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Retrospective Binary-Trait Association Test
Elucidates Genetic Architecture of Crohn Disease

Duo Jiang,1 Sheng Zhong,2 and Mary Sara McPeek2,3,*

In genetic association testing, failure to properly control for population structure can lead to severely inflated type 1 error and power loss.

Meanwhile, adjustment for relevant covariates is often desirable and sometimes necessary to protect against spurious association and to

improve power. Many recent methods to account for population structure and covariates are based on linear mixed models (LMMs),

which are primarily designed for quantitative traits. For binary traits, however, LMM is a misspecifiedmodel and can lead to deteriorated

performance. We propose CARAT, a binary-trait association testing approach based on a mixed-effects quasi-likelihood framework,

which exploits the dichotomous nature of the trait and achieves computational efficiency through estimating equations. We show in

simulation studies that CARAT consistently outperforms existing methods and maintains high power in a wide range of population

structure settings and trait models. Furthermore, CARAT is based on a retrospective approach, which is robust to misspecification of

the phenotype model. We apply our approach to a genome-wide analysis of Crohn disease, in which we replicate association with 17

previously identified regions. Moreover, our analysis on 5p13.1, an extensively reported region of association, shows evidence for the

presence of multiple independent association signals in the region. This example shows how CARAT can leverage known disease risk

factors to shed light on the genetic architecture of complex traits.
Introduction

Population structure is widespread in genetic association

studies. It can arise when the sample is stratified between

population subgroups, is admixed with multiple ancestral

populations, and/or contains cryptic relatedness. It is well

known that failure to properly adjust for population struc-

ture in genetic association testing can lead to severely in-

flated type 1 error rates and loss of power. Moreover, con-

trol for covariate information relevant to the phenotype

of interest can be useful in genetic association analysis.

These covariates can include clinical variables such as

sex, age, and smoking habits that can affect disease risk

as well as genetic variants known to be causal. Adjustment

for such covariates can be desirable in association testing to

protect against spurious associations due to confounding

factors, and to improve power by reducing unexplained

noise in the phenotype.1–3

Case-control studies have been a useful design for iden-

tification of genetic variants associated with complex

traits. We consider the problem of association testing of a

binary trait (such as disease status) with simultaneous

adjustment for population structure and covariates.

ROADTRIPS4 is a binary-trait association testing method

accounting for population structure, but it does not adjust

for covariates or additive polygenic effects. Methods5–9

based on the linear mixed model (LMM) approach have

recently gained much popularity. Compared to alternative

methods that model population structure as fixed ef-

fects,1,10,11 LMM accommodates simultaneous adjustment

for cryptic relatedness as well as sample stratification and

admixture, and it offers potential power gain by implicitly
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conditioning on associated SNPs other than the tested

SNP.12 However, LMM is primarily designed for quantita-

tive traits, and when applied to case-control data, it im-

poses a misspecified model on the binary phenotype,

which can lead to power loss. Two recently proposed

methods, LTMLM13 and LEAP,14 specifically focus on ascer-

tained case-control studies assuming known disease preva-

lence. However, LTMLM does not adjust for covariates, and

we find (see Results) that LEAP does not succeed in our

simulations.

We propose CARAT (CAse-control Retrospective Associ-

ation Test), a binary-trait association testing approach,

which accounts for relevant covariate information and

effectively controls for unknown population structure.

CARAT exploits the dichotomous nature of the trait by

modeling the phenotypic distribution using a mixed ef-

fects quasi-likelihood framework. In contrast to LTMLM

and LEAP, CARAT does not require the prevalence of

the disease to be known. We propose an estimating equa-

tion and score test approach, which is computationally

efficient for large-scale genome-wide studies. When as-

sessing significance of the test statistic, CARAT takes a

retrospective approach in which genotypes are viewed

as random under the null, conditional on the pheno-

type and the covariates. This approach renders CARAT

robust to misspecification of the phenotype model. We

perform simulation studies to evaluate the type 1 error

and power of CARAT, to compare it with existing

methods. Finally, we apply CARAT to a genome-wide as-

sociation analysis of Crohn disease (CD [MIM: 266600])

data from the Wellcome Trust Case Control Consortium

(WTCCC).
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Material and Methods

The Mean and Variance Model Underlying CARAT
We consider a binary trait measured on a sample of n individuals

possibly subject to unobserved population structure, assuming

that genome-wide data are available. We focus on the problem

of testing for association between the binary trait and a single

SNP. LetY¼ (Y1, Y2, ..., Yn)
T be a vector of the binary trait measure-

ments on the n individuals.G¼ (G1,G2, ...,Gn)
T encodes the geno-

types of the sampled individuals at the tested SNP, where Gi equals

the minor allele count (0, 1, or 2) of individual i. Let X be an n by k

covariate matrix, whose ith row Xi contains an intercept term rep-

resented as 1 and the values of k � 1 non-constant covariates for

individual i.

To model the phenotype vector Y conditional on G and X, we

take a quasi-likelihood approach, in which we specify only the

conditionalmean and variance structures ofY. For themean struc-

ture, we assume that, for i ¼ 1,..., n,

EðYi j X;GÞ ¼ mi; gðmiÞ ¼ Xibþ Gig; (Equation 1)

where g(,) is a known function, b is a k-dimensional column vec-

tor of the unknown fixed effects of the covariates, and g is the un-

known scalar effect of the tested SNP. We take g(,) to be the logit

link function given by

gðmiÞ ¼ log
mi

1� mi

; (Equation 2)

in which case the linear coefficients can be conveniently inter-

preted as the size of an additive effect on the log odds scale. The

logit link function offers the additional benefit that it is applicable

to case-control samples with ascertainment with the intercept

considered a nuisance parameter.

To construct a covariance structure for Y, we aim to embed two

features that we deem essential: (1) the variance should depend on

the mean in a way that is consistent with the dichotomous nature

of the outcome and (2) assuming that overall genetic similarity

leads to phenotypic similarity, the trait measurements should be

subject to correlation due to population structure. With regard

to the first feature, one approach is to specify

U :¼ VarðY j X;GÞ ¼ G1=2SG1=2; (Equation 3)

where G ¼ diagfm1ð1� m1Þ;/;mnð1� mnÞg is an n-dimensional di-

agonal matrix and S is an n by n correlation matrix (defined as a

positive semi-definite matrix with 1s on the diagonal) that does

not involve the mean structure. Under this specification, the mar-

ginal variance is determined by the mean according to var(Yi) ¼
E(Yi)[1 � E(Yi)].

An alternative approach is to add a dispersion parameter, s2> 0,

to the model, to obtain

U :¼ VarðY j X;GÞ ¼ s2G1=2SG1=2; (Equation 4)

where the marginal variance is now determined by the mean ac-

cording to var(Yi) ¼ s2E(Yi)[1 � E(Yi)]. In a generalized linear or

quasi-likelihood model,15–17 a dispersion parameter is often

included in the variance structure to allow over-dispersion or un-

der-dispersion. However, as has been pointed out,18 in the case of

Bernoulli data, the dispersion parameter is not interpretable in the

context of the model, because for the binary random vector Y,

regardless of its joint distribution, the marginal distribution of

each Yi is always a Bernoulli distribution, in which case the mar-

ginal variance would be E(Yi)[1 � E(Yi)] with no dispersion param-
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eter. On the other hand, in the context of genetic association

testing, a justification for possibly including a dispersion param-

eter is the fact that the true model is not known, and the disper-

sion parameter could potentially be useful for capturing additional

error due to model misspecification, in order to improve robust-

ness of the resulting association test. We will demonstrate through

simulation studies, in the context of association testing using

quasi-likelihood models, that exclusion of the dispersion param-

eter as in Equation 3 results in improved analysis over the model

in Equation 4.

