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Abstract

With the increasing availability of microbiome 16S data, network estimation has

become a useful approach to studying the interactions between microbial taxa. Net-

work estimation on a set of variables is frequently explored using graphical models,

in which the relationship between two variables is modeled via their conditional de-

pendency given the other variables. Various methods for sparse inverse covariance

estimation have been proposed to estimate graphical models in the high-dimensional

setting, including graphical lasso. However, current methods do not address the com-

positional count nature of microbiome data, where abundances of microbial taxa are

not directly measured, but are reflected by the observed counts in an error-prone man-

ner. Adding to the challenge is that the sum of the counts within each sample, termed

“sequencing depth”, is an experimental technicality that carries no biological infor-

mation but can vary drastically across samples. To address these issues, we develop

a new approach to network estimation, called BC-GLASSO (bias-corrected graphical

lasso), which models the microbiome data using a logistic normal multinomial distribu-

tion with the sequencing depths explicitly incorporated, corrects the bias of the naive

empirical covariance estimator arising from the heterogeneity in sequencing depths,

and builds the inverse covariance estimator via graphical lasso. We demonstrate the

advantage of BC-GLASSO over current approaches to microbial interaction network

estimation under a variety of simulation scenarios. We also illustrate the efficacy of

our method in an application to a human microbiome data set.

1 Introduction

Microorganisms are ubiquitous in nature and responsible for managing key ecosystem ser-

vices (Arrigo, 2004). For example, microbes that colonize the human gut play an important

role in homeostasis and disease (Mazmanian et al., 2008; Kamada et al., 2013; Kohl et al.,

2014). To better reveal the underlying role microorganisms play in human diseases requires

a thorough understanding of how microbes interact with one another. The study of micro-

biome interactions frequently relies on DNA sequences of taxonomically diagnostic genetic

markers (e.g., 16S rRNA), the count of which can then be used to represent the abundance
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of Operational Taxonomic Units (OTU’s, a surrogate for microbial species) in a sample.

The OTU abundance data possess a few important features in nature. First, the data

are represented as discrete counts of the 16S rRNA sequences. Second, the data are compo-

sitional because the total count of sequences per sample is predetermined by how deeply the

sequencing is conducted, a concept named sequencing depth. The OTU counts only carry

information about the relative abundances of the taxa instead of their absolute abundances.

In addition, the sequencing depth can vary drastically across samples. Last, the OTU data

are high-dimensional in nature, as it is likely that the number of OTU’s are far more than

the number of samples in a biological experiment.

When such data are available, interactions among microbiota can be inferred through

correlation analysis (Faust and Raes, 2012). Specifically, if the relative abundances of two

microbial taxa are statistically correlated, then it is inferred that they interact on some level.

More recent statistical developments have started to take the compositional feature into ac-

count and aim to construct sparse networks for the absolute abundances instead of relative

abundances. For example, SparCC (Friedman and Alm, 2012), CCLasso (Fang et al., 2015),

and REBACCA (Ban et al., 2015) use either an iterative algorithm or a global optimiza-

tion procedure to estimate the correlation network of all species’ absolute abundances while

imposing a sparsity constraint on the network.

All the above methods are built upon the marginal correlations between pairs of microbial

taxa, and they could lead to spurious correlations that are caused by confounding factors

such as other taxa in the same community. Alternatively, interactions among taxa can be

modeled through their conditional dependencies given the other taxa, which can eliminate

the detection of spurious correlations. In an ideal setting, the Gaussian graphical models are

a useful approach to studying the conditional dependency, in which the data are modeled

through a multivariate normal distribution and the conditional dependency is determined

by the nonzero entries of its inverse covariance matrix. Graphical lasso is a commonly used

method to estimate sparse inverse covariance matrix for high-dimensional data under the

Gaussian graphical models (Yuan and Lin, 2007; Friedman et al., 2008). However, both the

count nature and the compositional features of the microbiome abundance data result in

violations of the multivariate normality assumption.
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SPIEC-EASI is a popular method for estimating a microbial interaction network that is

represented by a sparse inverse covariance matrix between the abundances of species (Kurtz

et al., 2015). It is a two-step procedure that first performs a central log-ratio (clr) trans-

formation on the observed counts (Aitchison, 1986) and then applies graphical lasso to the

transformed abundances. As noted in Kurtz et al. (2015), the clr -transformed abundances

add up to zero, which leads to a singular covariance matrix and thus an ill-posed problem for

estimating its inverse. To overcome this difficulty, SPIEC-EASI treats the covariance ma-

trix of the clr -transformed abundances as an approximation to that of the log-transformed

abundances that is no longer singular. Therefore, the second graphical lasso step is treated

as estimating the well-defined inverse covariance matrix of the log-transformed abundances

instead of the above-mentioned ill-posed problem. In other words, SPIEC-EASI is built upon

the approximation of two covariance matrices, and thus lacks a clear objective function.

More recently, several other methods have been proposed to infer a microbial network,

including gCoda (Fioravanti et al., 2018), CD-trace (Yuan et al., 2019) and SPRING (Yoon

et al., 2019). However, existing methods for inverse covariance estimation including these

methods and SPIEC-EASI do not properly account for two related features intrinsic to

microbiome data: (a) the data are compositional counts in nature, and (b) sequencing depth

is finite and varies from sample to sample. In microbiome research, a common strategy

to tackle uneven sequencing depths is rarefaction, in which data on samples with higher

sequencing depths are thinned by randomly subsampling from the observed counts so that

the sequencing depths are the same in the rarefied data. However, this is known to amount

to substantial loss of data (McMurdie and Holmes, 2014). Another widely-used practice in

microbiome data analysis, also adopted albeit implicitly in SPIEC-EASI, is to simply discard

the sequence depth by converting the count data directly to compositional proportions as

a proxy for the true relative abundances in a sample. However, it relies on the assumption

that the estimated proportion of a taxon in a sample is equal to its true value and ignores

the uncertainty of the proportion estimates as reflected by the sampling variance of these

estimates. Therefore, this approach does not adequately account for the variation in the

microbial counts and has been reported to result in excessive false positives in differential

abundance analysis of microbiome data (McMurdie and Holmes, 2014).

