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Abstract

In numerical models of ocean circulation, it is widespread practice to split the fast
and slow motions into barotropic and baroclinic subsystems, respectively. In the
case of the baroclinic equations, the dependent variables can either be (1) slowly-
varying baroclinic quantities, obtained from splitting the original flow variables
into barotropic and baroclinic components, or (2) the original unsplit variables,
which can vary on both the fast and slow time scales. In the second case, the
variables in each layer are adjusted after each (long) baroclinic time step to ensure
compatibility with the results produced from the barotropic equations. The second
approach can be applied to the layer thickness equation to ensure exact conservation
of mass within each layer. In the case of the momentum equations, the second
approach amounts to replacing unresolved fast portions of Coriolis and pressure
forcing with time averages of well-resolved forcing from the barotropic system. In
this study, both approaches for the momentum equations are evaluated, in several
test problems, by comparing to analytical solutions or to solutions computed with
an unsplit code that uses short time steps. The two methods give very similar
results in some simple problems for which analytical solutions are known. However,
in some eddying double-gyre simulations, the formulation with unsplit variables
requires a significant reduction in the baroclinic time step in order to avoid numerical
difficulties that include grid noise and inaccurate representation of the flow field. In
contrast, the formulation with split variables does not display such difficulties, and
in those same examples it can be used with zero explicit horizontal viscosity. All
of these computations employ a two-level timestepping method that was previously
developed by the author.
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1 Introduction

The physical dynamics of the ocean include motions that vary on a wide range
of time scales. In particular, the speeds of external gravity waves can be two
orders of magnitude greater than the speeds of internal waves and advective
motions. If an explicit time-stepping method were used to solve the governing
equations numerically, then the presence of the external gravity waves would
impose a severe restriction on the allowable time step. However, the fast ex-
ternal motions can be modeled accurately with a two-dimensional barotropic
subsystem that resembles the shallow water equations for a homogeneous fluid.
The remaining slow motions can be modeled by a three-dimensional baroclinic
subsystem. The baroclinic equations can be solved explicitly with a long time
step that is appropriate for resolving the slow motions, and the barotropic
equations can be solved implicitly with the same time step or explicitly with
many short substeps. The latter procedures are applied to a relatively simple
two-dimensional subsystem instead of the full three-dimensional system, so
the result is a major gain in efficiency relative to an algorithm that solves the
three-dimensional system without splitting the dynamics into barotropic and
baroclinic components. Barotropic-baroclinic splittings are therefore widely
used in the numerical modeling of ocean circulation. In the present paper we
consider such splittings in the context of isopycnic-coordinate ocean models,
for which the vertical coordinate is a physical quantity related to density.

Of particular concern here is the choice of the dependent variables that are
used in a barotropic-baroclinic splitting. The barotropic equations are ob-
tained through a vertical averaging or summation of the three-dimensional
governing equations, and for these equations the dependent variables are ver-
tical averages or sums of the original flow variables. In the case of the baroclinic
equations, two types of dependent variables have been widely used. One ap-
proach is to split the dependent variables (approximately) into barotropic and
baroclinic components, and then use the baroclinic quantities as prognostic
variables in the baroclinic equations. Another approach is to use the same
dependent variables as in the original unsplit system, but at the end of each
baroclinic time step adjust these variables to maintain consistency with the re-
sults computed with the barotropic equations. In the following, the two choices
of dependent variables will be described as “split variables” and “unsplit (orig-
inal) variables”, respectively. As noted in Section 3.4, there are strong reasons
for using the second approach when solving the equation for conservation of
mass. The purpose of the present paper is to explore which approach would
be better when solving the equations for conservation of momentum.
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In previous work by this author (Higdon, 2005), split variables were used to
solve the baroclinic momentum equations, and the algorithm gave good results
in some numerical experiments involving the model problems described in that
paper. However, the formulation of the baroclinic momentum equations in such
variables includes some terms that do not seem natural in a physical sense.
This raises the possibility that a discretization based on this formulation could
produce a distortion of the dynamics in the numerical solution, in some cases.
On the other hand, a formulation in terms of unsplit (original) variables does
not include the terms in question. It then seemed advisable to develop an
algorithm with unsplit variables and to compare the two approaches.

Section 2 summarizes the governing equations, the choices of dependent vari-
ables, and the formulation of the baroclinic momentum equations in split vari-
ables. Section 3 develops a formulation of the baroclinic momentum equations
in unsplit (original) variables. Section 4 describes some numerical computa-
tions involving those two formulations, and the discussion includes compar-
isons to analytical solutions or to solutions obtained with a relatively simple
code that uses short time steps and no barotropic-baroclinic splitting. Sec-
tion 4 concludes with a demonstration of the split-variable formulation in a
long-time, high-resolution simulation of a double-gyre flow with active eddy
fields. Section 5 discusses some issues raised by the differing behaviors of the
two formulations of barotropic-baroclinic splitting, and Section 6 gives some
conclusions.

2 Governing equations and summary of splitting

In an isopycnic-coordinate ocean model, the vertical coordinate is potential
density or a related quantity, and a vertical discretization of such a model
amounts to dividing the fluid into layers having distinct physical properties. An
advantage of such a coordinate is that it facilitates the reduction or elimination
of spurious diapycnal diffusion between distinct water masses. A systematic
comparison of the advantanges and disadvantages of isopycnic coordinates
and other widely-used vertical coordinates (z and σ) is given, for example, by
Griffies (2004).

For simplicity, it is assumed in the present discussion that the vertical coor-
dinate is the specific volume α = 1/ρ (i.e., reciprocal of density) and that the
horizontal coordinates are Cartesian coordinates (x, y). Partition the fluid into
R layers having specific volumes α1, . . ., αR, with the layer indices increasing
downward. Assume that the vertical length scale is much less than the hor-
izontal length scale, so that the hydrostatic assumption holds. Let ∆pr > 0
denote the vertical pressure difference across layer r; because of the hydro-
static condition, ∆pr is equal to g times the mass per unit horizontal area in

3



layer r, where g is the acceleration due to gravity. The quantity ∆pr can also
be regarded informally as the thickness of layer r. Let ur = (ur, vr) denote

the horizontal velocity in layer r, and let ∇ =
(

∂
∂x
, ∂

∂y

)
. (In the vertically-

continuous case, ∇ would act along surfaces of constant α.) If there is no
transport of mass between layers, then the equation for conservation of mass
is

∂∆pr

∂t
+∇ · (ur∆pr) = 0, (1)

and the equation for conservation of momentum is

∂

∂t

(
ur∆pr

)
+ Ar + fu⊥

r ∆pr = − (∆pr)∇Mr + Dr (2)

(e.g., Higdon (2006)). Here, u⊥
r = (−vr, ur), f is the Coriolis parameter,

Ar =
∂

∂x

(
ur

(
ur∆pr

))
+

∂

∂y

(
vr

(
ur∆pr

))
(3)

represents the advection of momentum, Dr = ∇·
(
AH∆pr∇ur

)
+ g∆τr repre-

sents the effects of horizontal diffusion and the vertical differences of stresses
at layer interfaces, and M = αp + gz is the Montgomery potential. Because
of the hydrostatic condition ∂p/∂z = −ρg, M is independent of depth within
a layer of constant density, and Mr refers to the value of this quantity in
layer r. Equations (1) and (2) are supplemented with the jump condition
Mr − Mr+1 = pr+1/2(αr − αr+1), where pr+1/2 denotes the pressure at the
interface between layers r and r + 1.

The quantity ur∆pr is equal to g times the horizontal momentum per unit
horizontal area in layer r, so ur∆pr is a constant multiple of momentum den-
sity. Equations (1) and (2) could be combined to produce an equation for the
velocity ur; the momentum formulation (2) is used here because the nonlin-
ear terms are expressed in the flux form (3), for which a numerical advection
algorithm can be used.

In some work that led to the results reported by Higdon (2002), the velocity
was initially used as the dependent variable, and the nonlinear and Coriolis
terms were combined into a formulation involving vorticity and the gradient
of kinetic energy. The gradient was approximated with centered spatial differ-
ences, and the vorticity and Coriolis terms were discretized with two different
schemes of Sadourny (1975). However, these formulations allowed erratic and
sometimes unstable behavior in some situations where layer thicknesses tend
to zero. In contrast, the flux formulation described above, in conjunction with
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a numerical advection scheme, produced stable numerical behavior in those
same situations. The flux formulation is therefore the one that is considered
by Higdon (2002) and in the present paper.

