil is droughty does not necessarily imply vegetation stress, as plants
are generally adapted to their site. However, as demonstrated by Choat
et al. (2012), a tree’s adaptation to its moisture regime is very often
quite narrow, leaving forest trees across a broad range of environments
potentially vulnerable to drought stress due to shifts in rainfall patterns
associated with climate change. Thus a reliable droughty soil index will
also be useful in helping detect thresholds beyond which certain species
will falter. Future research comparing modeled future precipitation to
this droughty soils index could help identify Pacific Northwest forests
most vulnerable to climate change.
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