For the structure specified either by Equation 3 or by Equation 4,

feature 2 can be achieved by assuming that S has two additive

components, one corresponding to individual-level variance and

the other to additive polygenic variance:

S ¼ xFþ ð1� xÞI ; (Equation 5)

whereF is an n by n correlationmatrix representing the overall ge-

netic similarity between the individuals due to population struc-

ture, I is an n-dimensional identity matrix, and x ˛ [0,1] measures

the relative importance of the two variance components.

F can be estimated based on genome-wide data, for example, by

using the genetic relationship matrix

cJ ¼ 1

S

XS

s¼1

�
GðsÞ � 2bps

��
GðsÞ � 2bps

�T
2bps

�
1� bps

� ; (Equation 6)

where S is the total number of genotypedmarkers,G(s) is the geno-

type column vector at marker s encoding the minor allele counts,

and bps is the estimated minor allele frequency (MAF). Alterna-

tively, one could use the sample variance of G(s), instead of

2bpsð1� bpsÞ, in the denominator. A caveat of using cJ for F is

that the diagonal elements of cJ might not be exactly 1, in which

case the resulting S will not be a valid correlation matrix. To solve

this problem, one could obtain an alternative estimator bF forF by

letting

bFij ¼ cJij

� ffiffiffiffiffiffiffiffiffiffiffiffiffifficJii
cJjj

q
for i; j ¼ 1;/;n: (Equation 7)

However, bF and cJ tend to be very close numerically when the

data do not involve severe systematic deviation fromHardy-Wein-

berg equilibrium. We consider both estimators in the simulation

studies in Results.

The model specified by Equations 1, 2, 3, and 5 will be used

for the main method we propose, CARAT. The model specified

with Equation 3 replaced by Equation 4 will be referred to as the

model with dispersion, and it is used for the alternative method

we consider, CARATd. We compare the performance of the

methods for association testing based on these two models in

the Results.

Parameter Estimation Based on Estimating Equations
For the model either with or without dispersion, we obtain param-

eter estimates by solving a system of estimating equations, as

we now describe. For simplicity, we bind the notation for the co-

variate matrix and the genotype vector to define ~X ¼ ðX;GÞ and
~b ¼ ðbT ;gÞT . For the model with dispersion, the parameters to

be estimated are ~b, x, and s2. For known x and s2, the quasi-likeli-

hood function for ~b can be differentiated to obtain the quasi-score

function17

U
�
~b
� ¼ DTU�1ðY � mÞ; (Equation 8)
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where m ¼ mð~bÞ ¼ ðm1;/;mnÞT andD ¼ Dð~bÞ ¼ vm=v~b is a Jacobian

of the mean vector with respect to ~b. With a logit link function,

D ¼ G ~X. Setting Uð~bÞ ¼ 0 yields the generalized estimating equa-

tion for ~b given by

~X
T
G1=2S�1G�1=2ðY � mÞ ¼ 0; (Equation 9)

which is a system of k þ 1 nonlinear equations. To solve for ~b,

a modified Newton-Raphson algorithm with Fisher scoring17

involves iteratively updating ~b by

~bðjþ1Þ ¼ ~bðjÞ þ
�
DT

�
~bðjÞ

�
S�1D

�
~bðjÞ

���1�
DT

�
~bðjÞ

�
S�1

�
Y � m

�
~bðjÞ

�	�
:

(Equation 10)

Starting at an initial value for ~b estimated under a simple logistic

model with no correlation, we run this iterative procedure until

convergence to obtain b~bðxÞ for fixed x (note that Equation 9 does

not depend on s2).

To estimate the variance parameters, a common strategy is to

establish estimating equations by choosing quadratic forms and

then equating their observed values to their expected values.

Following this strategy, we propose to estimate x and s2 for known
~b using

s�2ðY � mÞTG�1=2S�1ðF� IÞS�1G�1=2ðY � mÞ ¼ trace
�
S�1ðF� IÞ�

(Equation 11)

and

s2 ¼ ðY � mÞTG�1=2S�1G�1=2ðY � mÞ
n: (Equation 12)

The choice of quadratic forms resulting in these estimating

equations is motivated by the maximum likelihood estimators of

x and s2 in the case when ~b is known, assuming a multivariate

normal distribution for Y with the same mean and covariance

structure as the model with dispersion. Taking into account the

fact that ~b is unknown, one could alternatively use n � k � 1 for

the denominator in the right side of Equation 12.

Combining Equations 9, 11, and 12 provides a scheme for joint

estimation of the parameters ~b, x, and s2. As a numerical proce-

dure, for each fixed x ˛ [0,1], we first make use of Equations 9

and 12 to obtain b~bðxÞ and bs2ðxÞ, which are then plugged into

Equation 11 to evaluate the difference between the two sides of

the equality. This difference is minimized in absolute value by a

one-dimensional search with respect to x ˛ [0,1] to locate the min-

imum point bx as an estimate for x and the corresponding b~bðbxÞ andbs2ðbxÞ as estimates for ~b and s2. When the model without disper-

sion is assumed instead, the parameters ~b and x can be estimated

by solving Equation 9 combined with Equation 11, in which s2

is set to be 1. The previously described numerical algorithm can

readily be adapted to solve these equations.
Retrospective Association Testing
To detect association between the trait and the SNP of interest, we

test H0 : g ¼ 0 against H1 : g s 0. In general, the construction of a

quasi-score test statistic would involve evaluating the correspond-

ing coordinate(s) of the quasi-score function at the quasi-likeli-

hood estimates of the nuisance parameters under the null hypoth-

esis.19 In our case, for the model without dispersion parameter, we

let bm0, bU0, and bG0 denote the values of m, U, and G evaluated at

ðg;b; xÞ ¼ ð0; bb0; bx0Þ, where ðb; xÞ ¼ ðbb0;bx0Þ represents the solution
of the system given by Equations 9 and 11 when g is set to 0. (Simi-

larly, in the model with the dispersion parameter, we let bm0, bU0,
The Americ
and bG0 denote the values of m, U, and G evaluated at

ðg;b; x;s2Þ ¼ ð0; bb0;bx0; bs2
0Þ, where ðb; x; s2Þ ¼ ðbb0;bx0; bs2

0Þ repre-

sents the solution of the system given by Equations 9, 11, and

12 when g is set to 0.) It follows that, evaluated at the null

estimates, the coordinate of Equation 8 corresponding to G

becomes

U0 :¼ GT bG0
bU�1

0 ðY � bm0Þ: (Equation 13)

To perform a quasi-score test, one would divide U2
0 by its null

variance given X and G with the null estimates plugged in, and

the resulting test statistic would then be assumed to have a c2
1

distribution under H0. This method will be referred to as ‘‘the

prospective version of CARAT’’ (details in Appendix A). The valid-

ity of such a test would be contingent on the accuracy of the

assumed null distribution, which relies on the consistency of

the null estimators and tends to be very sensitive to misspecifica-

tion of the variance structure in the prospective model for Y. Our

simulation studies show that substantial inflation or deflation

of type 1 error rates frequently occurs in many realistic scenarios

(Table S1).