2.1 Barotropic-baroclinic splitting

A description of the process of barotropic-baroclinic splitting, along with a
mathematical discussion of external and internal modes, is included in the
review by Higdon (2006), and one particular formulation of a splitting is de-
veloped in Section 3 of the present paper. For the barotropic equations, the
main idea is to employ a vertical summation and/or averaging of the three-
dimensional mass and momentum equations. The barotropic mass variable
can be taken to be

pb(x, y, t) =
R∑

r=1

∆pr, (4)

which is g times the mass per unit horizontal area in a water column. Equiv-
alently, one can use the perturbation p′bη in pb, where p′b is the value of pb

at a reference state, and η is the relative perturbation given by η(x, y, t) =
(pb(x, y, t)− p′b(x, y))/p′b(x, y) (Bleck and Smith, 1990). For a dependent vari-
able in the barotropic momentum equation, one can either use the mass-
weighted vertically-averaged velocity

ū(x, y, t) =
R∑

r=1

ur
∆pr

pb

(5)

or the vertically-summed momentum pbū =
∑R

r=1 ur∆pr.

For the dependent variables in the baroclinic equations, one possibility is to
split the mass and velocity fields into barotropic and baroclinic components
and then use the baroclinic quantities as prognostic variables. In a splitting
developed for isopycnic modeling, Bleck and Smith (1990) used the relations

∆pr = (1 + η)∆p′r (6)

ur = u′
r + ū (7)

to split the mass and velocity fields, respectively. The quantities η and ū are
independent of depth and are intended to represent the fast external motions,
whereas ∆p′r and u′

r are intended to represent the remaining (slow) motions.
Equation (6) is based on the idea that an external signal causes all fluid layers
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to thicken or thin by approximately the same proportion, at a given time and
horizontal position.

The splittings of mass and velocity in (6) and (7) are not exact, in the sense
that the barotropic variables η and ū can contain a small amount of energy
from the internal modes, and the baroclinic variables ∆p′r and u′

r can contain a
small amount of energy from the external mode. For example, in some numer-
ical experiments involving external and internal Rossby waves in a two-layer
fluid in a channel, Higdon (2005) found that the baroclinic velocity is nonzero
but about three orders of magnitude smaller than the barotropic velocity in a
pure external mode, in one particular configuration. The baroclinic equations
are solved with a long time step suitable for resolving the slow internal mo-
tions, and this is consistent with the (essentially) slow time variation of the
baroclinic variables ∆p′r and u′

r.

An alternative to using split variables in the baroclinic equations is to update
the unsplit variables ∆pr and ur at each (long) baroclinic time step. However,
this option poses two possible difficulties which are not encountered in the
case of split variables.

(i) The quantities ∆pr and ur can include both external and internal motions,
so in general these quantities can vary on the fast time scale. The long time
step then raises the prospect of numerical instability.

(ii) Once ∆pr and ur are updated, the vertical sums
∑R

r=1 ∆pr and
∑R

r=1 ur∆pr

give values of pb and pbū, respectively. However, these values are not necessarily
identical to the values of pb and pbū that are computed with the barotropic
equations, since different numerical methods are used for the barotropic and
baroclinic systems. One can then ask whether such an inconsistency could
cause any problems with the computed solution.

The second difficulty (ii) can be remedied by adjusting the values of ∆pr and
ur slightly, at each time step, so that their vertical sums are equal to the val-
ues of pb and pbū that are computed with the barotropic equations for that
same time. Procedures for accomplishing this task are described in Section 3.
However, as demonstrated in that section, this step can also be interpreted as
follows. If a governing equation is solved with a (long) baroclinic time step,
then each forcing term in that equation is the sum of a well resolved slowly-
varying part and an unresolved rapidly-varying part. Enforcing barotropic
consistency has the effect of discarding the unresolved rapidly-varying forcing
and replacing it with the time-integrated effect of well resolved forcing that is
computed when the barotropic equations are solved explicitly with short sub-
steps. This substitution appears sufficient to maintain numerical stability. The
enforcement of consistency thus also addresses the first difficulty (i) described
above.
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Unsplit variables have been used by Blumberg and Mellor (1987) and Shchep-
etkin and McWilliams (2005) in σ-coordinate models and by Hallberg (1997)
in an isopycnic model. On the other hand, Bryan (1969) describes a treat-
ment of split velocities (barotropic plus baroclinic) that is still used in the
Bryan-Cox class of z-coordinate models (Griffies, 2004). As noted in Section
3.4, unsplit variables are well-suited for solving equation (1) for conservation
of mass in a layered model.

For the case of split variables as defined by (6) and (7), the baroclinic mass
and velocity satisfy the relations

∑R
r=1 ∆p′r = p′b and

∑R
r=1 u′

r∆p
′
r = 0. The

second condition is equivalent to stating that the baroclinic velocity has mass-
weighted vertical average equal to zero. In the formulation by Bleck and Smith
(1990), these conditions are enforced by the implementation of certain forcing
terms in the baroclinic mass and momentum equations, respectively. These
processes are analogues of the enforcement of barotropic consistency of unsplit
variables, which was described above. However, in the case of split variables
the target values of

∑R
r=1 ∆p′r and

∑R
r=1 u′

r∆p
′
r are p′b and 0, respectively, and

these are time-independent quantities that are known a priori. Since these
vertical sums do not involve any barotropic variables, they do not raise the
possibility of inconsistency with the barotropic results. On the other hand,
the unsplit variables ∆pr and ur contain the barotropic quantities η and ū,
and with that formulation it then becomes necessary to enforce the consistent
computation of the quantities pb =

∑R
r=1 ∆pr and pbū =

∑R
r=1 ur∆pr. To put

it another way, an update of ∆pr and ur makes an implicit statement about
the barotropic variables η and ū, but an update of ∆p′r and u′

r does not.

2.2 Baroclinic momentum equation with split variables

A prognostic equation for u′
r can be used as a baroclinic momentum equation;

such equations are given by Bleck and Smith (1990) and Higdon (2002). An
alternative is to use the momentum-like quantity u′

r∆p
′
r, which varies mainly

on the slow time scale and can be regarded as a baroclinic momentum den-
sity. Such an equation was used by Higdon (2005). The x-component of this
equation has the form

∂

∂t
(u′r∆p

′
r) +

∂

∂x

[
ur (u′r∆p

′
r)
]

+
∂

∂y

[
vr (u′r∆p

′
r)
]

= fv′r∆p
′
r −∆p′r

(
∂Mr

∂x
− (∇M)x

)
+Du′ −Gx∆p

′
r (8)

− ur∆p
′
r

∂ū

∂x
− vr∆p

′
r

∂ū

∂y
+
u′r∆p

′
r

p′b
∇ · (p′bū)
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and the y-component is analogous. Here, Gx is the term that is used to enforce
the condition

∑R
r=1 u′

r∆p
′
r = 0, and (∇M)x is the x-component of the mass-

weighted vertical average of ∇M . The left side of (8) includes terms involving
the advection of the momentum density u′r∆p

′
r, and for these terms a numerical

advection scheme can be used.

The formulation (8) yielded good results in the model problems used for the
numerical computations reported by Higdon (2005). However, the last three
terms in (8) do not seem natural in a physical sense. This raises the possibility
that a discretization based on the form (8) might, in some way, lead to a
distortion of the dynamics in the numerical solution in some cases. On the
other hand, the equation (2) for the unsplit momentum ur∆pr contains no
such terms. This suggests that it may be more appropriate, in physical terms,
to use equation (2) and then enforce consistency with the results obtained
with the barotropic equations. This idea is formulated in the next section.
Section 4 then describes some numerical computations that compare these
two approaches to barotropic-baroclinic splitting.

3 Momentum equations with unsplit variables

Here we develop a barotropic-baroclinic splitting with unsplit (original) vari-
ables and analyze some of its properties.

3.1 Development of a splitting

A vertical sum of the layer mass equation (1), coupled with the definitions (4)
and (5) of pb and ū, yields the barotropic mass equation

∂pb

∂t
+∇ · (pbū) = 0, (9)

and a vertical sum of the layer momentum equation (2) yields the barotropic
momentum equation

∂

∂t

(
pbū

)
+ fpbū

⊥ = − pb∇M +
R∑

r=1

(Dr −Ar) . (10)

Since pb is equal to g times the mass per unit horizontal area over the depth
of the fluid, the quantity pbū can be regarded as a barotropic mass flux in
equation (9) and a barotropic momentum density in equation (10).
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For a baroclinic momentum equation, we will use the layer momentum equa-
tion (2) minus ∆pr/pb times the barotropic momentum equation. This yields

∂

∂t

(
ur∆pr

)
+ Ar + fu⊥

r ∆pr = − (∆pr)∇Mr + Dr +
∆pr

pb

B (11)

where

B(x, y, t) =
∂

∂t

(
pbū

)
+ fpbū

⊥ + pb∇M −
R∑

r=1

(Dr −Ar) . (12)

According to the barotropic momentum equation (10), B = 0, so it may ini-
tially appear that nothing is accomplished by moving from the layer equation
(2) to equation (11). However, in the discretization described in Section 3.2,
the term B provides a mechanism for enforcing consistency with the results
computed with the barotropic equations. In addition, the various terms in B
can be grouped with other terms in equation (11) to produce quantities that
are baroclinic in nature.