4



In this paper, we show, in the context of covariance estimation, that the proportion-based

approach leads to substantial bias in the estimator, which can deteriorate the accuracy of

the inferred interaction network. To address this challenge, we quantify the bias by directly

modeling the compositional count data. We develop BC-GLASSO (bias-corrected graphical

lasso), a method for inverse covariance estimation in microbiome data, which accounts for the

compositional count nature of microbiome data and embraces the heterogeneous sequencing

depths.

BC-GLASSO is a two-step procedure similar to SPIEC-EASI but possessing key distinc-

tions. First, BC-GLASSO is built upon the logistic normal multinomial distribution that

is commonly applied to model compositional count data (Aitchison, 1986; Billheimer et al.,

2001; Xia et al., 2013), and thus has a clear objective function. This is a hierarchical model

that models the compositional counts using a multinomial distribution and hierarchically the

multinomial probabilities using a logistic normal distribution. Compared to SPIEC-EASI,

the true covariance matrix is defined on the additive log-ratio (alr) transformed multinomial

probabilities instead of the clr -transformed abundances, with the benefit of being positive-

definite and possessing a well-defined inverse matrix. Second, we show that the naive es-

timator of the true covariance matrix, which is the sample covariance matrix based on the

alr -transformed abundances, has estimation bias in this hierarchical model. The bias can

be approximated by a term that is inversely proportional to the sequencing depths. Last,

motivated by the form of the estimation bias, we propose a bias correction procedure by

accounting for and, in fact, taking advantage of the heterogeneous sequencing depths. The

bias-corrected estimator of the true covariance matrix is easy to compute because it can be

written as a weighted average of sample-specific covariance matrix estimators based on the

alr -transformed abundances. Finally, we apply graphical lasso to estimate a sparse inverse

covariance matrix based on this bias-corrected estimator. The non-zero entries in this sparse

inverse covariance matrix are interpreted to represent an edge between the associated taxa

in a microbial interaction network.

The rest of the paper is organized as follows. In Section 2, we will describe the BC-

GLASSO method by introducing the logistic normal multinomial model for the compositional

counts, approximating the estimation bias of the naive estimator of the desired covariance
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matrix, and correcting its estimation bias. In Section 3, we will evaluate the performance

of BC-GLASSO via simulation studies and compare it with SPIEC-EASI. We will show

that BC-GLASSO performs better in terms of reducing the estimation bias for the covari-

ance matrix and detecting the edges in the microbial interaction networks more accurately.

In Section 4, we report a real data application, in which we compare the performance of

BC-GLASSO and SPIEC-EASI when applied to the data from the American Gut Project

(McDonald et al., 2018). Section 5 concludes this paper with some discussion. Some details

for the theoretical derivations in Section 2 are presented in the Appendix.

2 Bias-Corrected Graphical Lasso

2.1 Data and model

Consider an OTU abundance data set with n independent samples, each of which composes

observed counts of K + 1 taxa, denoted by Xi = (Xi,1, . . . , Xi,K+1)
′ for the i-th sample,

i = 1, . . . , n. Due to the compositional property of the data, the total count of all taxa for

each sample i is a fixed number, denoted by Mi. Naturally, a multinomial distribution is

imposed on the observed counts:

Xi|Pi = pi ∼ Multinomial(Mi; pi,1, . . . , pi,K+1), (1)

where pi = (pi,1, . . . , pi,K+1)
′ represents the sample-specific multinomial probabilities for

individual taxa satisfying that pi,1 + · · ·+ pi,K+1 = 1.

To model the variability of the multinomial probabilities in the population, we build a

logistic normal distribution on pi. We first choose one taxon, without loss of generality the

(K + 1)-st taxon, as a reference for all the other taxa and then apply the additive log-ratio

(alr) transformation (Aitchison, 1986) on the multinomial probabilities:

Zi,k = log

(
Pi,k

Pi,K+1

)
, i = 1, . . . , n, k = 1, . . . , K. (2)

Let Zi = (Zi,1, . . . , Zi,K)′ and further assume that they follow an i.i.d. multivariate normal
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distribution

Zi
iid∼ N(µ,Σ), i = 1, . . . , n, (3)

where µ is the mean, and Σ is the covariance matrix.

The above model in (1)–(3), known as a logistic normal multinomial model, is a hierar-

chical model with two levels. The multinomial distribution is imposed on the compositional

counts, which is the distribution of the observed data given the multinomial probabilities.

In addition, the logistic normal distribution is imposed on the multinomial probabilities as

a prior distribution.

The logistic normal multinomial model has been applied to microbiome data to detect

covariates that are associated with differential microbial taxa (Xia et al., 2013). The goal

of this paper, however, is to infer interactions between microbial taxa. To this end, we set

Ω = Σ−1 to be the inverse covariance matrix or the precision matrix. Ω is the parameter of

interest whose non-zero entries encode the conditional dependencies between Zi,1, . . . , Zi,K ,

which are interpreted as edges in the microbial interaction network. Our objective is to find a

sparse estimator of the inverse covariance matrix Ω based on the observed data (X1, . . . ,Xn).

2.2 Naive estimation

A naive approach to estimating Ω is a two-step procedure. First, one can estimate Z1, . . . ,Zn

from the multinomial distribution by applying the same alr transformation on the counts as

in

Ẑi,k = log

(
Xi,k

Xi,K+1

)
, i = 1, . . . , n, k = 1, . . . , K, (4)

and then apply graphical lasso directly on Ẑ1, . . . , Ẑn by treating them as surrogates for

Z1, . . . ,Zn:

`(Ω) = − log[det(Ω)] + tr(Σ̂Ω) + λ‖Ω‖1, (5)

where Σ̂ is the sample covariance matrix of Ẑ1, . . . , Ẑn and λ is a tuning parameter.