In order to achieve robust control over type 1 error, we assess sig-

nificance of the test by using a retrospective analysis, in which the

conditional distribution of the phenotype given genotype and co-

variates is considered. Under the null hypothesis of no association,

we build a quasi-likelihood model for G conditional on Y and X

specified by the following assumptions4

E0ðG j X;YÞ ¼ 2p1n and Var0ðG j X;YÞ ¼ s2
gJ; (Equation 14)

where 1n is an n-dimensional column vector of 1s, p ˛ [0,1] is

the unknown ancestral MAF of the tested SNP, J is a known pos-

itive semi-definite matrix capturing overall genetic similarity

among individuals due to population structure, and s2g > 0 is

an unknown variance parameter. J can be obtained based

on genome-wide data via the estimator in Equation 6. Letbs2
g ¼ 2bpð1� bpÞwith bp ¼ 0:5,G being the sample average estimator

for p. Then, the final CARAT test statistic can be defined as

T :¼ ðVTGÞ2bs2
g,V

TJV
with V ¼ bG1=2

0
bS�1

0
bG�1=2

0 ðY � bm0Þ; (Equation 15)

where the null estimates in V are based on the model without

dispersion. Under regularity conditions, T has an asymptotic c2
1

distribution under the null hypothesis. A test statistic of the

same form, except that the null estimates in V are obtained from

the model with dispersion, will give rise to another valid test,

which we will refer to as the CARATd method, with the letter

d standing for ‘‘dispersion.’’

Connections with LMM
For definiteness, we first present the most commonly used version

of the LMM single-SNP association testing statistic. The method

assumes a linear mixed effects model given by

Y ¼ XbþGgþ e; e � N
�
0;s2

aFþ s2
e I
�
; (Equation 16)

where s2a and s2e are variance component parameters corre-

sponding to additive polygenic effects and environmental errors,

respectively. Denote by bmL and bUL the MLEs for the mean

vector, mL¼ Xb, and the covariance matrix, UL ¼ s2aFþ s2e I, of Y

based on the null model with g ¼ 0 (or alternatively the REML

estimator could be used for UL). Then the LMM test statistic is

given by
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TLMM :¼
h
ðY � bmLÞTG

i2
GT bULG

;

whose null distribution is assumed to be c2
1.

Comparing CARAT (and CARATd) with the LMM approach, the

difference is 3-fold. First, in terms of the mean structure, CARAT/

CARATd assumes that the covariates contribute to the phenotype

linearly and additively on the logit scale, whereas LMM assumes

linearity and additivity on the original scale. We expect the former

to be more reasonable because the trait is dichotomous. The sec-

ond aspect of the difference relates to the variance structure.

LMM imposes a variance structure that is not dependent on the

mean, whereas both CARAT and CARATd assume a variance struc-

ture with two components, the marginal variance and the correla-

tionmatrix, with the first component dependent on themean and

the second one not. CARAT differs from CARATd in that, in the

former, the marginal variance is fully determined by the mean,

and in the latter it is determined by the mean only up to a scale

parameter s2. Third, LMM assesses the p values prospectively,

assuming phenotype information to be random, whereas CARAT

and CARATd can be viewed as directly taking the score test statistic

from the prospective model to be the test statistic, but evaluating

its p value in a retrospective manner assuming genotype informa-

tion to be random. We expect the retrospective approach to offer

better calibration for our method than the prospective quasi-score

test, because the retrospective quasi-likelihood model specified by

Equation 14 is much less susceptible to misspecification than the

prospective model. This is confirmed by the results in Table S1; see

also Appendix A.
Simulation Studies
We conduct simulation studies to evaluate the type 1 error rates

and power of CARAT and to compare its performance with that

of CARATd and two existing methods, LMM and LEAP, for binary

trait association testing. We do not evaluate ROADTRIPS or

LTMLM because they do not account for covariates. Genotype,

phenotype, and covariate data are simulated on a sample of indi-

viduals with various population structure configurations and trait

models. In each setting, we simulate 10,000 non-causal SNPs,

which are used to correct for population structure. In addition,

we generate two causal SNPs, which are assumed to influence

the phenotype with epistasis: individuals holding at least one

copy of the minor allele at both SNPs have an elevated disease

risk compared to those who do not.

In the type 1 error simulations, we test the 10,000 non-causal

SNPs for association. For each given setting, the phenotypes are

re-simulated 100 times, and 1,000 SNPs are tested for each pheno-

type simulation. Altogether, 10 tests are performed for each of the

10,000 non-causal SNPs, totaling 100,000 replicates for the type 1

error simulations. In the power simulations, we test the first of the

two causal SNPs, and 5,000 replicates are performed with the phe-

notypes re-simulated for each replicate. For every test, the geno-

types at the untested causal SNP(s) are assumed to be unobserved.

In the implementations of CARAT and CARATd, we use cJ given

in Equation 6 as an estimator of the genetic relationship matrix

J in Equation 14, which is used to assess significance retrospec-

tively. To obtain an estimator of the correlation matrix F of Equa-

tion 5 in the trait model, we try both cJ given in Equation 6 and bF
given in Equation 7, which is a standardized version of cJ. We

note that, theoretically, how F is estimated in the trait model

should not affect the validity of a retrospective test.
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Sampled Genotypes
For the non-causal markers, the allele frequencies in different

ancestral populations or sub-populations are generated according

to the Balding-Nichols model.20 At each SNP, the ancestral allele

frequency p is drawn from a uniform distribution on [0,1], inde-

pendently across SNPs. Conditioning on p, the allele frequency

pk in population k is then drawn, independently for k ¼ 1,2,

from a Beta distribution with parameters p(1 � F)/F and (1 � p)

(1 � F)/F, where F is the fixation index measuring genetic differen-

tiation due to population substructure. We take F ¼ 0.01 for

all simulations. In scenarios with population admixture, for

individual i who is either a pedigree founder or is unrelated to

everyone else in the sample and whose admixture proportion

from population 1 is Ai, the allele frequency at the SNP is given

by Ai , p1 þ (1 � Ai) , p2. For descendants in a pedigree, SNP geno-

types are obtained by gene dropping in the pedigree. For any given

simulation scenario, the non-causal SNPs are simulated only once,

with the estimated genetic relationship matrix reused for every

simulation replicate. In addition to the non-causal SNPs, two

causal SNPs are simulated for each replicate, using the same Bald-

ing-Nichols model, with the ancestral allele frequencies set to be

0.1 and 0.5, respectively.

Trait and Covariate Models
Three non-constant covariates are included: sex, age, and another

continuous covariate with the standard Gaussian distribution. In

scenarios with only unrelated individuals, sex is a Bernoulli(0.5)

variable and age is a variable uniformly distributed on the interval

from 20 to 60. In scenarios with pedigrees, sex is fixed according to

the position in the pedigree (see Figure S1), and ages for the indi-

viduals labeled 1–16 in Figure S1 are simulated uniformly and

independently within 1.5 years of 75, 73, 46, 46, 43, 43, 40, 40,

18, 21, 15, 17, 13, 15, 12, and 9 years, respectively. In all cases,

the values of covariates are assumed to be independent across in-

dividuals and are regenerated for each phenotype simulation

replicate.

To simulate the phenotype given the genotypes, covariates, and

population structure, we consider two types of binary trait models.