In particular, assume that the flow is a small perturbation of a stationary
state for which the layer interfaces are level. Also assume that the bottom of
the fluid domain is level and that the viscosity and stresses are zero. Let ∆p̃r

denote the equilibrium pressure difference across layer r, and neglect products
of small quantities. The result is the linearized equation

∂ur

∂t
+ fu⊥

r = −∇Mr +

(
∂ū

∂t
+ f ū⊥ +∇M

)
.

The definition u′
r = ur − ū of baroclinic velocity then yields

∂u′
r

∂t
+ f(u′

r)
⊥ = −

(
∇Mr −∇M

)
. (13)

Equation (13) is the same as the linearization of the momentum equation (8)
that was formulated in split variables. This paper is considering two different
approaches to the momentum equation in a barotropic-baroclinic splitting,
and at the linearized level these two approaches are the same.

In order to develop a numerical algorithm, it is also necessary to obtain a
baroclinic mass equation for updating the layer thicknesses ∆pr. This point is
discussed in Section 3.4.
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3.2 Discretization of the baroclinic momentum equation

Assume that the baroclinic momentum equation (11) is discretized with a
two-time-level method of the form

(
ur∆pr

)n+1
=
(
ur∆pr

)n

+ ∆t

{
−
[
Ar

]
− f

[
u⊥

r ∆pr

]
−
[
(∆pr)∇Mr

]
+
[
Dr

]}
(14)

+ ∆t

(
∆pr

pb

)n+1

Bn+1 .

Here, (ur∆pr)
n denotes the numerical approximation to ur∆pr at baroclinic

time tn, ∆t is the (long) baroclinic time step, and the terms with square
brackets denote discretizations with respect to space and/or time of the quan-
tities enclosed in those brackets. For the sake of brevity in notation, horizontal
spatial dependences are not indicated in equation (14).

The depth-independent quantity Bn+1 is computed after all other terms on
the right side of (14) are accumulated, and it is defined by the conditions∑R

r=1(ur∆pr)
n = (pbū)n and

∑R
r=1(ur∆pr)

n+1 = (pbū)n+1, where (pbū)n and
(pbū)n+1 denote results obtained with the barotropic equations at baroclinic
times tn and tn+1, respectively. Vertical summation of equation (14) reveals
that the quantity Bn+1 is a discretization of the quantity on the right side
of equation (12), as expected, and thus Bn+1 → 0 as ∆x → 0, ∆y → 0 and
∆t→ 0.

Some further remarks on the implementation of the quantity Bn+1 are the
following. Accumulating all of the other terms on the right side of (14) is
equivalent to solving the momentum equation in layer r, for one time step,
without regard to barotropic-baroclinic splitting. Some procedures regarding
thin layers and Coriolis terms discussed by Higdon (2005) yield a velocity u∗

r,
from which a momentum density u∗

r∆p
n+1
r is obtained. The latter quantity is

the result of implementing all terms on right side of (14) except for the one
involving Bn+1. Vertical summation of (14) then yields Bn+1∆t = (pbū)n+1 −∑R

r=1 u∗
r∆p

n+1
r , and this result is inserted back into (14). The right side of

equation (14) then becomes

u∗
r∆p

n+1
r +

∆pn+1
r

pn+1
b

(
(pbū)n+1 −

R∑
k=1

u∗
k∆p

n+1
k

)

= ∆pn+1
r

(
u∗

r −
R∑

k=1

u∗
k

∆pn+1
k

pn+1
b

+ ūn+1

)
.
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Therefore, the effect of this procedure is to compute a tentative velocity u∗
r,

subtract its mass-weighted vertical average to obtain a baroclinic velocity
having vertical average equal to zero, add the barotropic velocity to obtain the
total velocity, and finally multiply by ∆pn+1

r to obtain the updated momentum
density. This process resembles the treatments of baroclinic and barotropic
velocities used by Bryan (1969) and by Bleck and Smith (1990).

3.3 Interpretation of the discrete baroclinic momentum equation

The action of the quantity Bn+1 can also be interpreted in terms of replac-
ing unresolved forcing with well-resolved forcing, as follows. Assume that
the barotropic equations are solved explicitly with time step ∆t/N , where
N denotes the number of barotropic substeps of each baroclinic step. Let
(pbū)n,m denote the numerical approximation to pbū at the barotropic time

step tn+m
(

∆t
N

)
; thus (pbū)n,0 = (pbū)n and (pbū)n,N = (pbū)n+1. Assume that

the discretization of the barotropic momentum equation (10) has the form

(
pbū

)n,m+1
=

(
pbū

)n,m

+
∆t

N

{
−f

(
pbū

⊥
)n,m

−
(
pb∇M

)n,m
}

(15)

+
∆t

N

R∑
r=1

(
[
Dr

]
−
[
Ar

]
) .

The quantities (pbū
⊥)n,m and (pb∇M)n,m are not necessarily evaluated at time

tn + m(∆t/N), but instead these notations refer to whatever quantities are
used to advance the solution from time tn + m(∆t/N) to time tn + (m +
1)(∆t/N). The calculation of (pb∇M)n,m requires mass quantities, which are
provided by a discretization of the barotropic mass equation (9). The term∑R

r=1([Dr] − [Ar]) is assumed to be held constant in time on the baroclinic
time interval [tn, tn+1]; in some experiments, a representation of the vertical
sum

∑R
r=1[Ar] of the advection terms was used to evaluate this quantity at

each barotropic substep, but this had little or no effect on the solution and
entailed extra computational cost.

When equation (15) is applied over all barotropic substeps of the baroclinic
interval [tn, tn+1] (i.e., for 0 ≤ m ≤ N − 1), the cumulative effect is

(
pbū

)n+1
=

(
pbū

)n

+ ∆t

{
−f 1

N

N−1∑
m=0

(
pbū

⊥
)n,m

− 1

N

N−1∑
m=0

(
pb∇M

)n,m
}

(16)
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+
R∑

r=1

(
[
Dr

]
−
[
Ar

]
).

However, another way to compute barotropic momentum pbū is to sum the dis-
crete baroclinic momentum equation (14) over all layers, and this summation
yields

(
pbū

)n+1
=

(
pbū

)n

+ ∆t

{
−f

R∑
r=1

[
u⊥

r ∆pr

]
−

R∑
r=1

[
(∆pr)∇Mr

]}
(17)

+ ∆t
R∑

r=1

(
[
Dr

]
−
[
Ar

]
) + (∆t)Bn+1.

If equations (16) and (17) are to refer to the same values of pbū, the quantity
Bn+1 must equal the braced quantity in (16) minus the braced quantity in
(17). The discretization (14) of the baroclinic momentum equation can then
be written as

(
ur∆pr

)n+1
=

(
ur∆pr

)n

− (f∆t)

[u⊥
r ∆pr

]
+

(
∆pr

pb

)n+1 (
−

R∑
k=1

[
u⊥

k ∆pk

]
+

1

N

N∑
m=1

(
pbū

⊥
)n,m

)
− (∆t)

[(∆pr)∇Mr

]
+

(
∆pr

pb

)n+1 (
−

R∑
k=1

[
(∆pk)∇Mk

]
+

1

N

N∑
m=1

(
(pb∇M

)n,m
)

+ (∆t)
{
−
[
Ar

]
+
[
Dr

]}
(18)

The second line in equation (18), involving f∆t, is the Coriolis term in this
discretization. The quantity [u⊥

r ∆pr] is computed on the baroclinic time grid,
and the barotropic part of this quantity is represented by

∑R
k=1[u

⊥
k ∆pk]; this

sum can be regarded as an approximation to the quantity pbū
⊥. In general,

the time variation of this barotropic part is not resolved on the baroclinic time
grid. On the other hand, the quantity (pbū

⊥)n,m is computed at each barotropic
substep when the barotropic equations are solved, and it is well-resolved on

the finer barotropic time grid. The sum 1
N

∑N
m=1

(
pbū

⊥
)n,m

represents the time-

integrated effect of this forcing term over the entire baroclinic interval [tn, tn+1].
The effect of the second line in (18) is to subtract unresolved forcing and
replace it with the time-integrated effect of well-resolved forcing, with the
difference between the two being distributed proportionately over all of the
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layers in the fluid. In addition, the vertical sum of the second line equals the
time-integrated Coriolis term from the barotropic equations. The third line in
(18) represents the lateral pressure forcing, and it can be interpreted similarly.

3.4 Analogy: mass equation

The preceding interpretation of the momentum equation has an analogue in
the context of conservation of mass, and the purpose of this subsection is to
describe this analogy.

When the mass is computed for the individual layers in the fluid, one option
is to use a prognostic equation for the baroclinic pressure difference ∆p′r,
which was derived by Bleck and Smith (1990). However, this equation is not
in conservation form, and computational experience has shown that the total
mass in individual layers can vary over time, even in situations where the
governing equations do not allow mass transport between layers. This is an
undesirable situation for long-term simulations, such as those arising in climate
modeling.

