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ABSTRACT
The advent of large-scale genetic studies has helped bring a new era of biomedical
research on dissecting the genetic architecture of complex human disease. Genome-
wide association studies (GWASs) and next-generation sequencing studies are two
popular tools for identifying genetic variants that are associated with complex traits.
This article overviews some of the most important statistical tools for analyzing data
from these two types of studies, with an emphasis on single-SNP tests for common
variants and region-based tests for rare variants. We compare various statistical
methods for common and rare variants in humans, and describe some critical con-
siderations to guide the choice of an analysis method. Also discussed are the related
topics of sample ascertainment, missing heritability, and multiple testing correction,
as well as some remaining analytical challenges presented by complex trait associa-
tion mapping using genomic data obtained via high-throughput technologies.

KEYWORDS
Genome-wide association studies; high-throughput sequencing; complex traits;
association analysis; statistical tests

1. Introduction

Genetic association analysis is a widely-used tool for dissecting the genetic basis of
human diseases and complex traits. Recent advances in high-throughput genotyping
and sequencing allow the identification of disease susceptibility variants in exquisitely
fine detail. A genome-wide association study (GWAS) examines a high-density set of
genetic markers and performs an unbiased, genome-wide search of association signals.
This pipeline has led to many exciting findings of common genes underlying complex
human diseases, such as asthma, diabetes, cardiovascular disease, and psychiatric ill-
ness [34,84,97,131]. More recently, whole-genome sequencing (WGS) collects human
genetic sequence variations across the entire spectrum of allele frequencies, thereby
enabling the investigation of rare variants that are usually missed in a GWAS [35].

Data from genetic association studies often feature complex dependence structure
and high-dimensionality. With the large number of genetic variations in the genome, it
is a challenging task to distinguish the true causal polymorphisms from the background
noise or confounding effects. Developing powerful, scalable statistical tools that exploit
the biological implications in these large-scale datasets is of great importance to both
the statistics and the genetics communities. Despite a large body of literature, there
is still little consensus on a single most appropriate statistical procedure for genetic
association analysis.

In this article, we survey recent advances in statistical methods for genetic associa-



tion studies, illustrating the challenges presented by genomic data obtained via high-
throughput technologies. Our emphasis is on association testing methods for common
and rare variants in humans. In Section 2, we outline the key components of a GWAS
analysis. In Section 3, we focus on recently developed statistical methods for associa-
tion testing of common genetic variants. We discuss several approaches to accounting
for confounding factors and to testing for association with a quantitative-trait and a
binary trait. Also discussed are the related topics of case-control ascertainment, retro-
spective analysis and missing heritability. In Section 4, we review recently developed
statistical methods for rare-variant association testing in high-throughput sequencing
studies and some analytical issues that arise.

2. Overview of GWAS Analysis

The primary goal of GWASs is to identify genetic variants that contribute towards the
phenotypic variation of complex traits. A GWAS uses chip arrays to type hundreds
of thousands of single-nucleotide polymorphisms (SNPs) across a large number of
individuals, and then assesses the correlation between SNP genotypes and the trait
of interest. A typical genome-wide association analysis involves at least the following
three broadly defined steps: (i) data quality control; (ii) association testing; (iii) results
interpretation. In this section we briefly introduce these steps, with a more detailed
discussion of step (ii) deferred to Section 3.

2.1. Quality Control for Genomic Data

Quality control (QC) usually involves filtering out (i.e., removing) SNPs with low
genotyping accuracy. QC is an important step to minimize potential false findings in
GWASs. Common SNP filters include missing call rate (MCR), minor allele frequency
(MAF), and Hardy-Weinberg equilibrium (HWE) [92]. These QC filters are informative
indicators of genotyping quality: extreme deviation from HWE could reflect genotyping
error [117]; high rate of missingness suggests poor genotype probe performance [80];
SNPs with low MAF are more prone to genotyping error as many calling algorithms
perform poorly with rare alleles [92].

Genotype imputation is often carried out in GWASs to allow better use of the typed
SNPs. Using external resources such as HapMap [22] and data from the 1000 Genomes
Project [21], one can impute the unmeasured genotypes based on known linkage dis-
equilibrium (LD) structure and haplotype frequencies. For tightly linked markers,
genotype imputation can be reasonably reliable. After imputation, an additional qual-
ity control step is often required to remove SNPs with low imputation certainty. In
principle, imputed SNPs should be analyzed separately from genotyped SNPs [92],
because uncertainty in imputation needs to be accounted for when performing asso-
ciation tests. There are several methods specifically designed for testing association
with imputed SNPs, which exploit their posterior genotype probabilities [8,62,72,104].
In this article, our main focus will be on the analysis of genotyped SNPs only.

2.2. Association Testing

After the completion of QC, statistical analysis is performed to detect the association
between a SNP and a trait. GWASs are primarily based on the common disease–
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common variants (CDCV) hypothesis [35,124], which postulates that the complex
disease is largely caused by common genetic variants with moderate effects, each of
which explains a certain proportion of the phenotypic variance. Under the CDCV
hypothesis, the most popular strategy for identifying associations is to conduct a series
of single-SNP association tests, in which each SNP is tested for association separately
from the other SNPs with a given trait. A proper choice of association tests should
take into account many factors, such as the possible population and family structure
in the sample, the type of the trait variable, presence of ascertainment in the sampling
design, etc. In Section 3, we will survey current statistical methods to tackle these
challenges.

2.3. Reporting Association Results

Once a statistical test is chosen and performed in the previous step, each SNP will
produce a test statistic measuring its association with the trait of interest and a p-value
measuring the statistical significance. Manhattan and quantile-quantile (Q-Q) plots are
useful tools for visualizing GWAS results and for model diagnostics. A Manhattan plot
is a scatter plot showing the levels of statistical significance by chromosomal locations.
SNPs in the entire GWAS analysis are laid out on the x-axis in genomic order based
on which chromosome a SNP belongs to and its location on the chromosome, and
the y-axis represents the p-value of each SNP on the negative logarithm scale. Visual
inspection of the peaks in a Manhattan plot facilitates the detection of genomic regions
with strong association signals. A Q-Q plot is another commonly examined graphical
representation of GWAS results, which shows the empirical distribution of the observed
p-values against the theoretical distribution under the null hypothesis of no association.
In practice, a vast majority of SNPs are expected to be unassociated with the trait, so
the bulk of the points should fall on or close to the y = x line (called the reference line)
until the end (Fig. 1A). A global deviation from the reference line (Fig. 1B) usually
indicates inadequate control of population and/or family structure or the presence of
other confounding factors.

In GWASs, a large number of hypothesis tests are carried out, and this leads to a
multiple testing problem. Using a 5% significance threshold, we would expect to in-
correctly reject the null .05N times, where N is the number of tests performed across
the genome. For a typical GWAS, N ranges from hundreds of thousands to over a
million, which would lead to a daunting number of false discoveries if the 5% signif-
icance threshold is imposed on nominal p-values. To control the genome-wide error
rate, a widely used solution is to use the Bonferroni procedure: based on an estimate
of one million independent SNPs across the human genome, the Bonferroni correction
at level 0.05 yields the significance threshold 5 × 10−8, known as the “genome-wide
significance level.”