This naive estimation shares the same spirit as SPIEC-EASI (Kurtz et al., 2015) except

that the alr transformation is used in (4) but SPIEC-EASI uses the central log-ratio (clr)
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transformation

Ẑi,k = log

(
Xi,k

g(Xi)

)
, i = 1, . . . , n, k = 1, . . . , K + 1,

where g(Xi) is the geometric mean of the counts Xi,1, . . . , Xi,K+1. As noted in Kurtz et al.

(2015), the clr transformation results in a singular covariance matrix for the transformed

data, and thus the non-existence of the inverse covariance matrix. Nonetheless, Kurtz et al.

(2015) argued that this covariance matrix is an approximation of the covariance matrix of the

logged counts log(Xi,1), . . . , log(Xi,K+1) and they applied graphical lasso to this covariance

matrix directly. Therefore, SPIEC-EASI is built upon the approximation of two covariance

matrices, and thus lacks a clear objective function. In this paper, we focus on the alr

transformation in (4) instead of the clr transformation and call the resultant estimator of Ω

from (5) the naive estimator.

In the logistic normal multinomial model in (1)–(3), the inverse covariance matrix is

defined on the true parameters Z1, . . . ,Zn but not their estimators Ẑ1, . . . , Ẑn. The naive

estimation treats Ẑ1, . . . , Ẑn as known, which ignores the variation of Ẑ1, . . . , Ẑn as the

estimators of Z1, . . . ,Zn. In Section 2.3, we will show that the naive estimator has an

estimation bias due to the ignorance of the variation of Ẑ1, . . . , Ẑn.

2.3 Estimation bias

In this subsection, we investigate how the naive sample covariance matrix Σ̂ based on

Ẑ1, . . . , Ẑn estimates the true covariance matrix Σ in (3). In particular, we evaluate the

estimation bias of each element in the covariance matrix separately.

For each pair (k, l) with 1 ≤ k, l ≤ K, let σkl = Cov(Zi,k, Zi,l) be the true covariance

between Zi,k and Zi,l. Notice that σkl does not depend on i because Z1, . . . ,Zn share the

same distribution. The naive estimator of σkl is the sample covariance

σ̂kl =
1

n

n∑
i=1

σ̂i,kl =
1

n

n∑
i=1

(Ẑi,k − Ẑ·,k)(Ẑi,l − Ẑ·,l), (6)

where σ̂i,kl = (Ẑi,k− Ẑ·,k)(Ẑi,l− Ẑ·,l) and Ẑ·,k = 1
n

∑n
i=1 Ẑi,k for k = 1, . . . , K. In (6), it is seen

that the sample covariance σ̂kl is the arithmetic mean of σ̂1,kl, . . . , σ̂n,kl, the corresponding
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contributions from each sample. In the following, we will argue that σ̂i,kl is biased as an

estimator of σkl and so is σ̂kl.

When Mi is large, the Taylor’s expansion of Xi,k/Mi at its conditional mean Pi,k gives

the following approximation by ignoring higher-order terms

Ẑi,k ≈ Zi,k +

(
Xi,k

MiPi,k

− Xi,K+1

MiPi,K+1

)
− 1

2

[(
Xi,k

MiPi,k

− 1

)2

−
(

Xi,K+1

MiPi,K+1

− 1

)2
]
. (7)

A direct evaluation leads to the following approximations

E(Ẑi,k) ≈ µk −
Ck

2Mi

and E(Ẑi,kẐi,l) ≈ σkl + µkµl +
Ckl

Mi

, (8)

where Ck = E(P−11,k−P
−1
1,K+1) and Ckl = E(P−11,K+1)−1

2
Cov(Z1,k, P

−1
1,l −P

−1
1,K+1)−1

2
Cov(Z1,l, P

−1
1,k−

P−11,K+1) are quantities that do not depend on i. Plugging (8) to E(σ̂i,kl) leads to the following

approximation of its estimation bias when Mi and n are both large

E(σ̂i,kl) ≈ σkl +
Ckl

Mi

. (9)

For details of the above derivations, we refer to the Appendix. The result in (9) implies

that σ̂i,kl has an approximate bias with the order of M−1
i as an estimator of σkl, ignoring

higher-order terms. In addition, as the arithmetic mean of σ̂i,kl, the naive sample covariance

σ̂kl is also approximately biased with the order of 1
n

∑n
i=1M

−1
i for the bias term, when all

Mi’s and n are large.

The expression in (9) has a similar form to a simple linear regression if we treat σ̂1,kl, . . . , σ̂n,kl

as the responses and M−1
1 , . . . ,M−1

n as the explanatory variables. In this linear regression,

σkl serves as the intercept and Ckl serves as the slope. This observation motivates us to de-

velop a bias correction procedure based on fitting such a simple linear regression in Section

2.4.
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2.4 Bias correction and graphical lasso

We fit a simple linear regression of the responses σ̂1,kl, . . . , σ̂n,kl to the explanatory variables

M−1
1 , . . . ,M−1

n :

σ̂i,kl ∼ β0 + β1
1

Mi

, i = 1, . . . , n

and use the least-squares estimator of the intercept β0, denoted by σ̃kl, to estimate σkl. It is

not hard to show that

σ̃kl =
1

n

n∑
i=1

(1 + δi) σ̂i,kl, (10)

where

δi =
‖M−1‖1

‖M−1‖22 − ‖M−1‖21/n

(
‖M−1‖1

n
− 1

Mi

)
,

where M−1 = (M−1
1 , . . . ,M−1

n )′, and ‖ · ‖1 and ‖ · ‖2 denote the L1 and L2 norm of a vector,

respectively.

Compared to the naive estimator σ̂kl that is an arithmetic mean of σ̂1,kl, . . . , σ̂n,kl, the

bias corrected estimator σ̃kl is a weighted mean. It is seen that when the sample i has a

higher sequencing depth Mi, δi will be larger and so is the weight, which agrees with the

intuition that a higher sequencing depth gives more accuracy in estimating its compositional

probabilities. In addition, the fact that
∑n

i=1 δi = 0 implies that the sum of all the weights

still add up to one as same as in the naive estimator.