An alternative is to use the layer mass equation (1), ∂(∆pr)/∂t+∇·(ur∆pr) =
0, and at the end of each baroclinic time step adjust the lateral mass fluxes in
each layer so that the computed values of ∆pr are consistent with the results
computed with the barotropic equations. Various procedures of this nature
have been used by Hallberg (1997) and Higdon (2005) and by John Dukowicz,
Mats Bentsen, and Paul Schopf (private communications). A summary is the
following.

Assume that the mass equation (1) is discretized with an equation of the form

(∆pr)
n+1
ij = (∆pr)

n
ij +

∆t

∆x

(
(Fr)

n
i− 1

2
,j − (Fr)

n
i+ 1

2
,j

)

+
∆t

∆y

(
(Gr)

n
i,j− 1

2
− (Gr)

n
i,j+ 1

2

)
, (19)

where (∆pr)
n
ij denotes an approximation to ∆pr in the mass cell centered at

(xi, yj) at time tn, (Fr)
n
i− 1

2
,j

is a numerical approximation to the mass flux

ur∆pr on the time interval [tn, tn+1] at the cell edge corresponding to minimal
x, and (Gr)

n
i,j− 1

2

is a numerical approximation to the flux vr∆pr at the edge

corresponding to minimal y. Equation (19) is in conservation form and thus
yields exact conservation of mass in each layer, up to roundoff error. However,
the formulation (19), as stated, has two flaws. One is that the quantity ∆pr

can vary on the fast time scale associated with external gravity waves, and the
long baroclinic time step ∆t could then allow numerical instability. A second
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flaw is that the vertical sum of (19) yields a statement about the water column
mass (4), pb =

∑R
r=1 ∆pr, which may or may not be consistent with the results

produced by the barotropic mass equation (9).

These problems are remedied by enforcing consistency, as follows. Assume
that the barotropic mass equation (9), ∂pb/∂t+∇·(pbū) = 0, is approximated
using the barotropic time step ∆t/N and the equation

(pb)
n,m+1
ij = (pb)

n,m
ij +

1

N

∆t

∆x

(
Dn,m

i− 1
2
,j
−Dn,m

i+ 1
2
,j

)
+

1

N

∆t

∆y

(
En,m

i,j− 1
2

− En,m

i,j+ 1
2

)
, (20)

where D and E denote approximations to the barotropic mass fluxes pbū and
pbv̄, respectively. Applying this relation over all barotropic substeps (i.e., for
0 ≤ m ≤ N − 1) leads to an expression for pn+1

b in terms of pn
b and time

averages (i.e., time integrals) of the barotropic fluxes D and E, in analogy
to equation (16) for barotropic momentum. However, a vertical sum of the
discrete layer equation (19) produces an expression for pn+1

b in terms of pn
b

and vertical sums of the lateral mass fluxes F and G. In order for these two
relations to produce the same results, it suffices to have the vertical sum of the
layer fluxes equal to the time averages of the barotropic fluxes. In general, this
does not happen, due to different numerical methods being used for the layer
equations and barotropic equations. However, consistency can be attained by
adjusting the layer fluxes to obtain the numerical method

(∆pr)
n+1
ij = (∆pr)

n
ij +

∆t

∆x

(
(F̃r)

n
i− 1

2
,j − (F̃r)

n
i+ 1

2
,j

)

+
∆t

∆y

(
(G̃r)

n
i,j− 1

2
− (G̃r)

n
i,j+ 1

2

)
, (21)

where

F̃r = Fr +
∆pr

pb

(
−

R∑
k=1

Fk +
1

N

N−1∑
m=0

Dn,m

)
(22)

and a similar definition holds for G̃r. Equation (22) implies

R∑
r=1

F̃r =
1

N

N−1∑
m=0

Dn,m,

as required.
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In the formulation by Higdon (2005), the values of ∆pr in (22) are chosen in an
upwind manner, based on the sign of the flux difference in the parentheses in
(22). This is done in order to ensure that the flux adjustment does not produce
negative layer thicknesses. In addition, the values of ∆pr are tentative values
for time tn+1 obtained from equation (19), with the unadjusted fluxes Fr and
Gr. The adjustments to Fr in (22), and the analogous adjustments to Gr, are
then applied in a separate step. Finally, the upwind values of ∆pr are restricted
to be values of “available mass” as defined by Higdon (2005), in order to avoid
spurious mass transports near variable bottom topography, and the value of
pb in (22) is the vertical sum of those values of ∆pr.

The expression (22) for the adjusted mass flux F̃r has a structure analogous
to the expressions for the Coriolis and pressure terms in the discrete baro-
clinic momentum equation (18). In general, the mass flux Fr can vary on both
the fast and slow time scales, as this flux arises from approximating the un-
split mass equation (1). The vertical sum

∑R
k=1 Fk is the barotropic part of

this flux; it approximates
∑R

k=1 uk∆pk = pbū, and it varies on the fast time
scale but is not resolved on the baroclinic time grid. On the other hand, the
barotropic flux Dn,m approximates (pbū)

n,m and is well-resolved in the finer
barotropic time grid. The flux adjustment stated in (22) amounts to replacing
unresolved fast forcing with the time-integrated effect of well-resolved forcing,
with the difference between the two distributed proportionately over all layers.
This is an analogue of the interpretation of the discrete baroclinic momentum
equation given in Section 3.3.

4 Numerical computations

This section describes some numerical computations that compare the two
approaches to barotropic-baroclinic splitting described above.

4.1 Algorithms and codes used in the computations

These computations employ three different codes, as follows.

(I) Split variables. This code implements the methods described by Higdon
(2005). In this case the dependent variable in the baroclinic momentum equa-
tion is u′

r∆p
′
r, as described in Section 2.2 of the present paper.

(II) Unsplit (original) variables. For reasons given in Section 2.2, the split-
variable code was modified so that the dependent variable in the baroclinic
momentum equation is ur∆pr, and the barotropic-baroclinic splitting uses the
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formulation described in Section 3.

(III) No barotropic-baroclinic splitting. Code (II) was modified by deleting
everything related to barotropic-baroclinic splitting, and the resulting code
solves the governing equations explicitly with a short time step determined
by the speed of external gravity waves. Although it is much simpler, this code
requires far longer computing times than codes (I) and (II). However, the
lack of barotropic-baroclinic splitting means that there is no splitting error,
so this code provides reference solutions that can be used to compare the two
formulations of barotropic-baroclinic splitting represented in codes (I) and
(II).

For spatial discretization, all three codes use the C-grid. Mass quantities are
defined at the centers of grid cells, and normal components of velocity are
defined at the centers of edges of grid cells.

For solving the equation for conservation of mass, codes (I) and (II) both em-
ploy the method described in Section 3.4; unsplit (original) variables are used,
and the lateral mass fluxes in the layers are adjusted to ensure compatibility
with the barotropic mass flux. Code (III) solves the mass equation (1) directly,
without any reference to splitting. All three codes thus conserve the discrete
mass in each layer exactly, up to roundoff error.

For a time-stepping method, codes (I) and (II) both use a two-level time-
stepping method developed by Higdon (2005) for barotropic-baroclinic split-
ting. After an initial prediction from baroclinic time tn to time tn+1, the cor-
rection steps involve centered time differencing and averaging between those
two time levels. In a linearized stability analysis involving a fluid with two lay-
ers (Higdon, 2002), the time-stepping method is stable, subject to the usual
Courant-Friedrichs-Lewy condition. In addition, the method is very nearly
nondissipative; for spatial Fourier modes with a time dependence of the form
λn, the two-layer stability analysis yields 1− ε < |λ| ≤ 1, with ε typically near
10−4. Code (III) uses, in each layer, the natural reduction of the two-level
time-stepping method to the case of no barotropic-baroclinic splitting.

For the computations reported here, the execution times for code (II) are
typically about ten to fifteen percent greater than the times for code (I), when
the codes use the same baroclinic and barotropic time steps. This discrepancy
is due, at least in part, to extensive computation of time averages of various
quantities over the barotropic substeps of a baroclinic interval. Some examples
of such averaging are described in Section 4.2(c). Another example is related
to the concepts of available mass and available momentum that are used to
prevent nonphysical transports of mass and momentum near steep bottom
topography (Higdon, 2005). This process requires that the elevations of layer
interfaces be compared to the elevation of the bottom topography. In code (II),
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time averages are used when computing the elevations of the layer interfaces
both at mass points and at momentum points.

4.2 Sources of damping

A significant issue in the subsequent discussions is the presence or absence
of grid noise and whether viscosity must be introduced explicitly in order to
dampen such noise. For the sake of that discussion, we list the sources of
damping that are already present in the algorithms used here.

(a) Implicit viscosity due to the advection scheme. The advection terms in
the mass and momentum equations are implemented with the basic form of
the multidimentional positive definite advection transport algorithm (MP-
DATA) (Smolarkiewicz and Margolin, 1998), and like any advection scheme
this method causes some diffusion in the computed solution. As implemented
in the present computations, the method consists of an upwind step followed
by two antidiffusive iterations. This method was implemented in the same
manner in all three codes.