This Bonferroni correction is usually considered conservative, and other alternative
solutions to the multiple testing issue have been explored, including false discovery rate
(FDR) [13] and permutation procedures [132]. FDR estimates the proportion of false
positives among the tests that are declared as significant, and an FDR-controlling
procedure will result in fewer false negatives. Permutation is another approach to
significance assessment in a GWAS. While somewhat computationally intensive, per-
mutation is a flexible and robust way to generate the empirical null distribution of test
statistics while taking into account the LD patterns among SNPs [1]. We note that
research on these alternatives approaches is still in its infancy, and the genome-wide
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significance threshold of 5× 10−8 remains a commonly agreed-upon criterion adopted
by most studies.

3. Single-SNP Association Testing

In this section, we will discuss some challenges for single-SNP association testing in
GWAS data and review some recently developed methods to tackle these challenges.

3.1. Controlling Sample Structure Confounding

In genetic association mapping, a common confounding factor is sample structure,
which is a term referring to family or ancestral relationships within a sample that
are due to both known and unknown structure. Various forms of sample struc-
ture are widespread in genetic association studies, including population stratifica-
tion/admixture, family relatedness and cryptic relatedness. In the presence of sample
structure, the independence assumption made by many standard statistical techniques
may break down, leading to severely compromised performance and reduced reliability
of the tests.

Many genetic studies include family members with known pedigree relationships.
Family-based designs have long been popular in traditional genetic studies, and the
samples collected for those studies are often included in current association analysis.
Moreover, including family members can increase the power of detecting association
due to enrichment of disease-associated SNPs among relatives. With related individu-
als, it is well known that dependence resulting from family structure needs to be ac-
counted for to ensure that association tests have properly controlled type 1 error [85].
Carefully adjusting for familial correlation can also improve power [118].

In addition to pedigree correlation, another well-known source of sample structure
concerns latent relatedness among sampled individuals that is not due to known fam-
ily relationships. Seen from evolutionary history, all members of the human race are
mutually related to a varying extent through a giant genealogy, although the underly-
ing genealogical structure is usually unobserved for a sample except in pedigree-based
studies. When some pairs of individuals are more closely related than others in a sam-
ple, the heterogeneity in the amount of relatedness can give rise to confounding in
association testing. Intuitively, relatedness among individuals introduces correlation
not only to the observed genotypes on the tested SNP (or group of SNPs), but also
to the overall genome-wide variation (known as genetic background), which may in
turn produce correlation in the phenotype of interest. This simultaneous correlation
with the genotype and the phenotype can act as a confounder, which, if not properly
accounted for, creates deviation from the null hypothesis (of no genetic association)
across the genome and leads to genomic inflation of association signals.

One example of latent relatedness is population stratification, which arises when the
sample includes individuals from multiple population subgroups. Distinct subpopula-
tions often have their own distinctive genetic backgrounds shared by individuals from
the same ancestral group, which leads to many traits being correlated with ancestry.
Meanwhile, the ancestry differences also result in allele frequency differences between
subpopulations. This gives rise to the situation of confounding, in which the ances-
try (confounder) correlates with both the genotype (predictor) and the phenotype
(response). For example, in case-control studies, association tests can be roughly con-
sidered a comparison of genotype distribution between phenotype groups. When both
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phenotypic and genotypic distributions vary by subpopulation, genetic variants that
are not directly associated with the trait can generate spurious association signals if
population substructure is not properly corrected for. Similar confounding effects can
occur with admixed populations, in which each individual is genetically a mixture of
multiple ancestral populations with the mixing proportions varying across the sample.
Another type of hidden sample structure is termed cryptic relatedness, defined to be
family relationships not explicitly observed in the sample.

In genetic studies, population structure and family relationships may or may not
be known. For samples with fully known family structures, the pedigree-based kinship
matrix may be used to adjust for familial correlation [2,85]. To deal with unobserved
sample structure, a useful strategy is to utilize the genetic variants themselves to infer
the hidden structure among the sampled individuals. Most existing methods fall into
two distinctive categories. The first class of methods consider population member-
ship in stratified samples or ancestry proportions in admixed samples as unobserved
covariates. These methods usually involve two steps, the first of which tries to ex-
plicitly reconstruct the unmeasured variables based on ancestry informative SNPs or
genome-wide data. In the second step, the inferred ancestry is included in a regression
model as one or more fixed effects to correct the test statistics for sample structure.
A well-known approach is principal component analysis (PCA), which identifies an-
cestry differences among individuals using genome-wide SNP data. Price et al. [94]
developed EIGENSTRAT, a method that uses the top principal components (PCs)
of the genetic covariance matrix as surrogates for ancestry which are included as co-
variates in a regression-based association model. Examples of other methods in this
category include a model-based clustering tool for detecting population structure [96],
methods related to PCA [15,144,150], and various other methods [4,59,143]. This ap-
proach is effective in adjusting for confounding if population stratification is the only
kind of structure present in the sample. However, these methods suffer from the draw-
back of not being able to handle samples containing additional complexity such as
(known and/or unknown) related individuals [95].

The second category of methods view the hidden sample structure as producing de-
pendence among observations. These methods therefore try to estimate the dependence
structure and model it as correlation among sampled individuals. A type of method
within this category that has recently gained much popularity is the linear mixed
model (LMM) approach. LMM models the phenotypic distribution using a mixture
of fixed effects and random effects. The fixed effects include the genetic variant being
tested and other relevant covariates, such as age and sex, that need to be adjusted
for. The random effects include additive polygenic effects whose covariance matrix is
assumed to be proportional to a genetic relatedness matrix (GRM). The GRM is usu-
ally estimated from genome-wide SNP data intended to capture the overall covariance
among individuals due to population structure (ancestry difference), family structure,
and cryptic relatedness. Because of the flexibility to simultaneously account for various
types of sample structure including cryptic relatedness as well as population stratifica-
tion and admixture, LMM has emerged as the method of choice in genetic association
analysis.

One of the major differences between the PCA-based and LMM-based methods is
whether to treat population structure as a low-dimensional fixed effect or part of a
high-dimensional random effect. Recent work [43] reveals that the structure matri-
ces caused by population stratification/admixture (ancestry difference) and caused
by kinship (family or cryptic relatedness) have distinguished properties: population
stratification is a low-dimensional process embedded in a high-dimensional space so
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a small number of PCs are adequate to capture the structure, whereas kinship is a
high-dimensional/full-rank process which cannot be captured by a small number of
PCs. This provides a rationale for the out-performance of LMM over PCA when the
sample contains family or cryptic relatedness. On the other hand, modeling popu-
lation structure as part of a random effect might lead to insufficient correction at
SNPs having strong ancestry differentiation. This observation gives rise to some hy-
brid methods combining the strengths of PCA and LMM. For example, Thornton et
al. [120] proposed to simultaneously estimate population-structure PCs and pairwise
kinship coefficients. Then, an LMM is fitted by including population-structure PCs
to account for ancestry and by including pairwise kinship estimates to account for
family relatedness [20]. This hybrid approach demonstrates better control of type 1
error inflation for highly differentiated SNPs compared to the standard LMM [20,95].