Fig. 1 presents a scatter plot of the estimated and true covariances in the (1,2)-entry

of the covariance matrix from a simulation study. If an estimator has no bias, the points

on the scatter plot should lie around the straight line which indicates the equality of the

quantities on both axes. It is obvious that the naive estimator has a substantial bias (left

panel) and the bias correction procedure is effective in removing the bias (right panel). This

can also be justified by evaluating E(σ̃kl) by combining (9) and (10), which turns out to be

approximately unbiased as

E(σ̃i,kl) ≈ σkl.

In another word, the bias-corrected estimator σ̃kl is approximately unbiased when all se-

quencing depths and the sample size are large. In Fig. 1, we also notice that the variance

of the bias-corrected estimator σ̃kl is slightly higher than that of the naive estimator σ̂kl. In
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this particular simulation, the sample variance of σ̃kl is approximately twice of the sample

variance of σ̂kl.

Insert Fig. 1 here.

With the bias-corrected estimator of the covariance matrix Σ̃ whose (k, l)-entry being σ̃kl

for 1 ≤ k, l ≤ K, we can apply graphical lasso to achieve a sparse estimator of the inverse

covariance matrix Ω = Σ−1 as in

`(Ω) = − log[det(Ω)] + tr(Σ̃Ω) + λ‖Ω‖1. (11)

Note that the only difference of (11) from (5) is the replacement of the naive estimator Σ̂

by the bias-corrected estimator Σ̃. Therefore, we call this approach bias-corrected graphical

lasso (BC-GLASSO) and the resultant inverse covariance matrix estimator the BC-GLASSO

estimator.

In the following sections, we will apply BC-GLASSO on simulated data and real data to

evaluate its performance by assessing its estimation unbiasedness for the covariance matrix

and its identification accuracy for the interaction network.

3 Simulation Studies

We perform simulation studies under a variety of settings to assess the effectiveness of bias

correction and the accuracy of network identification using BC-GLASSO and to compare

its performance with SPIEC-EASI. Note that in addition to adopting the naive approach

described in Section 2.2, SPIEC-EASI also uses the clr transformation rather than the alr

transformation in BC-GLASSO. For a fair comparison and to highlight the impact of the

proposed bias correction technique enabled by more careful modeling of the data, we will

adopt the alr transformation in our implementation of SPIEC-EASI instead of its default

clr transformation. We also implement CD-trace and gCoda for comparison.
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3.1 Simulation settings

We consider four types of network structures: the random-edge, cluster, hub, and scale-free

networks (Fig. 2). First, in the random-edge network, each pair of nodes, independently of

other pairs, has a probability of 0.3 to be connected by an edge. In its corresponding inverse

covariance matrix Ω, ωkl is 1 if nodes k and l are connected and 0 otherwise, while ωkk is a

constant in k that controls the condition number of Ω at 100. Second, in a cluster network,

the nodes are evenly partitioned into 2 disjoint groups of the same size. Each group form a

cluster that is interconnected as a random-edge network with the connection probability 0.3.

Third, similar to the cluster network, the nodes in a hub network are also evenly partitioned

into 2 disjoint groups of the same size and each group has a center to which all the other nodes

within the same group are connected to. Finally, in a scale-free network, the distribution of

degrees (the number of connections each node has to other nodes) follows a power law. The

cluster, hub, and scale-free networks as well as their respective inverse covariance matrices

are generated using the Huge package in R (Albert and Barabási, 2002; Zhao et al., 2012).

In this package, we set the off-diagonal element of Ω to be v = 0.3 for the cluster network

and v = 0.03 for the hub and scale-free networks. Throughout our simulations, we fix the

number of nodes to be K = 50 for all four types of networks.

Insert Fig. 2 here.

For each network structure, we simulate microbiome compositional counts on n = 500

samples with heterogeneous sequencing depths given by M = (M1, · · · ,Mn)′. We consider

three settings for M: (M1) half of the Mi’s are K/2.5 and the other half are 40K, (M2) each

Mi is independently drawn from the uniform distribution from K/2.5 to 40K, and (M3) the

Mi’s are generated from the real sequencing depths in the 16S data from the American Gut

Project (see Section 4). Specifically, for setting (M3), after removing rare OTU’s (average

relative abundance < 0.01%) in the real data, we compute the total reads of each sample

based on a randomly selected set of K + 1 taxa. Then, after removing samples whose total

reads are below K+1, we randomly draw 500 samples from the rest and use their total reads

as M. In summary, settings (M1) and (M2) contrast cases with high and low heterogeneity
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in sequencing depth, while setting (M3) tries to mimic the real situation.

Given the inverse covariance matrix Ω for each network structure, we independently

draw Z1, . . . ,Zn from the multivariate normal distribution given by N(µ,Ω−1), where µ =

(µ0, · · · , µ0)
′. In general, with other factors held fixed, the greater µ0 is, the rarer the

reference taxon tends to be. In our simulations, we use µ0 = log(4/K) < 0, which implies that

the reference taxon is on average more abundant than the other taxa. Given Z1, . . . ,Zn and

the sequencing depths M generated as described in the previous paragraph, the compositional

counts are generated based on the multinomial distribution in (1) and (2). The simulated

count data may include zero counts. In order to perform the log-ratio transformation to

obtain the Ẑi’s, we add to each count Xi,k a small positive number equal to p̂k(K + 1),

where p̂k = n−1
∑n

i=1Xi,k/Mi is the estimated mean relative abundance of taxon k. This

allows a zero count to be replaced by a positive number whose value depends on the relative

abundance of the associated taxon in the other samples for which its observed abundance is

non-zero. For each simulation setting, the process described above is independently repeated

to create 100 replicates.