The first type is the liability threshold model, which assumes that

the disease corresponds to an underlying continuous liability

distribution influenced by covariates and genetic factors with

a threshold that divides the population into affected and unaf-

fected individuals. Specifically, the phenotype Yi of individual i

is given by

Yi ¼ 1 if and only if Li > 0;

with Li ¼ Xibþ l,1ðG1;i > 0;G2;i > 0Þ þ Airþ ai þ ei;

(Equation 17)

where Yi ¼ 1 indicates that individual i is a case subject (affected)

and Yi¼ 0 indicates that i is a control subject (unaffected);Xi is the

134 covariate vector, which includes an intercept term; b contains

the fixed covariate effects; G1,i and G2,i encode the individual’s ge-

notypes at the two causal SNPs; l is a parameter scaling the effect

of the causal SNPs; 1(G1,i> 0,G2,i> 0) is an indicator function that

takes value 1 when both the causal SNPs have at least one copy of

the minor allele; ða1;.; anÞT � Nð0;s2aKÞ represents additive poly-
genic effects due to cryptic relatedness, where K is the kinship

matrix resulting from the cryptic relatedness; ei�i:i:d:Nð0; s2e Þ repre-
sents independent noise; Ai is the proportion of ancestry from

population 1 for the ith admixed individual; and Air is an ancestry

effect on the phenotype (see details in the next subsection). The
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ancestry term,Air, and additive polygenic effect, ai, are included in

the trait model only for some simulation scenarios, as a way to

incorporate population structure. In other scenarios, population

structure is instead introduced via ascertainment.

A second type of trait model we consider is a logistic model, in

which Yi is given by

Yi j Xi;Gi1;Gi2;Ai; ai � BernoulliðmiÞ; log
mi

1� mi

¼ Xibþ l,1ðG1;i > 0;G2;i > 0Þ þ Airþ ai:
(Equation 18)

Again, only some simulation scenarios (see details in the next

subsection) include the ancestry proportion, Ai, and additive poly-

genic effect, ai, in the logistic model to incorporate population

structure, and in other scenarios, population structure is generated

through ascertainment. In the simulations, for either generating

model, when association is tested with a given SNP, only Xi is

included as a covariate vector, whereas Ai and other SNPs are not

included as fixed-effect covariates in the fitted model.
Population Structure Settings
We conduct two sets of simulations corresponding to two different

types of population structure. In the ‘‘2 Subpopulations’’ setting,

we consider a stratified population with two subpopulations,

from which we sample 1,000 case subjects and 1,000 control sub-

jects. To create sample structure, we introduce correlation between

the phenotype and subpopulation membership by ascertaining

the sample based on varying targeted proportions of case and con-

trol subjects from each subpopulation. Overall, the sample con-

tains 1,000 individuals from each subpopulation, with the propor-

tion of case subjects from the first subpopulation varying from

50% to 80%, in increments of 10%, representing settings ranging

from no stratification to profound stratification. For example, if

this proportion is 60%, then among the 1,000 case subjects, 600

are from subpopulation 1 and 400 are from subpopulation 2,

and among the 1,000 control subjects, 400 are from subpopula-

tion 1 and 600 are from subpopulation 2. On the population level

(before exercising ascertainment), the phenotype is simulated

using the models given in Equations 18 and 17, with the ancestry

effect (Air) and the additive polygenic effect (ai) removed from

both models. In the logistic model, the values for b and l are cho-

sen so as to satisfy the following conditions: (1) the three covari-

ates each explain an equal amount of variability in disease proba-

bility on the logit scale; (2) the covariates in Xi altogether explain

approximately 50% of the variability of the binary trait, with the

rest of the variability explained by the causal SNPs and the Ber-

noulli variance (or the e values, for the liability threshold model);

and (3) individuals with at least one copy of the minor allele for

both causal SNPs have a mean disease penetrance of approxi-

mately 15%, and the mean penetrance is 10% for other individ-

uals. For the liability threshold model, we choose the parameters

b, l, and s2e based on the same conditions, except that condition

1 is enforced on the liability scale, rather than on the logit scale.

In the ‘‘Admixture and Cryptic Relatedness’’ setting, individuals

are sampled from an admixed population with two ancestral pop-

ulations, with or without cryptic relatedness. When cryptic relat-

edness is not present, 2,000 individuals are simulated, with i.i.d.

admixture proportions, Ai, sampled from a uniform distribution

on [0,1], i ¼ 1,..., n. When cryptic relatedness is present, 400 ped-

igrees of size 16 (as in Figure S1) are simulated, with an admixture

proportion sampled for each pedigree (i.i.d. across pedigrees), and

with all founders of a given pedigree given the same admixture
The Americ
proportion. In each simulation scenario, the admixture propor-

tions for the entire sample as well as the resulting genotypes for

the non-causal SNPs are generated only once and then retained

for all simulation replicates. In the ‘‘Admixture and Cryptic Relat-

edness’’ setting, population structure is incorporated in the trait-

generatingmodel by the ancestry effect,Air, and the additive poly-

genic effect, ai, in Equations 17 and 18, where r > 0 is a fixed

parameter common across individuals, implying different disease

prevalence values in the two ancestral populations, and conse-

quently, that the two ancestral populations will be represented

in an unbalanced way among the case subjects (and among the

control subjects). Larger values for r and s2a are associated with

more severe population structure. In the logistic model, the pa-

rameters b, l, r, and s2a are chosen to satisfy the following condi-

tions. (1) The three covariates each explain an equal amount of

variability in disease probability on the logit scale. (2) On the logit

scale, considering the total variability explained by the covariates,

the ancestry fixed effect (Air), and the additive polygenic effect

(ai), the proportion explained by the covariates achieves a speci-

fied level ranging from 0% to 100%, in increments of 20%. (3)

Of the remaining proportion of variability in (2), which we

describe as the proportion explained by ancestry, either it is

wholly explained by the ancestry fixed effect (in the case of no

cryptic relatedness) or half of it is explained by the ancestry fixed

effect and half of it is explained by the additive polygenic effect (in

the case when there is cryptic relatedness). (4) In the logistic

model, the Bernoulli variance (or in the liability threshold model,

the random error ei) explains, on average, approximately 60%

of the total variability in the binary case-control status. (5) On

average, the number of case subjects in the sample equals the

number of control subjects in the sample. And (6) for individuals

with at least one copy of the minor allele for both causal SNPs,

there is an increase of 10% in disease penetrance compared with

other individuals. For the liability threshold model, the parame-

ters are chosen based on the same criteria with conditions on

the logit scale adapted to be on the liability scale.
Crohn Disease Data from WTCCC
To illustrate the use of our method, we analyze a genome-wide

association study (GWAS) dataset from the WTCCC.21 The

WTCCC1 study is a case-control GWAS undertaken in the British

population jointly by multiple research groups. The sample con-

sists of ostensibly unrelated individuals, about 2,000 case subjects

for each of 7 different diseases and 3,000 shared control subjects.

Genotyping was conducted with the Affymetrix 500K chip. We

analyze the CD data from WTCCC1. After quality control, the

data set has 1,748 case subjects and 2,938 control subjects, and a

total of 360,230 common SNPs (MAF > 0.05).

Kang et al.6 have previously argued that sample structure in the

WTCCC data is not adequately captured by a linear model with

100 PCs, although it is captured by an LMM. Additional motiva-

tion for the use of CARAT on the WTCCC data is based on our

simulation studies (see Results), which show (1) improved power

of CARAT over LMM because of the logistic mean structure of

CARAT and (2) improved type 1 error of CARAT over standard

logistic regression, with or without PCs, because of robustness to

phenotype model misspecification.