3.2. Linear Mixed Models for Quantitative-Trait Analysis

A general paradigm for testing for the association between a phenotype of interest and
the genotype at a SNP is regression analysis. Ordinary linear models, as we have argued
in Section 3.1, are vulnerable to spurious associations in the presence of population
and family structure. Here we present the commonly used mixed-effect model primarily
designed for association analysis on a quantitative trait.

Consider a sample of n individuals, and let Y = (Y1, . . . , Yn)T be the phenotype
vector on the sample. Let W be an n × k covariate matrix encoding in its columns
k covariates including the intercept term. Also let Gtest = (Gtest

1 , . . . , Gtest
n )T be the

genotype vector. The standard LMM for a quantitative trait takes the form

Y = Wβ +Gtestγ + ε, where ε ∼ N(0, σ2aΦ + σ2eI), (1)

where Wβ represents the fixed effects of covariates including the intercept, Gtestγ
is the effect of the SNP currently being tested, σ2a and σ2e are variance component
parameters corresponding to additive polygenic effects and i.i.d. environmental errors,
respectively, and Φ is a GRM quantifying the overall genetic similarity between any
pair of individuals in the sample. The matrix Φ is assumed to be either known based on
the pedigree or can be estimated (discussed in the next paragraph). To test a biallelic
SNP, Gtest

i is often encoded as 0, 1, or 2, according to whether the individual i has 0,
1, or 2 copies of the minor allele at the SNP. It is common to assume an additive allele
effect; that is, γ is a scalar association parameter of interest. Then testing for genetic
association amounts to the hypothesis test

H0 : γ = 0 vs. Hα : γ 6= 0.

In the context of genetic association analysis, a number of statistical tests, including
Wald, Rao’s score and likelihood ratio tests, have been proposed.

The matrix Φ in (1) is designated to model the genetic covariance among individuals
due to known or unknown sample structure that is not captured byW . When complete
pedigree information is available, a commonly used option for Φ is the pedigree-based
kinship matrix [2]. When Φ is obtained from pedigrees, one implicitly assumes that the
pedigree information is reliable and the founders are independently drawn from a single
population [2]. For samples containing cryptic relatedness and/or hidden population
structure, Φ can be estimated using genotype data at a large number of SNPs across
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the genome. Kang et al. [53] proposed an empirical GRM Φ̂, where the (i, j)th entry
of the matrix is estimated by

Φ̂ij =
1

S

S∑
s=1

(Gsi − 2p̂s)(G
s
j − 2p̂s)

2p̂s(1− p̂s)
,

where s = 1, . . . , S indexes the SNPs being considered across the genome, Gsi and
Gsj are the genotypes of individuals i and j at SNP s, and p̂s is the sample average
estimator of the minor allele frequency of SNP s. The use of this empirical GRM in
LMM has been demonstrated to be effective in correcting for a variety of types of
population and family structure in association analysis.

The LMM has historically been viewed as a theoretically appealing but computa-
tionally demanding approach [33]. In a typical GWAS, model (1) needs to be analyzed
for millions of different Gtest’s, one for each SNP. Owning to the recent development
of efficient algorithms, LMM has now become feasible for large cohort studies with
up to half a million individuals [67]. A number of LMM software packages have been
developed for large-scale GWASs (see Table 1). Algorithms such as EMMAX [53] and
GRAMMAR-Gamma [115] assume constant variance component parameters σ2a and
σ2e across tested SNPs, and estimate them under the null only once per genome-wide
scan. This approximation seems reasonable, at least at the initial stage of analysis,
considering that most SNP effects are small. Other algorithms such as GEMMA [147]
and FaST-LMM [64] implement an exact analysis which re-estimates the variance
component parameters for each tested SNP. In addition, different software packages
also vary in their strategies for constructing the empirical GRM: GCTA-LOGO [140]
performs a leave-one-chromosome-out (LOCO) scheme to avoid proximal contamina-
tion, in which only SNPs not located on the same chromosome as the tested SNP
are included in the calculation of the GRM; FaST-LMM [64] selects a subset of SNPs
through FaST-LMM-Select [65] for GRM estimation. Most packages separate GRM
estimation from the association testing, thus allowing users to read in an externally
estimated GRM as desired. A recent study [30] compared the performance of different
LMM-based methods, including GTAM [2], EMMAX [53], GRAMMAR-Gamma [115],
FaST-LMM [64], GEMMA [147] and MASTOR [49], in GWASs with related individ-
uals. The results show a strong concordance in the association signals across different
packages, suggesting that the software choice may be more subject to computational
considerations such as speed and memory usage.

3.3. Binary-Trait Association Analysis

3.3.1. Generalized Linear Mixed Models and the Quasi-likelihood Approach

We now turn our attention to association analysis on a binary trait. Many human
GWASs are conducted on traits that come in the form of a binary variable, e.g., the
presence or absence of a specific disease. A binary trait takes on two possible values,
Yi ∈ {0, 1}. Unlike a normal random variable, a binary random variable has its mean
restricted between 0 and 1 and admits a particular relationship between its mean and
variance specified by σ2i = µi(1 − µi). To accommodate these features, a generalized
linear model (GLM) seems a natural option when the sample consists of only unrelated
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individuals in the absence of population structure,

Yi|W ,G ∼ Bernoulli(µi), independently, (2)

logit(µi) = W iβ +Gtest
i γ, i = 1, . . . , n,

where µi is the mean of Yi conditional on W and G, W iβ represents the covariate
effects for individual i, γ is the association parameter of interest, and logit(µi) =

log
(

µi

1−µi

)
is the link function. In general, the logit link can be replaced by other link

functions such as probit. The use of logit link enables the interpretation of the model
coefficients in terms of log odds ratios, whereas the probit link corresponds to the
classical liability-threshold model [133].

When the sample contains population structure and family relatedness, the asso-
ciation analysis based on model (2) is sensitive to unmeasured confounding factors.
Given the success of LMMs in quantitative-trait analysis, current GWASs frequently
fit LMMs (1) to binary traits. This is in the spirit of Armitage’s test [5], in which the
binary trait Y is treated as if it were quantitative. However, the use of linear mod-
els for binary traits relies on a generally invalid assumption that ignores the intrin-
sic heteroscedasticity in the binary data caused by the variance-to-mean relationship
σ2i = µi(1− µi). In the presence of important covariates such as population stratifica-
tion, the homoscedasticity assumption in LMMs is violated [50,83]. As a consequence,
fitting LMMs to binary traits could lead to inflated type 1 error and reduced power
in the association testing.