3.2 Simulation results

First, to assess the effectiveness of BC-GLASSO in correcting the estimation bias in the

covariance matrix, we compare the estimated covariances to their corresponding true values

across simulation replicates to obtain the empirical bias and mean squared error (MSE)

separately for each off-diagonal entry in the covariance matrix. Table 1 summarizes the

results by averaging the absolute values of the empirical bias and the MSE values across all

pairs of taxa. In addition, the entry-wise bias values are visualized in heatmaps (see Fig.

S1-S4 in the Supplemental Materials).

To assess the accuracy with which a method is able to recover the interaction network,

we compare the true network with the inferred network obtained by joining pairs of nodes

with non-zero entries in the estimated inverse covariance matrix. The true positive rate is

defined to be the frequency with which an edge in the true network is present in the inferred

network, and the false positive rate is defined to be the frequency with which an edge not

present in the true network is identified in the inferred network. We implement BC-GLASSO,
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Table 1: Simulation results. Bias: average of the absolute values of the empirical bias across
all pairs of taxa; MSE: average of the MSE values across all pairs of taxa.

(M1) (M2) (M3)
Bias MSE Bias MSE Bias MSE

Random SPIEC-EASI 6.79E-4 2.34E-3 1.27E-2 6.30E-4 1.36E-2 6.79E-4
Edge BC-GLASSO 5.71E-4 4.75E-4 2.94E-3 5.25E-4 4.21E-3 5.71E-4
Cluster SPIEC-EASI 6.69E-2 8.27E-3 2.26E-2 2.68E-3 2.07E-2 2.56E-3

BC-GLASSO 3.84E-2 5.95E-3 7.51E-3 2.88E-3 5.93E-3 3.10E-3
Hub SPIEC-EASI 4.93E-2 3.77E-3 1.41E-2 2.00E-3 1.28E-2 1.99E-3

BC-GLASSO 3.61E-2 5.74E-3 4.19E-3 2.86E-3 4.31E-3 2.83E-3
Scale SPIEC-EASI 5.25E-2 4.12E-3 1.47E-2 1.99E-3 1.18E-2 1.95E-3
Free BC-GLASSO 3.76E-2 5.84E-3 4.54E-3 2.83E-3 4.28E-3 2.99E-3

SPIEC-EASI, CD-trace and gCoda with a range of values for the tuning parameter, which

allows us to plot the true positive rate of each method against its false positive rate in an

ROC curve. For CD-trace and gCoda, because the true network has one less node than the

dimension of the estimated inverse covariance matrix, we build the estimated network based

on the K-dimensional submatrix on the top left by excluding the last dimension. The ROC

curves from different simulation settings are included in Fig. 3.

Insert Fig. 3 Here.

From Table 1, we find that BC-GLASSO effectively reduces the overall bias by up to 2

orders of magnitude. We note that under some scenarios, the bias reduction comes at the cost

of a moderate increase in MSE. This is due to a potential increase in the variance of the bias-

corrected estimator as compared to the naive estimator. In addition, as demonstrated in Fig.

3, BC-GLASSO outperforms the naive procedure in recovering the interaction network across

all network structures and sequencing depth settings in our simulations. More specifically,

at a fixed true positive rate, BC-GLASSO consistently maintains a lower false positive rate

than SPIEC-EASI, and at a fixed false positive rate, BC-GLASSO consistently attains a

higher true positive rate. BC-GLASSO exhibits a greater advantage over SPIEC-EASI in

a setting with high heterogeneity in the sequencing depths (M1) than in a setting with

low heterogeneity (M2). Substantial improvement in network recovery is achieved by BC-
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GLASSO when the sequencing depths are obtained mimicking the real situation in setting

(M3). For example, for the scale-free network, BC-GLASSO, when compared to SPIEC-

EASI, reduces the false positive rate from 24.7% to 15.4% with a fixed true positive rate of

90%. For a random-edge network, BC-GLASSO increases the true positive rate from 44.8%

to 59.0% with a fixed false positive rate of 20%. The comparison with CD-trace shows that

BC-GLASSO either outperforms or achieves very similar performance to CD-trace in most of

the settings, with the exception of a hub network with high sequencing depth heterogeneity

(M1), for which CD-trace is slightly better than BC-GLASSO. However, BC-GLASSO yields

substantial improvement over CD-trace in several settings including the cluster network with

M1. Overall, we conclude that BC-GLASSO compares favorably with CD-trace. Moreover,

the comparison with gCoda indicates that the performance of gCoda is dominated by that

of CD-trace and BC-GLASSO.

In summary, BC-GLASSO is effective in reducing bias in the estimation of the covariance

matrix compared to SPIEC-EASI. In some scenarios, BC-GLASSO can yield a higher MSE

due to the inflation of the estimation variance. However, in all of our simulation scenarios,

BC-GLASSO always outperforms SPIEC-EASI in terms of the accuracy in the recovering

the interaction network represented by the estimated inverse covariance matrix. The overall

performance of BC-GLASSO also surpasses that of CD-trace.

4 Real Data Analysis

We illustrate the use of BC-GLASSO with an analysis of 16S data from the American Gut

Project (AGP) (McDonald et al., 2018) to infer the interaction network between microbial

taxa in the human gut. We focus on the data collected on 3,679 stool samples and remove

from the data set samples collected from other body sites.

To better capture the variation in the composition of human microbiota, it is helpful

to take into account subgroup structure of the population that may exhibit fundamentally

different biological properties. Recent research has found evidence that while the gut mi-

crobiome takes on smooth gradients of compositional diversity across individuals (Koren et

al. 2013), human populations can generally be stratified into two main clusters, referred to
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as “enterotypes”, based on the abundance of specific taxa (Arumugam et al., 2011). These

enterotypes are compositionally and potentially functionally distinct (Costea et al., 2018).

In our analysis, we propose to estimate the microbial interaction network separately for each

enterotype, which helps minimize the detection of spurious interactions due to confounders

related to population stratification and enhances our ability to identify biologically relevant

interactions. Recent studies have shown the existence of two common enterotypes, including

one marked by a high relative abundance of Bacteroides and the other by a high relative

abundance of Prevotella (Gorvitovskaia et al., 2016), and that Prevotella-to-Bacteroides ra-

tio (P/B ratio) can be used to effectively classify humans to these subpopulations (Roager

et al., 2014). In our analysis of the AGP data, we analyze two groups of samples separately:

the P group which includes samples whose P/B ratio is in the upper 25%, and the B group

includes samples whose P/B ratio is in the lower 25%.