We perform single-SNP association tests using CARAT, CARATd,

and LMM. For all three methods, the covariates are sex and three

SNPs (rs11209026, rs2201841, and rs10512734), all in regions

previously reported and replicated to be associated with CD, based
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Table 1. Empirical Type I Error Rates for a Liability Threshold Trait Model with Two Subpopulations

Proportion of Cases froma Empirical Type I Error Rate of

Population 1 Population 2 CARAT CARATd LMM LOG LOG-1 LOG-10

50% 50% .0503 .0502 .0489 .0517* .0523* .0528*

60% 40% .0501 .0501 .0509 .0815* .0817* .0529*

70% 30% .0503 .0497 .0498 .169* .164* .0518*

80% 20% .0495 .0488 .0498 .287* .281* .0524*

Empirical type 1 error at level 0.05 is evaluated based on 100,000 replicates, so the standard error is 0.00069 for every entry in the table. Asterisk (*) indicates
type 1 error rates that are significantly different from the nominal level, using the z-test at level 0.05.
aA sample of 2,000 individuals, with 1,000 from each of the two subpopulations and with equal numbers of case and control subjects, is ascertained based on the
specified proportions of case subjects from each subpopulation.
on extensive studies conducted independently of WTCCC1.

rs11209026 encodes the amino acid mutation c.1172G>A

(p.Arg391Gln) (GenBank: NM_153360.2) in IL23R (MIM:

607562) on chromosome 1p31 and has been associated with

CD in a number of studies.22–24 rs2201841 is also located in

IL23R, has been reported as an independent association signal

from rs11209026,22 and has been associated with CD in other

studies.24–26 rs10512734 is in 5p13.1, and both the SNP and the

region have been associated and replicated.23,27–29
Results

Simulation Studies

We first evaluate the performance of LEAP based on 500

simulation replicates for each scenario. We observe that

LEAP frequently encounters algorithm failure, in which

case the program terminates without producing any asso-

ciation testing results. Note that, as a multi-step procedure,

the LEAPmethod first estimates the heritability of the trait,

which is then assumed known and plugged into subse-

quent steps that predict disease liabilities and test for

genetic association. However, the first step can yield a her-

itability estimate that is either negative or more than

100%, which is not permitted in models assumed by the

steps that follow and will crash the program. In our simu-

lation settings, LEAP has failure rates (defined to be the

empirical proportion of simulation replicates in which

the algorithm terminates without generating association

testing results) ranging from 21.4% to 92.6% depending

on the simulation scenario, with a number of settings hav-

ing failure rates greater than 50%. As a result, we are unable

to obtain reliable type 1 error rates or power comparisons

for LEAP. The reason is that failure or not of the algorithm

depends on the observed data, so the high failure rates

would be expected to introduce bias in results based on

only the successful runs. Therefore, we do not include

LEAP in any of the comparisons with other methods.

Empirical type 1 error rates of CARAT, CARATd, and

LMM are evaluated at nominal levels 0.05 and 0.001 for

both the ‘‘2 Subpopulation’’ and ‘‘Admixture and Cryptic

Relatedness’’ scenarios across a variety of settings under

two types of trait models, based on 100,000 replicates.

For comparison, we also evaluate in these settings the
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empirical type 1 error rates of standard logistic regression

(LOG), logistic regression with the leading principal

component1 (PC) of the genetic relationship matrix cJ
included as a covariate (LOG-1), and logistic regression

with the leading ten PCs included as covariates (LOG-

10). Tables 1 and 2 show the type 1 error results, at nominal

level 0.05, for the ‘‘2 Subpopulation’’ and ‘‘Admixture and

Cryptic Relatedness’’ settings, respectively, with pheno-

types generated under the liability threshold model. The

remaining type 1 error results are reported in Tables

S2–S4. These results demonstrate that all three of the

mixed-model methods (CARAT, CARATd, and LMM) effec-

tively control for population stratification and admixture

in these simulation settings. However, use of LOG, LOG-

PC1, and LOG-PC10 can lead to inflation of type 1 error

in some cases. In particular, we find that even in the

absence of population structure and relatedness (row 1 of

Table 1 and row 1 of Table 2), logistic regression with or

without PCs can have inflated type 1 error when the logis-

tic model does not hold, whereas CARAT is more robust

and has correct type 1 error in all the simulation settings.

The inflated type 1 error for the logistic regressionmethods

probably reflects, in part, the fact that the logistic model is

misspecified when the true model is a liability threshold

model. In contrast, CARAT is robust to phenotype model

misspecification because of the retrospective assessment

of significance. These results suggest that CARAT is prefer-

able to logistic regression, with or without PCs, even when

the amount of population structure and/or relatedness is

low (or absent).

Power results for CARAT, CARATd, and LMM based on

5,000 replicates at level 0.001 are shown in Figure 1. We

do not include LOG, LOG-1, or LOG-10 in these power

simulations, because these methods do not maintain

robust control over type 1 error. For all of the simulation

settings, CARAT consistently has the highest power. In

particular, CARAT achieves a power gain over LMM that

is statistically significant and often substantial under

different trait models and with widely ranging extent of

population structure of different types.

One question of interest is whether or not including the

dispersion parameter (as in CARATd) provides improve-

ment over the CARAT method. In fact, we find the
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Table 2. Empirical Type I Error Rates for a Liability Threshold Trait Model with Population Admixture and Cryptic Relatedness

% Variance due toa

Cryptic Relatedness

Empirical Type I Error Rate of

Ancestry Covariates CARAT CARATd LMM LOG LOG-1 LOG-10

0% 100% no .0491 .0492 .0499 .0512 .0514* .0522*

20% 80% no .0493 .0492 .0497 .188* .189* .0526*

20% 80% yes .0510 .0511 .0507 .106* .107* .0106*

40% 60% no .0496 .0492 .0493 .110* .111* .0520*

40% 60% yes .0500 .0499 .0507 .127* .126* .0125*

60% 40% no .0497 .0497 .0501 .316* .316* .0524*

60% 40% yes .0488 .0489 .0489 .163* .163* .162*

80% 20% no .0496 .0495 .0497 .350* .350* .0514*

80% 20% yes .0492 .0494 .0496 .182* .182* .0182*

100% 0% no .0506 .0506 .0512 .369* .369* .0524*

100% 0% yes .0513 .0514* .0514* .195* .195* .195*

Empirical type 1 error at level 0.05 is evaluated based on 100,000 replicates, so the standard error is 0.00069 for every entry in the table. Asterisk (*) indicates type
1 error rates that are significantly different from the nominal level, using the z-test at level 0.05.
aThe percentages are defined to be the variance, on the liability scale, explained by either the ancestry effects (admixture and cryptic relatedness) or the covariate
effects, divided by the total variance explained by the two types of effects, indicating the relative impact of ancestry versus covariates on the phenotype.
opposite to be true: CARAT has consistently higher empir-

ical power than CARATd in all simulation scenarios. We

also observe that the power difference tends to grow as

population structure becomes stronger, and in the special

case where there is no population structure, CARAT and

CARATd perform almost identically. We propose a likely

reason for this in the context of a logistic trait model as fol-

lows. In the absence of population structure, the quasi-like-

lihood trait model is a correctly specified model for the

sample. It follows that, in the case of no population struc-

ture, CARATd can estimate s2g in a consistent fashion to be

close to the true value 1. Therefore, almost nothing is lost

by including this redundant nuisance parameter, provided

that the sample size is large. As population structure

strengthens, however, the prospective model becomes

more subject to misspecification, and the estimated s2g is

no longer close to 1, resulting in the divergence of the per-

formance of CARAT and CARATd.