A statistically more justified modeling option is to incorporate random effects into
the GLM given in (2) in order to account for the polygenic effects resulting from
sample structure. The generalized linear mixed model (GLMM) combines GLM and
LMM by including a random effect in the mean model,

Yi|W ,G,η ∼ Bernoulli(µi), independently,

with logit(µi) = W iβ +Gtest
i γ + ηi with η = (η1, . . . , ηn)T ∼ N(0, σ2aΦ),

where η is the random effect due to the additive polygenic effects, σ2a is the vari-
ance of the random effect, and Φ is the GRM as in Section 3.2. Although GLMM is
well justified for modeling a binary trait, its use in large-scale GWAS is limited due
to high computational cost. Fitting a GLMM usually involves an unstable and often
intractable high-dimensional integration over the distribution of the random effects.
Recent attempts to overcome this problem approximate this integral by introducing
some regularity or stochasticity in the fitting algorithm. For example, GMMAT [17]
takes a penalized log-likelihood approach to obtain the shrinkage estimators in a flex-
ible and fast algorithm, and GLOGS [108] adopts a sampling-importance-resampling
approach to approximate the MLE estimators. Both software packages perform score-
based association tests and are applicable to large-scale binary-trait GWASs. A po-
tential drawback of these algorithms is that the approximation necessary for speeding
up computations may lead to compromised estimation accuracy. For example, in the
statistics literature, it is known that penalized methods may yield estimates that are
biased towards zero when used on binary data [101].

In contrast to GLMM, the quasi-likelihood model is another approach to modeling
binary traits in samples subject to population or family structure. It specifies only the
first two moments of Y |(W ,G) rather than a full probability distribution. Because
the random effects are implicitly integrated out in the model, the quasi-likelihood
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approach bypasses the need for high-dimensional integration. In the context of asso-
ciation analysis, the quasi-likelihood model is expressed as

logit(µi) = W iβ +Gtest
i γ, i = 1, . . . , n

Var(Y |W ,G) = M1/2ΣM1/2, with Σ = ξI + (1− ξ)Φ,

where µi is the mean of Yi conditional on W and G, M1/2 denotes an n × n diago-
nal matrix with ith diagonal element

√
µi(1− µi), γ is the association parameter of

interest, ξ ∈ [0, 1] is a variance component parameter, and Φ is the GRM as before.
Note that Σ is pre- and post-multiplied by the diagonal matrix M1/2 to respect the
Bernoulli variance µi(1−µi). In the quasi-likelihood framework, parameter estimation
does not require the maximization of a fully specified likelihood function, which can
be computationally burdensome, but instead can be achieved efficiently by solving
estimating equations [52,127,145]. This feature makes quasi-likelihood an appealing
approach to modeling non-Gaussian data with complex dependent structure.

3.3.2. Case-Control Ascertainment

Non-random ascertainment arises frequently in genetic studies, and it needs special
attention for binary-trait association analysis. In binary-trait GWASs, there are two
common sampling designs: (i) case-control studies where individuals are sampled on
the basis of the phenotype (case-control ascertainment) or on the basis of the phe-
notype and clinical covariates (case-control-covariate ascertainment); (ii) prospective
cohort studies where individuals are randomly sampled from the base population prior
to the onset of disease/disorder. GWASs for low-prevalence diseases often adopt a
case-control design wherein affected individuals (cases) are over-sampled relative to
the disease prevalence. Compared to a prospective cohort design, a case-control design
poses additional challenges to association modeling. In general, the joint distribution
of (Y ,G,W ) in a case-control ascertained sample differs from what it would be in a
simple random sample [50]. For example, unequal case-control sampling ratios across
subpopulations may introduce population confounding, even if disease prevalence is
the same in all subpopulations [17]. Ascertainment can also create a spurious correla-
tion between high-risk genotypes and high-risk covariates in case-control samples due
to the enrichment of both risk genotypes and covariates in the cases [74,91].

Recently, several methods have been proposed in the attempt to allow case-control
ascertainment in binary-trait GWASs. LEAP [130] and LTMLM [41] account for over-
sampling of cases by using an externally obtained disease prevalence to adjust the
heritability estimate. Both methods fit a liability threshold linear mixed model to the
case-control data and proceed to test for association using latent liability estimates.
However, as pointed out by the authors, the presence of related individuals in the sam-
ple could lead to biased liability estimates. LT-Fam [41] is an extension of LTMLM
to the family-based case-control ascertainment, and it chooses to use published her-
itability estimates to avoid the biased heritability estimation in the liability scale.
Instead, GMMAT [17] and CARAT [52] fit logistic mixed models to the case-control
data. These two methods do not require the specification of a disease prevalence and
are generally applicable to samples with family and population structure including
population stratification caused by unequal case-control ratio across subpopulations.
To guard against the case-control ascertainment, CARAT takes one step further: it
uses a retrospective model to calibrate the association test statistic. As we will see in
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the next section, retrospective analysis brings a number of advantages over the stan-
dard prospective analysis, including robustness to case-control ascertainment and to
phenotype model misspecification.

3.4. Retrospective vs. Prospective Analysis

Standard association methods model the phenotype as a response variable while using
genotypes and covariates as predictors. This approach is termed a prospective analy-
sis, as opposed to a retrospective analysis that we will describe later. The prospective
model is biologically easier to interpret as it describes how the phenotype is influenced
by the genetic marker and other covariates for individuals randomly sampled from a
population. When statistical inference is based on a phenotype model, careful and ac-
curate specification of the phenotype distribution is often required in order to produce
well-calibrated and powerful association tests.

However, in practice, it is typically unknown what the underlying distribution of
the phenotype is and how it relates to the covariates. Consequently, phenotype model
misspecification is ubiquitous. This includes, for example, failure to include important
non-genetic effects, neglecting epistasis or gene-environment interactions, ignoring one
or more variance components, and phenotype-based ascertainment in the sampling
design. Performing statistical inference based on a misspecified model can lead to im-
proper control of type 1 error and/or reduced power. In fact, several studies have
shown that the standard (prospective) LMM produced inflated test statistics if addi-
tional important variance components were missed out in the model [110,122].

A possible remedy for phenotype model misspecification is to use a retrospective
model for association analysis; that is, we treat genotype as a response variable and
model the distribution of the genotype conditional on the phenotype and covariates.
While, in theory, model misspecification can lead to compromised performance in
both retrospective and prospective methods, it tends to be less of a concern for ret-
rospective analysis due to two reasons [50]: First, it has been shown that a correctly
specified prospective model for Y |(W ,Gtest) in an ascertained sample becomes mis-
specified with either case-control ascertainment or case-control-covariate ascertain-
ment, whereas a retrospective model for Gtest|(Y ,W ) is unaffected; Second, it can be
argued that, the phenotype distribution is intrinsically more challenging to correctly
specify than the genotype distribution, because Mendelian inheritance is highly infor-
mative about how the genotypes may be distributed under the null. Recent work has
established the connection between the prospective and retrospective models. Under
suitable assumptions, the association parameter of interest can be identified in the con-
ditional mean of Gtest|(W ,Y ). For example, the retrospective version of LMM given
in Equation (1) models the genotype Gtest as a random drawn from a distribution
with null covariance Var0(G

test|W ,Y ) = σ2sΦ and mean

E(Gtest|W ,Y ) = ps1 + δΦΣ−1(Y −Wβ), (3)

where ps is the allele frequency and σ2s is the variance ofGtest for an outbred individual.
In this case, we wish to test the null hypothesis δ = 0. (See [49,126] for more details on
justification.) Although obtaining the full distribution of Gtest is not straightforward,
the first two moments are enough to construct a quasi-likelihood score test statistic
for δ. The retrospective formulation for binary-trait association modeling has been
proposed similarly [107,118,119].