(b) Time averaging in the barotropic solver. The forcing in the barotropic
momentum equation includes quantities that are held constant in time on each
baroclinic time interval but change slightly from one baroclinic interval to the
next. The resulting discontinuity in forcing can induce temporal oscillations
in the barotropic solution (Higdon, 2005). This problem was diagnosed in a
test computation by plotting the barotropic variables as functions of time
at a fixed position in space; during the first baroclinic time interval after
startup, these quantities varied smoothly over the barotropic substeps, but
at the beginning of the second baroclinic interval the barotropic variables
suddenly displayed sharp oscillations. As described by Higdon (2005), these
oscillations are suppressed by the following procedure. At the beginning of each
baroclinic interval, solve the barotropic equations for one (short) barotropic
step and then compute a two-point time average of each of the dependent
variables. This suppresses grid-scale oscillations, but it also gives a solution
at a half-step. Repeat the procedure once more, in order to give a solution at
an integer step, and then proceed for the rest of the baroclinic time interval
without any more time averaging. This procedure is used in codes (I) and (II),
but it does not apply to code (III), which does not use barotropic-baroclinic
splitting. The barotropic equations in codes (I) and (II) are solved with a
nondissipative forward-backward algorithm.

(c) Time averaging of barotropic forcing in the baroclinic equations. During the
correction steps for the baroclinic equations, time averages are used in various
terms in order to represent the time-integrated effects of those terms. For

17



example, in codes (I) and (II) the advective velocity for mass and momentum
consists of the average of baroclinic velocity between times tn and tn+1 plus
the average of barotropic velocity over all of the barotropic substeps of the
interval [tn, tn+1]. In the case of code (II), the momentum density ur∆pr in
the advection term (3) is composed of baroclinic quantities u′

r and ∆p′r at
time tn and weighted time averages of the barotropic variables ū and η (see
(6) and (7)) about several barotropic steps centered at tn. For the sake of
computing time-averaged quantities in code (II), the baroclinic quantities u′

r

and ∆p′r are extracted from the computed values of ur, ∆pr, and pbū by
using the relations (6) and (7); the advective velocity and the momentum
density are then reconstructed from the extracted baroclinic quantities and
time averages of barotropic variables. Essentially, the advective velocity and
the momentum density are taken apart and then re-built by using averaged
barotropic variables. During the prediction step for codes (I) and (II) the
advective velocity and momentum density are evaluated at time tn, due to a
lack of further information at that stage of the computation.

(d) Bottom friction and interface friction. In most of the tests described here,
the model is subjected to steady wind forcing. In such cases, the model employs
friction at the bottom of the fluid and friction between fluid layers in order to
prevent the fluid velocities from increasing without bound.

A time-averaging procedure that was tested but not employed in these compu-
tations is the following. In the case of code (II), which uses original (unsplit)
variables, it is necessary to enforce the conditions that the vertical sum of the
layer momenta ur∆pr equals the barotropic momentum pbū and the vertical
sum of the layer masses ∆pr equals the barotropic mass pb. For the barotropic
momentum and mass, one could either use instantaneous values at baroclinic
time tn+1 or weighted time averages over several barotropic steps centered
about tn+1. The latter procedure requires that the barotropic equations be
integrated beyond time tn+1, which imposes an extra computational cost.
Weighted averaging was used successfully by Shchepetkin and McWilliams
(2005) in their setting. However, in some experiments, this procedure did not
seem to make any difference in the computed solutions for the context con-
sidered in the present paper, so it was not used further. Instead, the vertical
sums are matched to instantaneous values of barotropic momentum and mass
at time tn+1.

Unless otherwise stated, the explicit horizontal viscosity is zero, i.e., AH = 0
in the term Dr in the momentum equation (2).
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4.3 Some comparisons involving analytical solutions

This subsection summarizes the results of some computations involving model
problems for which analytical solutions are known. These problems are for-
mulated in Higdon (2005), and the computational results obtained with code
(I) are described in detail in that paper. For these problems, code (II) yields
solutions which are very similar to those obtained with code (I), so the re-
sults are only summarized here. More substantial differences appear in the
computations reported in Section 4.4, and those are described in more detail.

(a) Upwelling and downwelling in a straight channel. In this case the fluid
consists of two layers occupying an infinite straight channel with sloping sides.
The system starts at rest, and a constant wind stress is applied along the length
of the channel. Due to the Coriolis effect, the fluid in the upper layer shifts
laterally. Along one side of the channel, the layer interface moves downward
along the sloping bottom topography, and along the other side the interface
moves upward so that the upper layer has negligible thickness over a portion
of the fluid domain. All three codes produce solutions that converge to a
analytical steady state solution as t→∞.

(b) Upwelling and downwelling in a circular channel. Here, the channel in
(a) is bent into a circle, and the wind stress is directed along the length of
the channel. Again, the fluid in the upper layer shifts laterally. Each code
produces a solution that is close to an analytical steady state, for sufficiently
large t. However, the steady state appears to be physically unstable, as all
solutions display wavy patterns in contour plots of the free-surface elevation.
The solutions produced by the three codes are very similar.

(c) External and internal Rossby waves in a channel. In this problem the fluid
consists of two layers in an infinite straight channel with vertical sides and
level bottom. The wind stress, bottom stress, and friction between layers are
all zero, and the flow is assumed to be a small perturbation of a stationary
state. The Coriolis parameter varies linearly across the channel (y-direction).
To construct analytical solutions, discretize in space on a C-grid and leave time
continuous, and apply Fourier transforms in the along-channel direction (x)
and time. For fixed wavenumber in x, the result is a matrix eigenvalue prob-
lem for which the eigenvalues yield time frequencies and the eigenvectors yield
dependences in y for modal solutions. These solutions are exact solutions of
the semi-discrete problem, up to the numerical accuracy in computing eigen-
values and eigenvectors of the associated matrix. The modal solutions include
Rossby, Poincaré, and Kelvin waves, both external and internal. The values
of such solutions at a fixed time provide initial data for testing time-stepping
methods; external modes primarily test the barotropic solver, and internal
modes primarily test the baroclinic routines. Rossby waves are considered in
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the present computations. For the first internal Rossby wave and two different
wavenumbers in x, codes (I) and (II) give results that are nearly identical.
For the first external Rossby mode and two different wavenumbers in x, the
results from code (II) are slightly less accurate. One source of error could be
some spatial averaging that is required to implement the coefficient pb of ∇M
in the barotropic momentum equation (10) on the C-grid.

4.4 Double-gyre circulations

The computations described in the present subsection involve double-gyre cir-
culations for which eddies and meanders are prominent. Analytical solutions
are not available in this case. In Sections 4.4.1 and 4.4.2 the results obtained
with codes (I) and (II) are compared to the solutions obtained with code
(III), which does not use a barotropic-baroclinic splitting. The computations
described in Section 4.4.4 give a demonstration of the split-variable code (I)
on a larger domain over a longer time interval.

In these computations the spatial domain is square and has the form 0 <
x < L, 0 < y < L, with x and y eastward and northward, respectively.
The bottom of the fluid domain is level. The Coriolis term is given by the
β-plane approximation f = f0 + β(y − L/2), where f0 and β = ∂f/∂y are
the values associated with latitude 45◦ N on the earth. The system begins
at rest and is forced by a steady wind stress τ = (τx, τy), where τy = 0 and

τx = τmax cos
(

2π
L

(y − L/2)
)
, with τmax = 0.1 N/m2. The wind stress thus

points eastward in the middle of the domain and westward at the northern
and southern boundaries. This pattern of wind stress generates a double-
gyre circulation, with a counter-clockwise circulation in the northern half of
the domain, a clockwise circulation in the southern half, and intense western
boundary currents.

4.4.1 Test 1. Thin upper layer

The computations described in this subsection employ a 200 × 200 array of
mass cells, which includes a border of massless cells to generate a solid bound-
ary. The grid cells have dimensions ∆x = ∆y = 10 km, so the size of the fluid
domain is 1980 km by 1980 km. This relatively small domain is used here
because of the computational cost of computing reference solutions with code
(III). The fluid consists of two layers with specific volumes 0.976×10−3m3/kg
and 0.972× 10−3m3/kg. The friction between layers and the stress at the bot-
tom of the fluid are parameterized in the manner described by Higdon (2005).
The upper and lower layers are initially 100 meters thick and 900 meters thick,
respectively. Due to lateral mass transports in the upper layer, the lower layer
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outcrops to the surface in a portion of the northern half of the domain, i.e.,
the upper layer has negligible thickness on that portion.

With upper and lower layer thicknesses equal to 100 and 900 meters, respec-
tively, and with the given densities in the layers, the speed of external gravity
waves is approximately 99 m/sec and the speed of internal gravity waves is
c1 ≈ 1.9 m/sec. (Formulas are given, for example, by Higdon (2002).) The in-
ternal Rossby radius c1/f is approximately 19 km, or about two grid intervals.