For the ‘‘2 Subpopulation’’ settings, in which the misca-

libration of the LOG-10 statistic is not extreme, we also

compare the power of LOG-10 and CARAT for detecting as-

sociation under either the liability threshold or logistic

phenotype model. To make a fair power comparison, we

first use 500,000 simulated replicates under the null model

to recalibrate both statistics to have correct type 1 error.

The results, reported in Table S5, show that CARAT consis-

tently outperforms LOG-10 in terms of power, as well as in

type 1 error (Tables 1 and S2) in this scenario.

In the results presented, the correlation matrix F of

Equation 5 in the trait model is estimated by cJ given

in Equation 6. Use of the alternative estimator, bF of Equa-

tion 7, for F produces very similar results in all scenarios

(results not shown for brevity).
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Analysis of Crohn Disease Data from WTCCC

Genome-wide association testing for CD is performed on

360,230SNPsusingCARAT,CARATd, andLMM,withadjust-

ment for covariates (sex and three SNPs previously identified

as associated), as described inMaterial andMethods. The re-

sulting genomic control inflation factors for the three

methods are lGC ¼ 1.002, 1.002, and 1.004, respectively.

Table 3 shows the 17 genetic regions with at least one SNP

for which the p value is less than 10�6 using at least one of

the three tests. All 17 regions identified by our analysis

have previously been associated with CD or inflammatory

bowel disease (IBD [MIM: 266600]). These include many

extensively replicated loci and genes.23,30–34 For example,

at 16q12.1, a cluster of associated SNPs are within or in close

proximity toNOD2 (CARD15 [MIM: 605956]), awell-known

CD-susceptibility gene.30,34–36 The associated SNPs in the

2q37.1 region are close to ATG16L1 (MIM: 610767), which

has been widely associated with CD.21,32

In Table 3, a somewhat surprising result is that there is

still significant association with a SNP in 5p13.1, even

though rs10512734, a known risk SNP from the same re-

gion, has been controlled for as a covariate in the analysis.

In fact, after rs10512734 is controlled for, four SNPs in

close proximity of rs10512734 retain evidence of associa-

tion (Table 4). In Table 4, we compare the p values of these

SNPs based on the analyses with and without rs10512734

included as a covariate (in both analyses, we keep sex and

the other two covariate SNPs, rs11209026 and rs2201841,

as covariates). We observe that adjustment for rs10512734

results in a boosted association signal for three of the

nearby SNPs. For example, rs6883686, which is 8,928

base pairs from rs10512734, shows no evidence of associa-

tion (p value > 0.9) when rs10512734 is not adjusted for.
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Figure 1. Empirical Power of CARAT, CARATd, and LMM
Empirical power is based on 5,000 replicates. An upper bound for the standard error of the empirical power is 0.007. For a difference
between two empirical power values, the upper bound on the standard error is 0.01.
(A and B) Power results in the ‘‘2 Subpopulations’’ setting, in which the leftmost value on the horizontal axis (50%/50%) corresponds to
no population stratification and the rightmost value (80%/20%) corresponds to profound stratification. Power results when the pheno-
type is generated according to a liability threshold model with two subpopulations (A) or to a logistic regression model with two sub-
populations (B).
(C and D) Power results in the ‘‘Admixture and Cryptic Relatedness’’ setting, for which the percentages on the horizontal axis are defined
so that the numerator is the variance, on the liability or logistic scale, explained by the ancestry and cryptic relatedness effects (the first
number) or by the covariate effects (the second number), and the denominator is the total variance explained by the two types of effects.
The horizontal scale indicates the relative impact of ancestry versus covariates on the phenotype, with the far left corresponding to no
effect of ancestry and strong effects of covariates and the far right corresponding to no effect of covariates and a strong effect of ancestry.
The dotted lines denote settings with cryptic relatedness, and the solid lines denote settings without cryptic relatedness. Power results
when the phenotype is generated according to a liability threshold model (C) or according to a logistic regression model (D) in the
‘‘Admixture and Cryptic Relatedness’’ setting.
After adjusting for rs10512734, however, suggestive evi-

dence of association is found for rs6883686, with a dra-

matic change in the p value from 0.99 to 5.1 3 10�4 using

CARAT. To investigate the association signals in 5p13.1

more closely, we include each of the individual SNPs in

5p13.1 that are present in the data as a covariate and

examine the p values of the other SNPs. We find that no

single SNP within 5p13.1 is able to explain all the associa-

tion signal in this region. These results suggest either that

the 5p13.1 region contains more than one independently

associated SNP or that there exists at least one untyped CD
250 The American Journal of Human Genetics 98, 243–255, February
susceptibility variant in this region that is not well tagged

by any single SNP in the dataset.

To further investigate the possibility of untyped causal

SNPs in 5p13.1, we obtain dense genotype data through

imputation based on the phase 3 data of the 1000

Genomes project.37 We apply MaCH38,39 to phase the

WTCCC genotype data and use Minimac340,41 for geno-

type imputation. We examine all SNPs present in the

1000 Genomes data that are located in a 20 Mb region

around 5p13.1 to determine whether the association signal

in that region can be attributed to any single imputed SNP.
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Table 3. Regions of Strongest Association with Crohn Disease in WTCCC Data

Region Top SNP Positiona CARAT CARATd LMM

1p13.1 rs12078461 117,273,572 4.7 3 10�15* 4.8 3 10�15* 5.8 3 10�10

1q41 rs1933641 216,535,584 1.0 3 10�17* 1.0 3 10�17* 1.8 3 10�11

2p12 rs11887827 81,519,665 9.5 3 10�7 9.8 3 10�7 2.3 3 10�7*

2q37.1 rs10210302 233,823,578 4.4 3 10�12 4.4 3 10�12 1.7 3 10�12*

3p24.3 rs9839841 16,454,562 1.7 3 10�16 1.6 3 10�16 4.1 3 10�17*

4p15 rs1553460 17,804,959 <10�18 <10�18 <10�18

5p13.1 rs17234657 40,437,266 3.7 3 10�8 3.8 3 10�8 1.8 3 10�8*

5q23.1 rs2416472 117,033,845 2.6 3 10�10 2.6 3 10�10 3.0 3 10�10

7p14.1 rs1525791 39,123,083 7.9 3 10�7 8.1 3 10�7 5.8 3 10�7

10q21.2 rs10761659 64,115,570 6.1 3 10�7 6.1 3 10�7 6.5 3 10�7

10q24.2 rs10883371 101,282,445 3.4 3 10�7 3.4 3 10�7 2.7 3 10�7

11q23.2 rs17116117 113,306,801 <10�18 <10�18 <10�18

14q13.2 rs10483456 35,105,918 6.3 3 10�16 6.4 3 10�16 6.0 3 10�16

16p11.2 rs4471699 30,227,808 7.6 3 10�13 7.6 3 10�13 1.1 3 10�13*

16q12.1 rs2076756 49,314,382 5.9 3 10�12* 6.1 3 10�12* 2.4 3 10�11

18p11.21 rs2542151 12,769,947 9.4 3 10�9* 9.6 3 10�9* 2.1 3 10�8

219q13.2 rs41537748 44,449,412 2.2 3 10�8* 2.2 3 10�8* 6.3 3 10�8

Association results are based on an analysis adjusting for sex and three known associated SNPs (rs11209026, rs2201841, and rs10512734) as covariates. Asterisk
(*) indicates a p value less than half of the largest of the p values yielded by the three methods.
aBase pair position is based on assembly NCBI36.
Specifically, we include each of the imputed SNPs as a co-

variate (sex is included as an additional covariate) when

testing the other SNPs, typed and imputed, within

5p13.1. We find that no single imputed SNP in the region

is able to fully explain the association signal at 5p13.1.