Retrospective modeling is an appealing approach both in theory and in practice.
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Since retrospective inference is conditional on the phenotype, the resulting test statistic
is robust to phenotype model misspecification and phenotype-based or phenotype-
and-covariate-based ascertainment [49]. This feature is extremely useful in binary-
trait association studies in which non-random ascertainment is a common practice. In
addition, the score statistics derived from (3) have the same calibration factor across
SNPs except for a scalar multiplier σ̂2s . Making use of this fact facilitates the efficient
implementation of a genome-wide association scan that scales linearly in the number
of individuals and linearly in the number of SNPs [52,67,115].

In the context of score tests for association, parameter estimation is necessary only
under the null hypothesis of no association. This motivates another class of association
tests obtained by combining a prospective model with a null retrospective model,
including MASTOR [49], CARAT [52] and CERAMIC [145]. To illustrate the idea of
this approach, we start by noting that a number of prospective association statistics
(such as GTAM [2] and GRAMMAR-Gamma [115]) can be written as

Tpro =

(
Y TV −1Gtest

)2
Var0,Y (Y TV −1Gtest)

, (4)

where V −1 is a certain choice of matrix that does not depend on Y orGtest, and Var0,Y
denotes the null variance taken with respect to Y under the model (1). In the light of
retrospective modeling, one could replace the calibration factor in the denominator,
Var0,Y (Y TV −1Gtest), by Var0,Gtest(Y TV −1Gtest), where Var0,Gtest denotes the null
variance taken under a null model for Gtest conditional on Y and W . For example,
the following null genotype model [119] can be used,

E0(G
test|W ,Y ) = ps1, and Var0(G

test|W ,Y ) = σ2sΦ, (5)

where Φ is a GRM assumed to be the same across SNPs whereas the scalar multiplier
σ2s is allowed to vary across SNPs. Combining (4) and (5) leads to a retrospective
association statistic

Tretro =

(
Y TV −1Gtest

)2
Var0,Gtest(Y TV −1Gtest)

=

(
Y TV −1Gtest

)2
σ2sY

TV −1ΦV −1Y
. (6)

Under the null, Tretro follows a χ2
1 distribution. It is worth noting that the model

given in (5) makes relatively weak assumptions about the genotype distribution under
the null and are satisfied by a variety of common models for population structure as
well as for family relatedness [119]. Moreover, the test based on (6) remains valid even
when the phenotype model is misspecified and with either random or phenotype-based
ascertainment [49,52,145]. As a result, the retrospective way of assessing significance
enables robust control of type 1 error. Meanwhile, compared with a purely retrospective
analysis, the combination approach inherits the flexibility of a prospective analysis for
modeling various types of phenotype data.

3.5. Extensions and Challenges

Existing GWAS methods typically look for genetic association on a single-SNP basis,
i.e., each SNP is tested individually for its marginal association with a particular phe-
notype of interest, with all other SNPs ignored. While this approach has successfully
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identified thousands of high-risk SNPs, a considerable proportion of heritability re-
mained unexplained for most complex diseases. The missing heritability problem [29]
has motivated more sophisticated strategies for examining genetic association. One
possibility is that the missing heritability stems from the polygenic nature of the
complex trait. To this end, a number of multi-locus association methods have been
developed. Some methods propose to test the joint effects of multiple genetic variants
in a gene or pathway with the trait [89,102,135]. This approach bears some similar-
ity to the SNP-set test in the rare-variant analysis (see Section 4), and can greatly
complement the single-SNP approach in GWASs. Other methods use a different strat-
egy, by starting with the entire set of SNPs as predictors in a regression model and
employing a variable selection technique to attain a reduced model with a subset of
SNPs. The variable selection criteria usually involve some parameter regularization
like LASSO [12,70,137] or utilize sparse Bayesian variable selection [37,45] to reduce
the model complexity. The selected SNPs can then be used in further analysis, for
example, to test for gene-gene interactions [46,127].

In addition to multi-locus analysis, multi-phenotype analysis is emerging as a pow-
erful tool in association studies. Increasing evidence shows that a single genetic variant
or a set of genetic variants can affect multiple traits at the same time, a phenomenon
called pleiotropy [23,106]. This brings about the concept of phenome-wide association
study (PheWAS) [14] – a reversal of the GWAS paradigm – in which a single genetic
variant is tested for an association with a broad range of human phenotypes. A num-
ber of multi-phenotype methods are available: MQFAM [32] uses canonical correlation
analysis to identify a linear combination of the traits that maximizes the correlation
with the tested genetic variant; MV-BIMBAM [109] provides a Bayesian model com-
parison approach for multivariate association analysis; PHENI [24] applies a Bayesian
multiple-phenotype mixed model for imputing and analyzing multiple phenotypes;
MV-LMM [148] is the multivariate analogue of EMMA [54], which fits a multivari-
ate linear mixed model to multiple, possibly related phenotypes. Despite the growing
body of toolkits, simulated data suggested that no single method performs best under
all scenarios [14]. Development of the PheWAS approach is still in its infancy, and
unlocking the full potential of PheWAS for the characterization of the complex human
genotype-phenotype relationship remains challenging.

4. Rare-variant Association Studies Using High-throughput Sequencing

4.1. Background

Although GWASs have successfully identified more than 10,000 SNPs associated with
complex human traits and diseases [131], much of the heritability for these traits
remains unaccounted for [71]. To date, the genetic markers targeted by GWAS are
predominantly common variants (MAF ≥ 5%). However, rare variants (MAF < 5%)
are highly abundant in the human genome representing 95% of the genetic variabil-
ity [82]. Previous studies [29,71] have suggested that these rare variants, while largely
unrepresented in GWAS, may partially contribute to the missing heritability unex-
plained by GWAS findings [29,71]. Both evolutionary theory and empirical studies
indicate that deleterious mutations undergo purifying selection and therefore tend
to be rare [57,68,149]. There is also recent evidence that rare genetic variations are
implicated in complex diseases [38,90,99].

Recent advances in high-throughput sequencing technologies have opened up new
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opportunities for detecting rare-variant association with complex traits. Unlike array-
based genotyping used in GWASs, high-throughput sequencing technologies do not rely
on probes for preselected targets, thereby facilitating the identification of a plethora
of rare genetic variations in the genome. In the past few years, the sequencing cost
has been reduced dramatically and is still falling. As a result, whole-genome and
whole-exome sequencing studies have been increasingly deployed as a popular tool to
understand the contribution of rare variants to complex traits.