In the case of code (I), the time step used for the baroclinic equations is
∆t = 2400 seconds (36 steps per day), and the nominal barotropic step is
70 seconds. Here, “nominal” means that the number N of barotropic sub-
steps is the smallest integer N such that ∆t/N is less than or equal to the
nominal barotropic step. In this case, the actual barotropic time step is ap-
proximately 68.6 seconds. In the case of code (III), which does not use a
barotropic-baroclinic splitting, the time step is 70 seconds. Code (I) was run
for a total of 4000 model days, and code (III) was run for 2000 model days.
For both codes, the explicit horizontal viscosity was set to zero, i.e., AH = 0.

Code (II) was initially run with AH = 0 and with the same time steps as code
(I). However, between model days 604 and 605 the computation produced a
negative value of layer thickness at some location in the upper layer, and the
computation was terminated automatically. Code (II) uses the same proce-
dures for handling thin layers as codes (I) and (III), and these are described
by Higdon (2005). An inspection of the solution at day 604 suggested that
the problem could be related to large fluid velocities in the western boundary
layer, but in addition some grid-scale noise in the velocity field was evident
in an otherwise quiescent region near the southwestern corner of the fluid
domain, well away from the location of the largest velocities in the bound-
ary layer. In contrast, no grid noise was found in the solutions obtained with
codes (I) and (III). If the baroclinic time step for code (II) is reduced from
2400 seconds to 2160 seconds (40 steps per day) but the nominal barotropic
step of 70 seconds and the zero viscosity AH = 0 are retained, then the code
runs for long times without grid noise. Another option for code (II) is to retain
the baroclinic time step of 2400 seconds but use nonzero horizontal viscosity;
the value AH = 100 m2/sec is sufficient to eliminate the noise and crash,
but the value AH = 10 m2/sec is not. The Reynolds number correspond-
ing to AH = 100 m2/sec, and velocity scale U = 1 m/sec and length scale
∆x = ∆y = 104 m, is Re = U∆x/AH = 100. This grid Reynolds number does
not include the effect of the implicit viscosity induced by the advection terms.
Although the behavior of code (II) is of concern in the present test, the grid
noise is more pervasive in the computations described in Section 4.4.2, and a
discussion of grid noise is deferred to that section.

For the model configuration considered here, the circulation pattern is ini-
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Fig. 1. Test 1 (thin upper layer). The graphs are contour plots of the free-surface
elevations at model days 1000 and 2000, as computed with the code that uses split
variables. The contour interval is 5 centimeters, with lower elevations in the north-
ern region and higher elevations in the southern region. The (maximum, minimum)
elevations at days 1000 and 2000 are approximately (83,−71) and (83,−72) cen-
timeters, respectively, where elevation zero corresponds to the rest state.

tially smooth, but over time the flow develops meanders and eddies. Figures
1 through 4 show contour plots of the elevation of the free surface at the
top of the fluid at days 1000 and 2000, for each computation. Figure 1 shows
the results obtained with code (I), Figures 2 and 3 show the results obtained
with the two configurations of code (II) described above, and and Figure 4
was produced by code (III). These plots are instantaneous snapshots, without
any time-averaging of data. Due to the approximate geostrophic balance in
the flow, the curves of constant elevation are approximate streamlines for the
flow at the top of the fluid. By day 1000 the lower layer has outcropped to
the surface over a portion of the northern half of the domain. In each plot
the outcrop region corresponds approximately with the region where the flow
lines are relatively smooth; on that region the governing equations reduce to
the barotropic equations, which are nearly linear.

The solutions obtained with these codes are not point-wise identical, due to
the sensitivity of the flow to perturbations. However, the general flow patterns
are the same, and the levels of eddy activity are similar. This relation between
the solutions holds throughout the 2000-day comparison period.

Another comparison of the solutions is given by Figure 5, which shows plots
of the absolute values of the discrete Fourier transforms of the kinetic en-
ergy in each solution. More precisely, in each graph the quantity plotted is
log10(|Ê(k, `, t)|/max |Ê|) where E(x, y, t) is the kinetic energy per unit hor-
izontal area (summed vertically over both layers), Ê(k, `, t) is the discrete
Fourier transform with respect to (x, y) for fixed t, and max |Ê| denotes the
maximum over all wavenumbers for that t. The maximum value plotted is
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Fig. 2. Test 1. Free-surface elevations at days 1000 and 2000, as computed with
the version that uses unsplit (original) variables with ∆t = 2160 seconds and vis-
cosity AH = 0. The (maximum, minimum) elevations at days 1000 and 2000 are
approximately (78,−70) and (83,−71) centimeters, respectively.
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Fig. 3. Test 1. Free-surface elevations at days 1000 and 2000, as computed with the
version that uses unsplit (original) variables with ∆t = 2400 seconds and viscosity
AH = 100 m2/sec. The (maximum, minimum) elevations at days 1000 and 2000 are
approximately (80,−72) and (84,−70) centimeters, respectively.

thus 0, and the values shown in these plots range from 0 down to −2. Since
the Fourier transform is normalized relative to the maximum, Figure 5 does
not account for differences in the total kinetic energy between different so-
lutions and different times; differences in total kinetic energy are discussed
below. The discrete Fourier transforms are defined for wavenumbers (k, `) for
which |k∆x| ≤ π and |`∆y| ≤ π, but only the positive wavenumbers need to be
shown, due to symmetries in |Ê|. The extreme values |k∆x| = π and |`∆y| = π
correspond to sawtooth modes with wavelengths 2∆x and 2∆y in x and y,
respectively. The present plots are restricted to the range 0 ≤ k∆x ≤ π/2,
0 ≤ `∆y ≤ π/2 in order to display better the lower wavenumbers, where
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Fig. 4. Test 1. Free-surface elevations at days 1000 and 2000, as computed with the
code that uses no barotropic-baroclinic splitting. The (maximum, minimum) eleva-
tions at days 1000 and 2000 are approximately (85,−69) and (82,−70) centimeters,
respectively.

most of the kinetic energy resides. At day 20 the energy is confined mainly
to regions where either k ≈ 0 or ` ≈ 0, which correspond to modes that are
nearly constant in x or constant in y, respectively. The flow at that time (not
shown here) consists mainly of a smooth eastward flow in the middle of the
domain, smooth westward flows near the northern and southern boundaries,
and strong northward and southward flows near and parallel to the western
boundary. However, as t increases, the flow develops meanders and eddies, and
in Figure 5 this development is represented by a migration of energy through
wavenumber space. The figure indicates that the relative distributions of ki-
netic energy in wavenumber space are similar for the three codes.

Of the two codes that employ barotropic-baroclinic splitting, code (I) behaves
more stably than code (II), in the present test. These codes use split variables
and unsplit (original) variables, respectively. This comparison raises the ques-
tion of whether the split-variable formulation (8) of the momentum equation
embodies some kind of implicit damping that is not present in the formu-
lation with unsplit variables. Accordingly, Figure 6 shows plots of the total
kinetic energy in the system as a function of time. The top graph shows that
the kinetic energy with code (I) is very similar to that of code (III), over the
first 2000 days. The middle graph shows that codes (I) and (II) yield kinetic
energies that are very similar, when the latter code is used with the reduced
time step and AH = 0. However, the bottom graph shows that the kinetic
energy with code (II) is noticeably less than the kinetic energy with code (I)
when the viscosity AH = 100 m2/sec is used in code (II). These results do
not suggest any extra damping in the split-variable formulation, but they do
show the damping effect of nonzero viscosity if it is used to maintain stability
in code (II).
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Fig. 5. Test 1. Spectra of kinetic energy. Each plot shows the absolute value of
the Fourier transform of the kinetic energy per unit horizontal area, regarded as
a function of (x, y) for fixed t. The horizontal axes represent values of k for which
0 ≤ k∆x ≤ π/2, and the vertical axes represent values of ` for which 0 ≤ `∆y ≤ π/2.
Here, k and ` are wavenumbers with respect to x and y, respectively. The quan-
tities plotted here are values of log10(|Ê|/ max |Ê|) over the range from 0 down
to −2. In the second column of plots, the notation “Code IIa” refers to code (II)
with the reduced time step ∆t = 2160 seconds and viscosity AH = 0. The third
column was produced by code (II) with time step ∆t = 2400 seconds and viscosity
AH = 100 m2/sec. The first and fourth columns correspond to codes (I) and (III),
respectively.

4.4.2 Test 2. Layers of equal thickness

Next assume that both layers are initially 500 meters thick, with all other
aspects of the problem configuration remaining the same. In this case, the
lower layer does not outcrop to the surface, so there is no possibility of any
numerical difficulties arising from the presence of a thin fluid layer. For the
present configuration, the speed of internal gravity waves is approximately
3.2 m/sec.