Among the imputed SNPs, the smallest CARAT p value,

1.2 3 10�12, is achieved by two SNPs in perfect LD in the

imputed data, located at 40,410,043 and 40,410,739 on

chromosome 5, respectively. After adjusting for these two

SNPs, there remain additional association signals in

5p13.1, with the smallest p value, 4.8 3 10�6, achieved

by a typed SNP, rs11957215. Overall, our results indicate

the presence of multiple susceptibility variants within

5p13.1. The 5p13.1 region has previously been reported

and replicated as associated with CD,23,27 and evidence

has been found that variants in this region correlate with

the expression level of PTGER4 (MIM: 601586),23 a gene

that has been implicated in IBD in murids. We are the first

to report evidence suggesting the existence of multiple

independent risk variants within 5p13.1.

The aforementioned observation illustrates that, in asso-

ciation mapping, including known associated SNPs as co-

variates has the potential to enable discoveries of new asso-

ciation signals and to generate interesting insights into the

genetic architecture of the trait. More examples are pro-

vided in Table 5, which compares the p values using

models with no covariates and those using models with

sex and three SNPs as covariates.
The Americ
Computation Time

The main computational burden of implementing CARAT

comes from the eigendecomposition of the genetic rela-

tionship matrix. Despite the potential complexity of this

decomposition, its impact on the computational feasibility

of the method is mitigated by two factors: (1) the decom-

position incurs no extra cost beyond LMM and PC-based

methods, which require the same decomposition or one

of comparable computational complexity;1,8,9 (2) it needs

to be done only once per genome scan. Once the eigende-

composition is available for the genetic relationship ma-

trix, the additional computational cost of CARAT is O(n2)

for fitting the null model and O(n) for calculating the test

statistic. As for LMM, the time complexity can be further

reduced in the case of a low-rank genetic relationship

matrix.8 Overall, CARAT enjoys the same computational

scalability as LMM8,9 in large genetic association data.

CARAT is implemented in a freely downloadable

software package (see Web Resources). We report some

example run times of CARAT for analysis of real and simu-

lated data. Using a single processor on a machine with 6

core Intel Xeon 3.50 GHz CPUs and 32 GB RAM, CARAT

takes less than 6 s to fit the null model on the WTCCC

data with 4,686 individuals, and approximately 131 s to

analyze a total of 360,230 genome-wide SNPs, assuming

the genetic relationship is available. For a sample of

20,000 individuals, fitting the null models takes 107 s,

and the genome-wide analysis takes an additonal 9.4 min
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Table 4. Association Signals at 5p13.1 in WTCCC Data

SNP Position
Controlled for
rs10512734? p Value via CARAT

rs10473185 40410924 yes 1.8 3 10�6

no 1.0 3 10�4

rs10512734 40429362 yes –

no 1.7 3 10�7

rs17234657 40437266 yes 3.7 3 10�8

no 4.5 3 10�13

rs6883686 40438290 yes 5.1 3 10�4

no .99

rs6885315 40465299 yes 5.2 3 10�4

no .93

After rs10512734 is included as a covariate (together with three other covari-
ates), four SNPs in close proximity still show association signal. p values for
these SNPs are compared with andwithout adjusting for rs10512734. For three
of these SNPs, controlling for rs10512734 boosts association signal.

Table 5. Including Covariates Can Help Boost Association Signal

Chr SNP Covariatesa Included? p Value via CARAT

5 rs12657249 yes 1.8 3 10�6

no 5.3 3 10�4

18 rs12966840 yes 9.6 3 10�9

no 1.8 3 10�7

18 rs1942868 yes 1.0 3 10�7

no 1.2 3 10�6

18 rs9954415 yes 6.7 3 10�8

no 8.1 3 10�7

19 rs10421478 yes 2.1 3 10�8

no 1.7 3 10�7

aWe compare p values based on the analysis with no covariates with those
based on the analysis with the following covariates: sex, rs11209026,
rs2201841, and rs10512734.
(566 s). These results demonstrate that CARAT computes

rapidly for large-scale genome-wide association studies.
Discussion

Population structure is a widespread confounding factor in

genetic association studies. It is well known that failure to

account for population structure can lead to both false pos-

itives and false negatives in genetic association mapping.

We have developed CARAT, an association testing method

for binary traits in samples with population structure.

Compared to existing methods such as ROADTRIPS and

LTMLM, CARAT features the ability to account for covari-

ate information. Like LMM, CARAT includes an additive

polygenic variance component to account for population

structure. Unlike LMM, CARAT specifically accommodates

binary traits by modeling covariate effects on the logit

scale and by accounting for the dependence of the variance

on the mean. As a result, CARAT gains power over LMM in

case-control association testing. Moreover, we take an esti-

mating equation and score test approach, which ensures

that CARAT is computationally rapid for large-scale

studies. In addition, CARAT uses a retrospective analysis

to assess significance of the test statistic, which equips

the method with robustness to misspecification of the

phenotype model. We provide a computationally efficient

implementation of CARAT in a freely downloadable soft-

ware package.

We demonstrate the validity and power of CARAT

through simulation studies. In particular, CARAT consis-

tently outperforms LMM under diverse simulation sce-

narios with different types of trait models, widely ranging

levels of covariate effects, and varying degrees of popula-

tion stratification and admixture. In our simulations, we

found the recently developed program LEAP to be unsta-
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ble, as reflected in frequent failures that prevented the al-

gorithm from producing association testing results. There-

fore, we were not able to compare LEAP with the other

methods. We compare CARAT to logistic regression with

or without PCs included as covariates. We find that CARAT

ismore robust tomisspecification of the phenotypemodel,

while the type 1 error of the logistic regression methods

can be inflated in the presence of model misspecification.

In addition to demonstrating the improvement of CARAT

over previously proposed methods, we also consider the

question of whether there is any benefit to including a

dispersion parameter in the CARAT model. To test this,

we develop CARATd, a version of CARAT that includes

the dispersion parameter.We find that the power of CARAT

is consistently higher than that of CARATd in our simula-

tions, suggesting that the dispersion parameter should not

be included in the model.

We applied CARAT to association mapping of CD in the

WTCCC dataset. In the analysis, we included as covariates

sex and three known associated SNPs: rs11209026,

rs2201841, and rs10512734. We found 17 CD-associated

regions, all of which have been previously associated

with CD or with a closely related phenotype, IBD. In addi-

tion, we observed in the CD analysis that adjusting for rele-

vant covariates can enhance the ability to detect associa-

tion and can lead to interesting insights into the genetics

of a disease. In particular, by including known associated

SNPs as covariates, we have found evidence that 5p13.1

might contain multiple independent associated SNPs.