Insert Fig. 4 Here.

We conduct our analysis on the genus level and aggregate the counts for OTU’s that

belong to the same genus. OTU’s the do not have the genus-level taxonomic information are

aggregated into a pseudo-genus, which we will refer to as the “unlabeled genus.” We filter the

data to remove samples with very low sequencing depths and genera that are highly sparse.

More specifically, samples with total reads smaller than 100 are removed from the analysis.

Separately for the two groups based on P/B ratio, we remove genera with zero abundance

for over 95% of the subjects within a group. The resulting data set has 786 subjects and

143 genera in the P group, and 864 subjects and 142 genera in the B group.

To select the reference taxon, we aim to find a genus whose abundance remains stable

across samples. To this end, we evaluate the inter-sample dispersion of the relative abundance

of each taxon and find the taxon whose relative abundance is the least dispersed. More

specifically, we first calculate each genus’ relative abundance in a sample by taking the

ratio of its observed count to the total read count for the sample. Then, we measure the

dispersion of a taxon’s relative abundance by the coefficient of variation, defined as the

standard deviation of the relative abundance across samples divided by its mean. The genus

that minimizes the coefficient of variation is taken as the reference taxon. This criterion is
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applied separately for the P group and the B group, for both of which the unlabeled genus is

chosen to be the reference. This reference has a non-zero count for over 95% of the samples

in both groups.

We apply BC-GLASSO and SPIEC-EASI to estimate the inverse covariance matrix sepa-

rately for the two groups. For both methods, the value of the tuning parameter λ is selected

using a grid search based on BIC. In Fig. 5–7, we compare the results based on BC-GLASSO

and SPIEC-EASI for the P group. The comparison between the two methods is qualitatively

similar for the B group and we show the results in Fig. S5–S7 in the Supplemental Materials.

Fig. 5 visualizes the estimated correlation matrices based on the two methods. SPEIC-EASI

has resulted in an estimated correlation matrix wherein positive correlations overwhelmingly

dominate negative ones. In contrast, the correlation matrix based on BC-GLASSO has led

to a greater number of negative correlations.

Insert Fig. 5 Here.

To visualize the microbial interactions identified by a method, we show the heatmap

visualizing the estimated inverse covariance matrix, where a non-zero entry corresponds to

an edge in the inferred microbial network (Fig. 6). Because an entry in an inverse covariance

matrix is connected to the negative of the partial correlation between two variables (Lau-

ritzen, 1996), we show the inverse covariance matrices on the negative scale. Both methods

are able to identify two clusters of taxa that are densely connected to each other. The first

cluster includes about 14 genera from the family Enterobacteriaceae, and the second cluster

includes all of the seven genera from the family [Tissierellaceae]. Comparing the inverse

covariance matrices based on the two methods, however, SPIEC-EASI seems to lead to a

background rate of additional non-zero interactions that arise evenly from all families, while

for BC-GLASSO the identified interactions align more closely with the taxonomic relation-

ships of the genera, showing a clearer trend of genera from the same family exhibiting similar

patterns of interactions.

Insert Fig. 6 Here.
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We are further interested in the interactions that are exclusively detected by only one

method. In summary, between the 142 genera analyzed for the P group, there are a total

of 10,011 potential pairwise interactions. Among these, 938 interactions are identified by

both methods, BC-GLASSO detects an additional set of 151 interactions, and SPEIC-EASI

detects an additional set of as many as 1,460 interactions (Fig. 7, Panel B). Interestingly,

114 out of the 151 interactions exclusively identified by BC-GLASSO (shown in red in Fig.

7, Panel A) are associated with a small number of genera, all of which are from the family

Enterobacteriaceae. These genera are found to have extensive interactions with the rest

of the microbiome which are captured by BC-GLASSO. The genera include Pantoea (44),

Enterobacter (34), Plesiomonas (14), Klebsiella (12), and Erwinia (10), where the numbers

in parentheses indicate how many edges associated with a genus are unique identified by

BC-GLASSO. The interactions associated with these genera exclusively identified by BC-

GLASSO are listed in Supplemental Table S1. In contrast, the 1,460 interactions that are

present only in the network produced by SPIEC-EASI (shown in white in Fig. 7, Panel A)

are widespread and distributed across all families, rather than concentrated within specific

taxa.

The unique interactions revealed by BC-GLASSO represent important discoveries that

can advance follow-up research and potentially impact the development of clinical resources.

For example, members of the genera Enterobacteria, Klebsiella, and Plesiomonas include

known opportunistic pathogens and pathobionts that can impact the host of the health

when highly abundant in the gut (Davin-Regli et al., 2015; Schneditz et al., 2014; Janda

et al., 2016). Our identification of additional linkages between members of these genera

and other gut taxa can help guide experiments that uncover how other gut taxa impact the

success of these organisms in the gut, possibly through competitive exclusion or biocontrol.

Insert Fig. 7 Here.
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5 Discussion

It is becoming increasingly recognized that microbiome data have unique characteristics that

are known to require tailored statistical methods. With these characteristics in mind, in this

paper, we focus on the problem of inferring the interaction network between microbial taxa

through the estimation of a sparse inverse covariance estimation in microbiome data. We have

highlighted a key disadvantage of the popular proportion-based approach due to the bias that

originates from the failure to properly model the abundance counts and to adequately capture

the variation in the data . To address this issue, we have developed BC-GLASSO, a model-

based method for inverse covariance estimation which directly tackles the compositional

count data and exploits the heterogeneity in sequencing depth. Features of BC-GLASSO

include: (a) the method is based on a hierarchical model where the technical variation of the

count data are modeled using a multinomial distribution and the biological (i.e. inter-sample)

variation of microbiome composition is modeled using a logistic normal distribution on the

multinomial probabilities; (b) the unevenness in the sequencing depth, which frequently poses

a challenge in microbiome data analysis, is not only properly accounted for in our model

but also taken advantage of to correct the bias in the estimator; (c) Despite the hierarchical

model used in BC-GLASSO, the method remains computationally rapid even on big data

sets owing to the linear models underlying the bias correction procedure.