In the case of code (I), the time step used for the baroclinic equations is 1800
seconds (48 steps per day), and the nominal barotropic step is 70 seconds.
With code (III), which does not use a barotropic-baroclinic splitting, the time
step is 70 seconds. Both codes were run with horizontal viscosity AH = 0. The
solutions obtained with codes (I) and (III) are illustrated in Figures 7 and 8.
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Fig. 6. Test 1. Total kinetic energy in the system, as a function of time. In all of the
plots, the squares indicate values of kinetic energy obtained with code (I), which
uses split variables. In the top graph, the circles indicate values obtained with code
(III), which uses no barotropic-baroclinic splitting. In the middle graph, the circles
indicate values obtained with code (II), which uses unsplit (original) variables, when
that code is used with a reduced baroclinic time step and zero horizontal viscosity.
In the bottom graph, the asterisks indicate values obtained with code (II) when it
uses viscosity AH = 100 m2/sec and the same time steps as code (I).

The figures show the solutions at model days 400 and 1000; the computations
were actually run to day 2000, but the results between days 1000 and 2000
are qualitatively similar to the solutions at day 1000. The solutions produced
by the two codes are not point-wise identical, but the general flow patterns
are the same, and the levels of eddy activity are similar. Plots of spectra of
kinetic energy, not shown here, are similar.

Code (II), which uses unsplit (original) variables, was run to model day 2000
with the same time steps as code (I) and with AH = 0. However, grid-scale
numerical noise in the solution becomes evident by day 100, and the noise is
distributed widely throughout the fluid domain. Figure 9 shows the solution at
day 400, which is the first day for which solutions are shown in the preceding
two plots. By that time, the noise has become so strong that a contour plot of
the free-surface elevation is nearly unintelligible. For the sake of producing a
readable contour plot, the elevation at that time was filtered with simple four-
point spatial averages. When such a filter is applied to a checkerboard +1/-1
pattern the result is zero, so the effect of the filter in the present case is to
suppress the grid-scale noise but leave larger features intact. (The filtering was
performed off-line and did not affect the computed solution at later times.)
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Fig. 7. Test 2 (layers initially of equal thickness). The graphs are contour plots of
the free-surface elevations at model days 400 and 1000, as computed with the code
that uses split variables. The plotting format is the same as in Figures 1–4.

km

km

Day 400,  code III

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

km

km

Day 1000,  code III

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

!100

!50

0

50

100

Fig. 8. Test 2. Free-surface elevations at days 400 and 1000, as computed with the
code that uses no barotropic-baroclinic splitting.

A comparison of the left frame of Figure 9 with the left frames of Figures 7
and 8 reveals that the present solution disagrees radically with the solutions
computed with codes (I) and (III).

The right frame of Figure 9 shows a close-up view of the velocity field near
the southwestern corner of the fluid domain. Roughly speaking, the velocity
vectors are shown at each grid point. To be more precise, the present computa-
tions use the staggered C-grid, and with this grid the components of velocity
are defined at different locations. For the sake of producing a plot, at each
mass cell the value of u at the western edge of the cell and the value of v at
the southern edge of the cell are combined to produce a vector defined at the
center of the cell. Spatial averaging would produce values of u and v defined
at cell centers, but this would conceal the grid noise. The grid-scale noise seen
in Figure 9 is typical of what is present throughout the spatial domain.
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Fig. 9. Test 2. Solution at day 400, as computed with the code that uses unsplit
(original) variables. In this case the free-surface elevation contains too much numer-
ical noise to yield an intelligible contour plot. Instead, for purposes of plotting, the
elevation was filtered with a four-point spatial average which suppresses grid-scale
noise but leaves larger features intact. The result is displayed in the left frame. The
right frame shows a close-up view of the velocity field near the southwestern cor-
ner, with velocity vectors shown at each grid point and without any filtering. This
amount of noise is typical of what is seen throughout the fluid domain.

As with the computations described in Section 4.4.1, some options for code (II)
are to reduce the baroclinic time step or introduce nonzero viscosity. Figure 10
shows the solution that is obtained when the baroclinic time step is reduced
from 1800 seconds to 1440 seconds (60 steps per day). As before, the nominal
barotropic step is 70 seconds and the horizontal viscosity is AH = 0. In this
case, the solution is free of grid noise. In another experiment with baroclinic
time step 1600 seconds (54 steps per day), some grid noise is present, although
it is not as strong as with time step 1800 seconds. The solution shown in Figure
10 does not agree point-wise with the solutions obtained with codes (I) and
(III) which are shown in Figures 7 and 8, but the flow patterns and eddy
characteristics are similar. It then appears that a sufficient reduction of the
baroclinic time step can lead to a credible computed solution.

However, the situation is different if nonzero horizontal viscosity is used to
suppress the grid noise while retaining the baroclinic time step of 1800 seconds.
Experiments reveal that the value AH = 400 m2/sec is not enough to remove
the noise, but the value AH = 1000 m2/sec is sufficient. With these values
of viscosity, the solution is smoothed greatly and bears little resemblance to
the solutions shown in Figures 7, 8, and 10. The results obtained with this
code are not shown here, but instead Figure 11 shows the solution obtained
with code (III) with viscosity AH = 400 m2/sec and baroclinic time step 1800
seconds. The only difference between the computation shown in Figure 11
and the one shown in Figure 8 is that the earlier computation uses AH = 0.
Code (III) is used for this illustration because it uses no barotropic-baroclinic
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Fig. 10. Test 2. Free-surface elevations at days 400 and 1000, as computed with the
code that uses unsplit (original) variables but with the baroclinic time step reduced
from 1800 seconds to 1440 seconds.
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Fig. 11. Test 2. Effects of viscosity. These results were obtained with the ver-
sion that does not use barotropic-baroclinic splitting, with horizontal viscosity
AH = 400 m2/sec. The only difference between this computation and the one shown
in Figure 8 is that the latter uses AH = 0.

splitting, and therefore the results shown in Figure 11 cannot be influenced
by any errors associated with such a splitting. The amount of viscosity used
for Figure 11 is not enough to remove the noise produced by code (II) without
a reduced time step, but this amount of viscosity is sufficient to distort the
solution severely. The solution produced by code (II) with AH = 1000 m2/sec
has the same general character as the solution shown in Figure 11. This result
indicates that viscosity is not a viable method for removing the grid noise in
this example.
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4.4.3 Further experiments with code (II) in Test 2.

Some additional experiments with code (II) were performed in the context of
Test 2 in an attempt to identify the cause of the problems cited above. For
the sake of brevity, this subsection only summarizes the results and does not
include graphs.

In one set of experiments, the advection terms in the momentum equations
were deactivated. All other aspects of the problem configuration were the same
as described in Section 4.4.2, including AH = 0. With this modification the
code produces smooth, noise-free gyres, with western boundary currents that
are narrower than those in the solutions described above. The deletion of the
advection terms means that an advection scheme is not used in the momentum
equations; this removes a source of numerical viscosity, and this change may
explain the narrower boundary layer. The narrowness of the boundary currents
produces fluid velocities that are greater than the ones seen in the solutions
described in Section 4.4.2. With a baroclinic time step equal to 1800 seconds,
an instability therefore originates in the western boundary layer, but elsewhere
the solution is free of grid noise. If the baroclinic time step is reduced according
to the velocity in the boundary layer, then the computation proceeds for long
times without grid noise. This experience suggests that the problems with
code (II) may be due to the momentum advection terms.

There then arises the question of whether the particular choice of numerical
advection scheme may be a factor. As noted in Section 4.2, codes (I), (II), and
(III) all use the standard form of the multidimentional positive definite ad-
vection transport algorithm (MPDATA) (Smolarkiewicz and Margolin, 1998)
to implement the advection terms in the mass and momentum equations. As
implemented in these three codes, the method consists of an upwind step,
which is diffusive, followed by two antidiffusive corrections. In codes (I) and
(III), this choice causes no apparent difficulty.

In another experiment with code (II), the antidiffusive iterations were turned
off in the momentum equation, so that the momentum advection was sim-
ulated with the upwind method. As before, the baroclinic time step is 1800
seconds. Substantial grid noise remains, and again the general flow pattern is
very different from the circulations computed with codes (I) and (III). This
experience suggests that the problem may be more fundamental than the
choice of momentum advection scheme. For this experiment the antidiffusive
iterations were retained in the mass equation; however, these iterations are
unlikely to cause the grid noise, as they were also used in the experiment in
which the momentum advection terms were deactivated entirely, and that case
the solution does not exhibit grid noise. In other words, with no momentum
advection the solution is free of noise, but if momentum advection via the up-
wind method is introduced, then noise appears. In a further experiment, the
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antidiffusive iterations were also turned off in the mass equation, so that the
momentum and mass advection were both simulated with the upwind method.
The resulting solution displays no grid noise, but it is smoothed severely.

In summary, these additional experiments suggest that the problems with
code (II) arise from the momentum advection terms but are not due to the
particular choice of the advection scheme that is used to implement those
terms. A further discussion is given in Section 5.

4.4.4 Test 3. Larger domain, split-variable formulation

In the preceding double-gyre simulations, the split-variable code (I) yields bet-
ter results than code (II). The present subsection provides a further demon-
stration of code (I).