4.2. Region-based Association Analysis for Rare Variants

With increasing availability of high-throughput sequencing data, there is pressing de-
mand to develop powerful association tests for rare genetic variants. While analysis
of rare-variant associations presents some of the same analytical problems posed by
GWAS, it also faces some unique challenges. In GWASs, the standard approach to as-
sociation testing is the single-SNP method, in which SNPs are tested one at a time. The
statistical power of such a test, for a fixed effect size, declines as the MAF of the tested
SNP decreases. As a result, the single-SNP method may suffer from substantial power
loss when used to analyze rare variants [9] due to the rarity of individuals carrying
the mutant alleles. Moreover, the genome-wide significance threshold of α = 5× 10−8

commonly adopted in GWAS corresponds to approximately a million independent loci
in the human genome, which is an estimate based on the total number of common
SNPs and the LD structure exhibited by common genetic variation [22]. However,
rare variants are far more abundant in the genome and less correlated with each other
than common SNPs, which results in a more severe multiple testing burden. As a con-
sequence, a more stringent significance threshold may be needed, leading to further
power loss [7]. Nonetheless, single-variant tests can still be a useful tool for rare-variant
analysis. The potential power loss may be mitigated for studies with very large sample
sizes and rare variants whose effects sizes are very large [86].

A common strategy to improve power in rare-variant association analysis is to per-
form a region-based analysis, in which information across putative causal variants in
a predefined genetic region is aggregated to test for association with the phenotype.
Because the genetic regions are frequently defined by individual genes, such tests are
often also referred to as gene-based tests. The regions can also be chosen using other
functional annotation (see Section 4.4.1). These regions are then considered the units of
association tests, and the analysis goal is to detect whether a group of variants within
a region are jointly associated with the trait of interest. This aggregation strategy can
improve statistical power by (i) accumulating the single-variant effects to boost asso-
ciation signal, and (ii) relieving multiple testing burden by reducing the total number
of tests performed.

In recent years, there have been numerous methods developed for region-based tests.
Here, we review some of the most commonly used types of methods. We consider a
study with n individuals and a genetic region of interest in which m rare variants will
be aggregated in a test. Let Yi denote the phenotype of individual i, and Gij = 0, 1 or
2 denote the genotype of individual i at variant j coded by the number of rare alleles
carried by the individual.

4.2.1. Burden Tests

One broad class of region-based methods [61,69,75,93], typically referred to as “burden
tests,” involve collapsing multiple rare-variant sites in a region into a single variable,
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representing a genetic burden score. The idea behind burden tests is that the presence
and/or greater abundance of rare mutations in an individual confers a genetic burden
that tends to add to disease susceptibility. A simple way to define the genetic burden
score is

Bi =

m∑
j=1

wjGij ,

where wj is a prespecified weight for variant j that reflects the prior information on
how likely the variant is to be associated with the phenotype and how strong the effect
is. Then association is tested between the trait and the burden score in a univariate
fashion, under a regression model or using nonparametric procedures. For example, for
a quantitative trait, one can use a linear model where the trait is the response variable
and the explanatory variables include the burden score and possible covariates. Then,
to test for genetic association, one can consider the score statistic for the effect of the
burden score on the trait, and the resulting test statistic is equivalent to

Tburden = (

m∑
j=1

wjSj)
2,

where Sj is the marginal score statistic of variant j. Significance of the test statistic
can be assessed by comparing its value to a chi-square distribution with 1 degree of
freedom.

In the genetic burden score, various weights have been proposed. For example, using
equal weights for all variants [76] amounts to simply counting how many rare variants
each individual bears. Alternatively, weights can also be constructed on the basis of
the MAF, pj , of a variant in the form of (i) wj = 1/

√
pj(1− pj), which upweights

rarer variants [69], (ii) wj = I(pj < t), which retains only the SNPs whose MAFs

are below a threshold [61], or (iii) wj =
√
pj(1− pj), which is derived assuming equal

contributions to population disease risk from all variants [111]. The variants can also
be weighted based on their sequencing quality [6]. Another approach is to construct
the weights based on predicted functions of the variants [58], such as bioinformatic
annotations of the impact of an amino acid change. Many other variations of the
burden tests exist. These include two of the earliest burden methods, CAST [75] and
CMC [61], which set Bi = 1 whenever at least one rare variant is present for individual
i and Bi = 0 otherwise.

A limitation of burden tests is that they make strong underlying assumptions about
the configuration of the genetic effects across variants. Their power relies on most of
the pooled variants being causal, and their effects being mostly in the same direction
and of similar magnitude. Violations of those assumptions are highly likely in practice
and can result in substantial power loss [51,60,81]. Intuitively, if the Sj ’s have different
signs in equation (4.2.1), then the association signals of individual variants may cancel
each other out when they are aggregated via the sum of the Sj ’s.

A handful of attempts have been made to couple a burden test with data-drive pro-
cedures in order to make the method more flexible. The Variable Threshold (VT) [93]
builds on the hypothesis that, due to purifying selection, there is an MAF threshold
below which a variant will have a much higher likelihood to be functional, and that
power can be gained by pooling only such variants and ignoring the others. Since the
MAF threshold is unknown, VT adaptively chooses a working threshold that yields
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the most significant association result, with the p-value of the resulting test statistic
assessed by permutations. Methods have also been proposed to construct the variant-
specific weights wj ’s in a data-adaptive way. Han & Pan [40] developed a method that
allows the sign of the weight wj to be either positive or negative depending on the
direction of the estimated marginal association of variant j from the same dataset.
Extensions of it have been proposed to allow the magnitudes of the weights to be
also estimated from the data [44,63,141]. It has been shown both theoretically and
in simulation studies that a burden test with data-adaptive weights is similar to a
variance component test [27]. To some extent, data-driven procedures can relax the
assumptions underlying a classical burden test. It should be noted that the significance
of an adaptive test needs to counterbalance the fact that additional parameters are
chosen based on the data. Consequently, the enhanced flexibility of data-driven tests
may come at the price of some power loss when too many additional parameters are
adaptively determined, e.g., when the parameters start to model the noise rather than
a systematic trend in the data. Another limitation of adaptive burden tests is that
many of them do not have an analytical null distribution and thus need resampling
techniques (e.g., permutations or bootstrapping) to assess p-values.

4.2.2. Variance Component Tests

A second broad class of region-based methods [56,81,88,134], which are called “variance
component (VC) tests,” consider the genetic effect of a rare variant as a random effect
and model the distribution of the effects across a set of variants being tested. Compared
to the burden test, which models the rare-variant effects as fixed, this random-effect
approach allows the genetic effects to have varying sizes and magnitudes across vari-
ants. This can accommodate the scenario where a mixture of protective, deleterious
and non-causal rare alleles are included in the test. Then, the VC method tests for
non-zero variance of the distribution of the random rare-variant effects by aggregating
individual variant statistics measuring the strength of association at each site. This
is in contrast to the approach taken by a burden test which directly aggregates the
genotypes of individual sites.