We have demonstrated the advantage of BC-GLASSO relative to a leading approach

through simulation studies. In particular, BC-GLASSO consistently outperforms the com-

peting method under a variety of network structures and different setups for the sequencing

depths. The strength of BC-GLASSO is manifested by a greater accuracy in the inferred

network as well the reduced bias of the covariance estimator. We have also applied BC-

GLASSO to infer the microbial interaction network in a data set from the American Gut

Project, where BC-GLASSO has detected a group of genera from the Enterobacteriaceae

family which have extensive interactions with the rest of the microbiome.

In our presentation of BC-GLASSO, the Zi’s are assumed to follow N(µ,Σ). We note

that the normality assumption on Zi is not essential. In fact, even without specific distri-

butional assumptions on the Zi’s, all theoretical derivations and properties reported in this
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paper on the covariance estimator, σ̂kl, in BC-GLASSO remain valid so long as Zi’s are

assumed to i.i.d. with some mean µ and covariance Σ. The use of graphical lasso in the

second step of BC-GLASSO, however, does assume normality of Zi’s.

One caveat our approach from the perspective of biological interpretation is that the

interaction network excludes up to k possible edges that theoretically could exist in the com-

munity being studied. Specifically, potential interactions between the reference taxon and all

other taxa are not modeled by our method and thus cannot be analyzed and interpreted by

users. If users are interested in understanding how particular taxa relate, then they would

want to avoid using such taxa as a reference given that our approach specifically excludes

such reference taxa from the final interaction network. Without extensive prior biological

information, we recommend taking as the reference a taxon whose relative abundance is

stable across samples.

Microbiome studies often record metadata on the samples including covariates such as the

age, sex, and dietary information of a subject. Some of these covariates have been associated

with the abundance of a taxon in the microbiome. It can be helpful for such associations to

be accounted for when estimating the microbial interaction network. To this end, a potential

approach is to extend GC-GLASSO to incorporate covariates in the hierarchical model. This

may be done, for example, by allowing µ to depend on covariates. This is beyond the scope

of this paper but may present worthwhile opportunities for future research.

Although BC-GLASSO is motivated by problems that arise in microbiome research, it

can be applied to compositional count data from other types of applications so long as

the total count varies substantially across samples. Examples include ecological data on

species abundance (Jackson, 1997), where it may be of interest to estimate the ecological

relationship between species, and RNA-Seq data, where it may be of interest to infer the

regulatory relationship between genes.

6 Figure Legends

Fig. 1 Scatter plot of estimated and true covariances for the (1,2)-entry of the covariance

matrix from a simulation study. Results are based on K = 50, n = 500, setting (M1) for
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the sequencing depth as described in the simulation setting, and a true correlation between

the first and second taxa ranging from −0.9 to 0.9. Left panel: naive estimator; right panel:

bias-corrected estimator.

Fig. 2 The four network structures used in simulation studies. Panel A, random-edge

network. Panel B, cluster network. Panel C, hub network; Panel D, scale-free network.

Fig. 3 BC-GLASSO enjoys more accurate network recovery than SPIEC-EASI in simu-

lations. ROC curves for BC-GLASSO and SPIEC-EASI are compared for each simulation

setting. Blue: BC-GLASSO. Black: SPIEC-EASI. Each row is a network structure. Each

column is a configuration for the sequencing depth.

Fig. 4 Empirical distribution of P/B ratio from the AGP data and the regions in this

distribution corresponding to the P group and the B group.

Fig. 5 Estimated correlation matrices for the P group in the AGP data based on BC-

GLASSO and SPIEC-EASI. The correlation matrices are obtained based on the estimated

covariance matrix used in the two methods. Left: BC-GLASSO. Right: SPIEC-EASI.

Fig. 6 Estimated inverse covariance matrices for the P group in the AGP data based on

BC-GLASSO and SPIEC-EASI, on the negative scale. Diagonal entries are omitted. Left:

BC-GLASSO. Right: SPIEC-EASI.

Fig. 7 Comparing the microbial networks based on BC-GLASSO and SPIEC-EASI for

the P group in the AGP data. Panel A, network difference between two methods. Red -

edges identified by BC-GLASSO but not by naive; White - edges identified by naive but not

by BC-GLASSO; Orange - edges identified by either both or neither. Panel B, numbers of

common and unique edges detected by BC-GLASSO and/or SPIEC-EASI.

Appendix: Justification of Estimation Bias in (9)

For i = 1, . . . , n, taking the Taylor’s expansion of Xi,k/Mi at its conditional mean Pi,k leads

to the following high-order terms

log

(
Xi,k

Mi

)
≈ log(Pi,k) +

(
Xi,k

MiPi,k

− 1

)
− 1

2

(
Xi,k

MiPi,k

− 1

)2

.
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Therefore, Ẑi,k = log(Xi,k/Xi,K+1) can be written as

Ẑi,k ≈ Zi,k +

(
Xi,k

MiPi,k

− Xi,K+1

MiPi,K+1

)
− 1

2

[(
Xi,k

MiPi,k

− 1

)2

−
(

Xi,K+1

MiPi,K+1

− 1

)2
]
,

which is also given in (7).

We can approximate E(Ẑi,k) and E(Ẑi,kẐi,l) as follows.