Although the trait model assumed by CARAT uses a logit

link function, the method is adaptable to other link func-

tions as deemed appropriate. Ideally, a good choice of the

link function should provide a scale on which the covari-

ate effects are additive. As an example, the complementary

log-log linkmight be considered when the case-control sta-

tus in the data is asymmetric, which might be the case if

the binary trait is a truncation of some unobserved count
4, 2016



(for instance, ‘‘no tumor’’ versus ‘‘some tumors,’’ where the

number of tumors is the unobserved count). Moreover,

CARAT can be generalized to the analysis of non-binary

traits by assuming Equation 1 and

VarðY j X;GÞ ¼ s2G1=2SG1=2;

where G ¼ diagfVðm1Þ;/;VðmnÞg;

where the link function g(,) in Equation 1 and themarginal

variance functionV(,)in the equation above can be chosen

based on amarginal distribution from the exponential fam-

ily tailored to the data type under consideration. For

example, to analyze Poisson count data, one could use

g(m) ¼ log(m) and V(m) ¼ m. We note that although CARAT

sets the dispersion parameter s2 to be 1 for binary traits, it

could be beneficial to include s2 as a free parameter for

non-binary data to capture possible over-dispersion.

In our presentation of CARAT, the genetic relationship

matrix F in Equation 5 is estimated based on either Equa-

tion 6 or 7. However, the method is able to accommodate

other choices. For example, Yang et al.12 show that the po-

wer of LMM can be improved by estimating the genetic

relationship matrix using genome scan data with the

tested SNP excluded. The same strategy can be applied in

CARAT. In addition, CARAT can be adapted to incorporate

more than two additive correlation components in S, with

the extra variance component parameters estimated using

estimating equations constructed in a similar way as for

Equation 11. It has been argued that including additional

variance components could provide improved protection

against spurious association with highly differentiated

SNPs42 and could provide simultaneous adjustment for

multiple levels of sample structure including population

stratification and familial relatedness.5 Furthermore,

CARAT can be combined with methods that model popu-

lation structure as fixed effects, such as EIGENSTRAT, by

including inferred ancestry information as covariates.

Recently, the GCAT method, which models genetic vari-

ation in structured populations, has been described.43 In

the context of quantitative traits, GCATwas shown to pro-

vide an advantage for association analysis in the presence

of population structure, compared to LMM and linear

regression with PCs included as covariates. For binary

traits, Song et al.43 do not show their simulation results,

but report that ‘‘all methods performed similarly well in

terms of producing correct P values that were robust

to structure,’’ indicating that GCAT does not provide

improvement over existing methods for binary traits.

Furthermore, the way in which covariates would be incor-

porated for a binary trait in GCAT is not explicitly

described in Song et al. Our results on CARAT indicate

that when covariates play an important role for a binary

trait, the way that covariates are incorporated can affect

power. Specifically, when covariate effects are large, a logis-

tic model for the effect of covariates on the trait is more

successful than a linear one in providing high power for

association.
The Americ
For testing associationwith rare variants, all themethods

we compare (LMM, CARAT, CARATd, and logistic regres-

sion with PCs) will encounter similar challenges. One po-

tential problem that has been pointed out44 is that in

some cases, rare variants might have different population

histories than common variants, so genetic relationship

matrices and PCs calculated based on common variants

might not be applicable to rare variants. Low MAF of the

tested variant does not by itself cause problems for any of

these analysis methods when the sample size is sufficiently

large.However, if theminor allele countof a testedvariant is

too low, the asymptotic assumptions underlying the assess-

ment of significance for CARAT, for example, might fail.
Appendix A: Type I Error with the Prospective

Version of CARAT

Based on the prospective quasi-likelihood model described

in Material and Methods and Equation 6, the prospective

quasi score test statistic is given by

Tpro ¼ U2
0

.h
GTKG �GTKX

�
XTKX

��1
XTKG

i
;

where K ¼ bG0
bU�1

0
bG0. To perform the association test with

the prospective version of CARAT, we assume that Tpro fol-

lows a c2
1 distribution under the null hypothesis. The accu-

racy of this null distribution is not robust against misspeci-

fication of the prospective model. Our simulation studies

show that under many realistic scenarios, the prospective

version of CARAT does not offer correct control over type

1 error. Examples of such scenarios are shown in Table S1.
Supplemental Data

Supplemental Data include one figure and seven tables and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.
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narsdottir, E., Färkkilä, M., Kontula, K., and Paavola-Sakki, P.

(2008). Association of IL23R, TNFRSF1A, and HLA-DRB1*

0103 allele variants with inflammatory bowel disease pheno-

types in the Finnish population. Inflamm. Bowel Dis. 14,

1118–1124.

26. Wang, M.-H., Okazaki, T., Kugathasan, S., Cho, J.H., Isaacs,

K.L., Lewis, J.D., Smoot, D.T., Valentine, J.F., Kader, H.A.,

Ford, J.G., et al. (2012). Contribution of higher risk genes

and European admixture to Crohn’s disease in African Amer-

icans. Inflamm. Bowel Dis. 18, 2277–2287.

27. Yamazaki, K., Onouchi, Y., Takazoe, M., Kubo, M., Nakamura,

Y., andHata, A. (2007). Association analysis of genetic variants

in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in

Japanese patients. J. Hum. Genet. 52, 575–583.

28. Franke, A., Hampe, J., Rosenstiel, P., Becker, C., Wagner, F.,

Häsler, R., Little, R.D., Huse, K., Ruether, A., Balschun, T.,

et al. (2007). Systematic association mapping identifies

NELL1 as a novel IBD disease gene. PLoS ONE 2, e691.

29. Kenny, E.E., Pe’er, I., Karban, A., Ozelius, L., Mitchell, A.A., Ng,

S.M., Erazo, M., Ostrer, H., Abraham, C., Abreu, M.T., et al.

(2012). A genome-wide scan of Ashkenazi Jewish Crohn’s dis-

ease suggests novel susceptibility loci. PLoSGenet.8, e1002559.
4, 2016

http://csg.sph.umich.edu/abecasis/MACH/index.html
http://csg.sph.umich.edu/abecasis/MACH/index.html
http://genome.sph.umich.edu/wiki/Minimac3
http://www.omim.org/
http://www.ncbi.nlm.nih.gov/RefSeq
http://www.wtccc.org.uk
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref1
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref1
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref1
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref1
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref2
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref2
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref3
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref3
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref3
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref4
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref4
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref4
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref4
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref5
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref5
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref5
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref5
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref5
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref6
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref6
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref6
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref6
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref7
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref7
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref7
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref7
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref7
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref8
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref8
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref8
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref9
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref9
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref9
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref10
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref10
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref11
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref11
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref11
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref12
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref12
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref12
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref13
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref13
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref13
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref13
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref13
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref14
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref14
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref14
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref15
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref15
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref16
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref16
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref16
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref17
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref17
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref17
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref18
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref18
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref18
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref19
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref19
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref20
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref21
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref22
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref22
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref22
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref22
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref22
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref23
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref23
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref23
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref23
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref23
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref24
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref25
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref26
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref26
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref26
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref26
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref26
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref27
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref27
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref27
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref27
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref28
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref28
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref28
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref28
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref29
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref29
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref29
http://refhub.elsevier.com/S0002-9297(15)00507-8/sref29


30. Hugot, J.-P., Chamaillard,M., Zouali, H., Lesage, S., Cézard, J.-P.,
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