We use a linear model set-up to illustrate the idea of a VC test. For individual i,
let Yi be a quantitative trait of interest, Xi be a covariate (row) vector including the
intercept, Gi = (Gi1, · · · , Gim) be the genotype (row) vector for the m rare-variant
sites, and β = (β1, · · · , βm)T be a vector of the phenotypic effects of the m variants.
Given the variant effect vector β, a model for Yi is

Yi|β,Xi,Gi ∼ N(Xiγ +Giβ, σ
2),

where γ is the vector of covariate effects, and σ2 is the variance of environmental effects.
For a binary trait, a logistic model can be used instead. A VC method typically assumes
that the variant effects βj ’s are independent random effects coming from a common
distribution with zero mean and variance σ2β. Variant-specific weights can also be

incorporated in the model by assuming Var(βj) = wjσ
2
β. Then, the problem of testing

rare-variant association can be solved by testing H0 : σ2β = 0 against H1 : σ2β > 0. For

example, SKAT [134] uses weights from the density of a Beta distribution evaluated
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at the MAF of a variant, and its test statistic takes the form

Tvc =

m∑
j=1

w2
jS

2
j ,

where Sj is the marginal score statistic of variant j alone. It is noteworthy that by first
squaring the Sj ’s rather than directly summing them as is done in a burden test, this
test statistic allows both positively and negatively associated variants to contribute to
the aggregated signal without canceling out each other. Under the null hypothesis of no
association, the asymptotic distribution of Tvc is a linear combination of independent 1-
degree-of-freedom chi-square distributions, which can be used to assess p-values under
a large sample size. Other methods for p-value calculation have also been proposed to
improve calibration of the test statistic [60,142].

Examples of VC tests proposed prior to SKAT include SumSqU [88], which assumes
equal weights for all variants, and C-alpha [81], which can be seen as a special case
of SKAT for binary traits with no covariates incorporated. Another related type of
methods are kernel-based methods, many of which can be derived from a model similar
to what is assumed in a VC method [79,136], but with different assumptions made on
the variance structure of the variant effects.

4.2.3. Omnibus Tests

Burden tests and VC tests tend to perform well in different scenarios. VC tests are
more powerful than burden tests when the pooled variants include both negatively and
positively associated variants as well as neutral variants, whereas burden tests tend to
outperform VC tests when the proportion of causal variants is relatively high among
the pooled variants and the variant effects have similar directions and magnitudes [60,
134]. In practice, there is typically little prior knowledge about the configuration of
the genetic effects of the pooled variants, and the genetic architecture of the trait can
vary from one genetic region to another. Therefore, it is of interest to seek an omnibus
test that unifies the burden tests and the VC tests for enhanced robustness. SKAT-
O [60] is such a method attempting to join the strengths of the two approaches, with
a mixture of the two adaptively balanced by the data. It considers a class of convex
combinations of the burden and SKAT test statistics given by

Tρ = ρTburden + (1− ρ)Tvc,

for 0 ≤ ρ ≤ 1. To obtain an optimal test statistic, SKAT-O proposes to choose ρ
in a data-driven way to minimize the p-value of the corresponding Tρ. The signifi-
cance of the resulting test statistic can be evaluated analytically without the need
for permutations. By optimizing over the parameter ρ, SKAT-O adaptively balances
between burden tests and SKAT in order to achieve robustness for widely ranging
genetic architecture.

Other methods joining burden and VC tests have been also proposed. Derkach et
al. [26] proposed to first perform the two tests separately and then combine the p-values
using Fisher’s method:

TFisher = −2 log(pburden)− 2 log(pvc),

where pburden and pvc are the p-values of the burden and the VC tests, respectively.
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The significance of the test statistic TFisher is then assessed by permutation. Wang et
al. [129] proposed to jointly test for the common association across rare-variant sites
and the individual deviations from the common effect using a score test. A related
method was proposed by Sun et al. [112], which allows the common effect across
variants to depend on covariates and known variant characteristics.

An important advantage of an omnibus test is its robustness to deviations from the
assumptions underlying either the burden test or a VC test. For example, SKAT-O is
shown to have good power in scenarios where either burden test or SKAT performs
poorly, and may even outperform both under certain settings. However, when the
actual genetic architecture largely aligns with what is assumed in the burden or VC
tests, an omnibus test may suffer some power loss due to the price paid by optimizing
over a wider class of tests (as in SKAT-O) or losing extra degrees of freedom (as in
the method by Want et al. [129]). Another disadvantage of some omnibus tests is the
need for permutation procedures to assess significance, which may be computationally
intensive and hard to generalize to samples with population or family structure.

4.2.4. Other Tests

Many other rare-variant association testing methods have been proposed that do not
fit into the aforementioned categorization. In particular, an important factor that
affects the power of a test is the sparsity of association signals, as reflected by the
fraction of causal variants among the pooled variants. A number of attempts have
been made to detect associations when single-variant association signals are sparse.
The EC method [18] combines the single-variant test statistics in an exponential way:

TEC =

m∑
j=1

exp{Z2
j /2},

where Zj is a test statistic for variant j that follows a standard normal distribution un-
der the null (e.g., Zj given by Z2

j = S2
j /Var(Sj), where Sj is the score statistic). This is

in contrast to the burden test, which combines single-variant statistics linearly (Equa-
tion (4.2.1)), and the VC test, which combines them quadratically (Equation (4.2.2)).
The exponential combination scheme serves to amplify the effects from large Zj ’s and
thus helps boost power under scenarios of sparse association signals, where only a very
low fraction of the pooled variants are causal or have large effects. Permutations are
needed to compute the p-values in EC.

Recently, the higher criticism (HC) [28] has been explored and extended as
a statistical tool to detect rare-variant associations that are highly sparse and
weak [10,11,78,138]. HC is a statistical method that was originally proposed to ag-
gregate information across a large number of independent test statistics to test the
joint null hypothesis against the alternative that a sparse set of signals are present. To
address the unique needs of region-based rare-variant association analysis, adaptations
of HC have been proposed to accommodate correlations between single-variant statis-
tics induced by linkage disequilibrium [10], to allow analytic calculations of p-values
that do not rely on high-dimension asymptotics [11], and to be applicable to binary
regression problems [78].
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4.3. Methods For Samples with Family Structure

Related individuals are frequently included in high-throughput sequencing studies.
Samples of family members can yield several advantages in sequencing studies com-
pared with samples with unrelated individuals. Unlike the population-based design
in which the effect of a very rare causal variant can be challenging to capture due
to the extremely low frequency of observing the mutant allele, family-based samples
can be enriched with such variants and thereby yield improved power [55]. Moreover,
sampling individuals from a known pedigree offers unique opportunities to impute rel-
atives’ sequence data from a small number of sequenced individuals by leveraging the
pedigree information [39,123,126]. For a fixed sequencing cost, this can further improve
power. In addition, including related individuals allows for more reliable methods to
assess data quality and to detect and correct for sequencing errors [100,146].