E(Ẑi,k) ≈ E(Zi,k)− 1

2
E

[
MiPi,k(1− Pi,k)

M2
i P

2
i,k

− MiPi,K+1(1− Pi,K+1)

M2
i P

2
i,K+1

]

= µk −
1

2Mi

E

(
1

Pi,k

− 1

Pi,K+1

)
,

and E(Ẑi,kẐi,l) ≈ I1 + I2 + I3 + I4, where

I1 = E(Zi,kZi,l) = Cov(Zi,k, Zi,l) + E(Zi,k)E(Zi,l) = σkl + µkµl,

I2 = E

[(
Xi,k

MiPi,k

− Xi,K+1

MiPi,K+1

)(
Xi,l

MiPi,l

− Xi,K+1

MiPi,K+1

)]
=

1

Mi

E

(
1

Pi,K+1

)
,

I3 = −1

2
E

[
Zi,k

(
X2

i,l

M2
i P

2
i,l

−
X2

i,K+1

M2
i P

2
i,K+1

)]
= − 1

2Mi

E

[
Zi,k

(
1

Pi,l

− 1

Pi,K+1

)]
,

I4 = −1

2
E

[
Zi,l

(
X2

i,k
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i P

2
i,k

−
X2

i,K+1

M2
i P

2
i,K+1

)]
= − 1

2Mi

E

[
Zi,l

(
1

Pi,k

− 1

Pi,K+1

)]
.

In addition, let νk = E(Ẑ·,k) for k = 1, . . . , K, then it can be evaluated as

νk = E(Ẑ·,k) =
1

n

n∑
i=1

E(Ẑi,k) = µk −
1

2n

n∑
i=1

1

Mi

E

(
1

Pi,k

− 1

Pi,K+1

)
.
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Therefore, E[(Ẑi,k − νk)(Ẑi,l − νl)] can be approximated by

E[(Ẑi,k − νk)(Ẑi,l − νl)]

≈ E(Ẑi,kẐi,l)− νkE(Ẑi,l)− νlE(Ẑi,k) + νkνl

= σkl +
1

Mi

E

(
1

Pi,K+1

)
− 1

2Mi

E

[
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(
1

Pi,l

− 1

Pi,K+1

)]
− 1

2Mi

E

[
Zi,l

(
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)]
+

1

2Mi

µkE
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1
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− 1
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)
+

1
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)][
1
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1

Pi,k

− 1

Pi,K+1

)
.

The above approximation ignores the following term[
1

2n

n∑
i=1

1

Mi

E

(
1

Pi,k

− 1

Pi,K+1

)][
1

2n

n∑
i=1

1

Mi

E

(
1

Pi,l

− 1

Pi,K+1

)]
,

which is small compared to the other terms when all Mi’s are large.

Finally, E(σ̂i,kl) can be written as

E(σ̂i,kl) = E[(Ẑi,k − Ẑ·,k)(Ẑi,l − Ẑ·,l)]

= E[(Ẑi,k − νk)(Ẑi,l − νl)]− E[(Ẑi,k − νk)(Ẑ·,l − νl)]

− E[(Ẑ·,k − νk)(Ẑi,l − νl)] + E[(Ẑ·,k − νk)(Ẑ·,l − νl)].

By Cauchy-Schwartz’s inequality,

E[|(Ẑi,k − νk)(Ẑ·,l − νl)|] ≤
√

E[(Ẑi,k − νk)2]

√
Var(Ẑ·,l);

E[|(Ẑ·,k − νk)(Ẑi,l − νl)|] ≤
√

E[(Ẑi,l − νl)2]
√

Var(Ẑ·,k);

E[|(Ẑ·,k − νk)(Ẑ·,l − νl)|] ≤
√

Var(Ẑ·,k)

√
Var(Ẑ·,l).

Thus, when n is large, these terms can be omitted compared to the first term so that E(σ̂i,kl)
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can be approximated by

E(σ̂i,kl) ≈ E[(Ẑi,k − νk)(Ẑi,l − νl)] ≈ σkl +
Ckl

Mi

,

where Ckl = E(P−11,K+1)− 1
2
Cov(Z1,k, P

−1
1,l − P

−1
1,K+1)− 1

2
Cov(Z1,l, P

−1
1,k − P

−1
1,K+1).
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Fig. 1 Scatter plot of estimated and true covariances for the (1,2)-entry of the covariance
matrix from a simulation study. Results are based on K = 50, n = 500, setting (M1) for
the sequencing depth as described in the simulation setting, and a true correlation between
the first and second taxa ranging from −0.9 to 0.9. Left panel: naive estimator; right panel:
bias-corrected estimator.
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Fig. 2 The four network structures used in simulation studies. Panel A, random-edge
network. Panel B, cluster network. Panel C, hub network; Panel D, scale-free network.
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Fig. 3 BC-GLASSO enjoys more accurate network recovery than SPIEC-EASI in simula-
tions. ROC curves for BC-GLASSO and SPIEC-EASI are compared for each simulation
setting. Blue: BC-GLASSO. Black: SPIEC-EASI. Each row is a network structure. Each
column is a configuration for the sequencing depth.
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Fig. 4 Empirical distribution of P/B ratio from the AGP data and the regions in this
distribution corresponding to the P group and the B group.
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Figure 5

A. BC-GLASSO B. SPIEC-EASI

Fig. 5 Estimated correlation matrices for the P group of the AGP data based on BC-
GLASSO and SPIEC-EASI. The correlation matrices are obtained based on the estimated
covariance matrix used in the two methods. Left: BC-GLASSO. Right: SPIEC-EASI.
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Figure 6

A. BC-GLASSO B. SPIEC-EASI

Fig. 6 Estimated inverse covariance matrices for the P group in the AGP data based on
BC-GLASSO and SPIEC-EASI, on the negative scale. Diagonal entries are omitted. Left:
BC-GLASSO. Right: SPIEC-EASI.
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Figure 7
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Fig. 7 Comparing the microbial networks based on BC-GLASSO and SPIEC-EASI for the
P group of the AGP data. Panel A, network difference between two methods. Red - edges
identified by BC-GLASSO but not by naive; White - edges identified by naive but not by
BC-GLASSO; Orange - edges identified by either both or neither. Panel B, numbers of
common and unique edges detected by BC-GLASSO and/or SPIEC-EASI.
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