As with GWAS data, when related individuals are present in high-throughput se-
quence data, association tests need to account for the family structure in order to
ensure adequate control of type 1 error and to improve power. To achieve this, sta-
tistical methods have been developed in recent years for rare-variant association de-
tection in completely general designs containing related individuals. Such methods
are appropriate for arbitrary combinations of related and unrelated samples, includ-
ing small outbred pedigrees and unrelated individuals, complex inbred pedigrees, as
well as population-based samples that include cryptic relatedness. FamSKAT [16] is
a method that extends SKAT to account for familial correlation by incorporating a
polygenic variance component in the VC model. More specifically, it assumes a multi-
variate normal distribution on Y given β, with the mean structure given in Equation
(4.2.2), the covariance structure given by

Var(Y |β,X,G) = σ2eI + σ2aΦ,

with the same assumptions on β as in the VC model for unrelated individuals. The
same authors proposed famBT [16], an extension of the burden test to family samples.
Schaid et al. [103] also developed extensions of the burden and VC tests to pedigree
data. As is the case for samples with unrelated individuals, for family samples, VC and
burden tests tend to perform well in different scenarios depending on the underlying
genetic architecture of the trait in the test region. To obtain a more robust method,
MONSTER is a method that joins the strengths of famVC and famBT by extending
SKAT-O to samples that include related individuals. Other types of tests have also
been extended to related individuals. Choi et al. [19] developed retrospective rare-
variant association tests for family samples, and Zhu & Xiong [151] developed an
extension to the CMC method. In addition to methods applicable to general study
designs that include relatives, various approaches have been developed specifically for
analysis of family-based designs [25,42,47,128].

4.4. Additional Considerations on the Analysis of Sequence Data

4.4.1. Which Variants to Aggregate?

In region-based rare variant tests, the set of variants that are grouped in a region con-
stitute the analysis unit. To select which variants are grouped into a unit, an important
issue is to determine the regions within which variants are to be pooled. A popular
option, particularly in whole-exome sequencing studies, is to collapse over an individ-

19



ual gene. A benefit of gene-based tests is their natural interpretability, because genes
are considered the functional units of heredity and many genes have well-annotated
functional information. An alternative approach is to construct the regions using slid-
ing windows of a fixed chromosomal length or number of variants [113]. Compared
with gene-based tests, this strategy has the advantage of being able to include inter-
genic variants. But it is often unclear how to choose the window size, and it can be
challenging to interpret significant regions.

Another important consideration is whether to include all variants in a region in a
test or to include only a subset of variants. For example, the subset of variants can
be chosen to be all the coding variants or only the nonsynonymous coding variants.
In addition, many bioinformatic tools are available to predict the impact of a DNA
mutation on the amino acid sequence, the functional role of the DNA mutation or
its evolutionary conservativenss [3,114,116,125]. Such predictions can be used to refine
the subset of variants included in a test. For example, variants that are predicted to be
likely detrimental can be prioritized. The bioinformatic predictions can also be used
to weight the variants.

4.4.2. Population Stratification

In addition to family structure, another frequent source of confounding in sequencing
studies is population stratification. To adjust for population structure in rare-variant
association testing, some authors have proposed to use similar strategies taken in
GWASs: PCs can be included as covariates in a regression model; alternatively, in
a rare-variant association test carried out in samples with possibly related individ-
uals, the pedigree-based kinship matrix can be replaced by a GRM estimated from
genome-wide data [103]. However, caution must be exercised when using these ap-
proaches. Because rare genetic mutations often reflect recent evolutionary history and
display a different stratification pattern from common SNPs, it is unclear whether
methods designed to control stratification for GWAS remain effective for rare-variant
analysis [66,73,87]. Using rare variants to estimate PCs and the GRM can be unstable
due to the low MAFs [121]. Further methodological research is needed to address the
problem of how population structure can be effectively adjusted for in rare-variant
association testing.

4.4.3. Multiple Testing Correction in Rare-Variant Association Analysis

As mentioned previously, the GWAS significance threshold of α = 5 × 10−8 may not
be appropriate for sequencing studies due to the greater abundance of rare variants
than common SNPs and their unique LD structure. For rare-variant analysis, there are
still no community standards for rare-variant analysis on a genome-wide significance
threshold in place that comparable to that in GWAS. This is partly due to the fact that
the number of tests performed depends on a variety of factors such as the sequencing
platform used, the depth of coverage, the size and ancestry of the sample, and which
and how variants are aggregated in a region-based test.

For single-variant tests, a range of thresholds have been suggested from 1 × 10−9

to 3.75× 10−7 under various scenarios and based on different assumptions [31,98,105].
For gene-based tests, it has been suggested that a reasonable genome-wide significance
threshold is α = 2.5× 10−6, based on Bonferroni correction corresponding to approx-
imately 20,000 genes in the human genome [77]. A limitation of this threshold is that
it does not take into account the correlations between tests performed for individuals
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genes [36]. With such correlations, the effective number tests are expected to be much
smaller than 20,000, potentially justifying a less stringent significance threshold and
thereby allowing for higher power. Moreover, it is not straightforward what threshold
should be used for other variant grouping schemes used in a region-based test. Xu
et al. [139] proposed a threshold empirically ascertained from whole-genome sequence
data on chromosome 3 from the UK10K study, but their study targeted a specific
implementation of sliding-window tests only and was based on data of European an-
cestry.

Given the scope and depth of current literature, there is not enough evidence to
comprehensively assess the performance of the proposed significance thresholds when
applied to new rare-variant analysis. It remains an open research question what the
best strategy is for handling multiple testing in high-throughput sequencing data.

5. Discussion

The past decade has witnessed a rapid expansion of big data in biomedical research.
In particular, high-throughput genotyping and sequencing techniques are routinely
utilized to study the genetic basis of complex human disease, and they generate mas-
sive genetic/genomic data that pose tremendous analytical challenges. Here, we have
reviewed some commonly-used statistical methods for the analysis of GWAS and high-
throughput sequencing studies, and have discussed some of the issues and challenges
that arise in such analysis. While many methods have been proposed for genetic asso-
ciation testing, the performance of a given method depends on the underlying genetic
architecture of a complex trait, and there is usually no single method that is optimal
across all scenarios. By comparing various methods, we have discussed some important
considerations for choosing a statistical test.

Another prevailing theme in our review is how to address the statistical depen-
dence in genetic association analysis; this includes, e.g., dependence among sampled
individuals, dependence between loci across the genome, dependence between multiple
phenotypes, etc. Neglecting or not properly accounting for such dependencies could
lead to inflated type 1 error and/or reduced power in association testing. Although
methods such as PCA and LMM have demonstrated powerful in accounting for sam-
ple structure in common-variant association analysis, their usefulness in rare-variants
analysis remains to be fully demonstrated.

Most of the work we have described are for (common or rare) single-nucleotide
variants, which have been the focus of the majority of genetic association studies.
Other types of DNA sequence variations such copy number variation and inversions
are less investigated but have been shown in many studies to be important components
for complex diseases [48]. Moreover, integrating multiple types of omics data such as
transcriptomic and metabolomic data offers great promise to further our understating
of biological processes underlying complex diseases.

Figures and Tables

Figure 1. Example Q-Q plots from simulated data when (A) no confounders are present
to inflate type 1 error and (B) confounders are present, leading to a global deviation
from the null hypothesis of no association.
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