As before, the spatial domain is square and has a level bottom, the Coriolis
parameter is the β-plane approximation centered at 45◦ N, and the wind stress
is a cosine pattern that generates a double-gyre circulation. In the preceding
computations, the spatial domain is much smaller than real ocean basins, and
there are only two layers. In the present case the computation uses a 500×500
array of mass cells, with a border of massless cells to generate a solid boundary.
The cells have dimensions ∆x = ∆y = 10 km; the size of the fluid domain
is then 4980 km by 4980 km, which is closer to a typical basin size. Three
fluid layers are used, with specific volumes 0.976 × 10−3, 0.974 × 10−3, and
0.972× 10−3 m3/kg and initial thicknesses 150, 300, and 550 meters, ordered
from top to bottom. During the simulation, the second layer outcrops to the
surface over a portion of the northern half of the domain. The model was run
for a total of 6000 model days, with AH = 0.

Figure 12 shows the elevation of the free surface at day 3000. The flow shows
substantial meandering and eddy activity, especially near the western bound-
ary, where the intense boundary currents separate from the side wall. Figure
13 shows close-up views of the region 0 < x < 2000, 1500 < y < 3500 at days
3000, 4000, 5000, and 6000. This region is centered on the western bound-
ary, at y = 2500. The wind stress pattern is also centered at y = 2500, and
the curl of the wind stress is zero along that line. Figure 14 shows the veloc-
ity field in the top layer at day 6000 on the smaller region 250 < x < 700,
1800 < y < 2200. The velocity field is shown at each grid point, or more
precisely, for each mass cell the value of u at the western edge and the value
of v at the southern edge are used to create a vector located at the center of
the cell. Spatial averaging was not used, as this could conceal grid noise. The
results shown in the figures indicate that the model supports vigorous eddy
activity and strong shears, and it behaves stably over long times.
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Fig. 12. Test 3 (larger domain). The graph is a contour plot of the free-surface
elevation at model day 3000, as computed with the code that uses split variables.
The maximum and minimum elevations are approximately 96 and −97 centimeters,
respectively.

5 Discussion

In the double-gyre computations described in the preceding section, both for-
mulations of the baroclinic momentum equation produce results that agree
well with the reference solutions computed with code (III), which does not
use a barotropic-baroclinic splitting. However, the formulation with unsplit
(original) variables, as implemented in code (II), requires a reduction in the
baroclinic time step in order to produce credible results. Regularizing the so-
lution with horizontal viscosity AH is not a viable option, for reasons stated
in Sections 4.4.1 and 4.4.2. As noted in Section 4.4.3, the difficulties with code
(II) are related to the momentum advection terms. A complete explanation
of the problem is not known to this author at this time, but the following
remarks may be pertinent.

In the case of the split-variable code (I), the momentum fluxes have the form
ur(u

′
r∆p

′
r). The momentum density u′r∆p

′
r varies mainly on the slower time
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Fig. 13. Test 3. Close-up views of the free-surface elevations at days 3000, 4000,
5000, and 6000. The graphs show a 2000 km× 2000 km subregion centered on the
western boundary.

scales, and it is advected by a velocity ur that can vary on the fast time scale.
On the other hand, in the code (II) with original variables, the momentum
fluxes have the form ur(ur∆pr), and in general both the momentum density
ur∆pr and the advective velocity ur can vary on the fast time scale.

Suppose that a two-dimensional density ψ is advected by a velocity u = (u, v),
where u can vary on the fast time scale, and ψ may be either slowly-varying
or rapidly-varying. The corresponding flux in the x-direction, i.e., rate of flow
per unit time per unit cross-sectional length, is the product uψ. For the sake
of simplicity in the following discussion, assume that ψ and u are known at
the edge of a grid cell. (In practice, ψ is associated with a cell center and u
is defined at a cell edge.) Under this assumption, the net transport across an
edge between baroclinic times tn and tn+1 = tn + ∆t is given by

∫ tn+1
tn uψ dt;

spatial integration along the cell edge is deleted here for notational simplicity.
For the sake of numerical discretization, the transport can be approximated
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at day 6000.

by

tn+1∫
tn

uψ dt ≈ ∆t

 1

∆t

tn+1∫
tn

u dt

ψn ≡ (∆t)uaveψ
n, (23)

where ψn denotes the value of ψ at time tn. The time-averaged velocity uave

includes averaging of fast external signals over the baroclinic time interval
[tn, tn+1].

If the density ψ varies on a time scale is that is resolved well by the time step
∆t, then the approximation (23) has some validity. In the case where both
u and ψ are well-resolved, Smolarkiewicz and Margolin (1998) show that if
the flux in a two-time-level advection scheme is discretized in time with the
quantity un+1/2ψn, then the method is second-order accurate in time; here,
un+1/2 denotes the velocity at the midpoint of the interval [tn, tn+1]. In the
present case, the time-averaged velocity uave takes the place of the velocity
un+1/2. The split-variable formulation of the momentum equation uses the
(essentially) slowly-varying momentum density u′r∆p

′
r, with the approximation

in (23), and during the correction step the advective velocity is obtained from
time averages over all barotropic substeps, as noted in Section 4.2. In the
numerical experiments reported here, this approach yields good results.
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On the other hand, if the density ψ in (23) varies on the fast time scale, then
the validity of the approximation in (23) is questionable. This consideration
applies to the formulation of the momentum equation involving unsplit (orig-
inal) variables, since the momentum density ur∆pr can vary on the fast time
scale. In code (II), some time-averaging is used to represent this density, as
noted in Section 4.2, and this may serve to reduce numerical irregularities.
However, there remains the fact that the average of a product uψ is not equal
to the product of the individual averages of u and ψ. Whether the advected
momentum density ur∆pr is an instantaneous value or a time average, the
resulting inaccuracy in the computed momentum transport may play a role
in the irregular and inaccurate results that are obtained with code (II) if the
time step is not reduced sufficiently. For example, the solution shown in Figure
9 is not only noisy, but the large-scale features are incorrect.

The preceding remarks could also be applied to the layer mass equation (1),
∂(∆pr)/∂t + ∇ · (ur∆pr) = 0. In the mass flux ur∆pr, both the advective
velocity ur and the density ∆pr can vary on the fast time scale. However,
with the procedure described in Section 3.4, the lateral mass fluxes are ad-
justed at each baroclinic time step by removing the unresolved fast portion of
the flux and substituting the time-integrated barotropic mass flux. This flux
adjustment appears to prevent difficulties of the kind described above.

This then raises the question of whether the same operation could be employed
for the momentum equation. An examination of the analysis in Section 3.3
indicates that this operation would be performed if the vertical average of the
momentum advection terms were incorporated explicitly into the barotropic
momentum equation and thus computed at each barotropic substep. Such a
procedure was implemented and tested in code (II), but it did not produce an
improvement in the computed results. The reason for this is unclear to this
author, but a possible factor could be some feedback between the momentum
density ur∆pr and the velocity ur which transports it. This procedure also
increases the complexity of the barotropic solver and consequently increases
the execution time significantly.

Another possible way to approximate the time integral in (23) is to compute
the product uψ at each barotropic substep and then compute the average
over all such substeps. With the two-level time-stepping method used here,
this quantity could be computed during the correction step by using predicted
values of baroclinic and barotropic variables. In the present context, ψ denotes
a component of momentum density; this quantity is defined at the center of a
momentum cell, whereas the advective velocity u is defined at an edge of such
a cell. In order to compute the integral

∫ tn+1
tn uψ dt at the edge of a grid cell,

it would then be necessary to obtain values of ψ at such an edge. In fact, in
many cases, one of the major steps in the construction of an advection scheme
is to obtain a suitable reconstruction or interpolation of the advected density
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field (LeVeque, 2002). The explicit computation of a time average of uψ will
not be attempted in the present paper, for reasons of length and potential
complexity. In addition, the apparent success of the split-variable formulation
reduces the need for improving the formulation involving unsplit (original)
variables.

The discussion in this section has been based on the formulations (2) and (8)
of the momentum equation, in which the dependent variable is momentum
density and the advective terms are written in flux form. An alternative would
be to try velocity as the dependent variable, and combine the nonlinear and
Coriolis terms into a formulation involving vorticity and the gradient of kinetic
energy. However, as noted in Section 2, previous computational experience
suggests that the momentum flux form produces numerical algorithms that are
more robust, especially in locations where layer thicknesses tend to zero. The
momentum flux form has therefore been the focus of the present investigation.

6 Conclusions

The main goal of this paper is to compare two formulations of dependent vari-
ables in barotropic-baroclinic splittings for layered ocean circulation models.
One approach is to split the dependent variables into barotropic and baro-
clinic components, where the baroclinic variables are mostly devoid of mo-
tions varying on the fast time scale associated with external gravity waves.
Another approach is to use unsplit (original) variables in each layer and, at the
end of each baroclinic step, adjust their values to ensure consistency with the
barotropic variables. This adjustment has the effect of removing unresolved
fast forcing and replacing it with the time-integrated effect of well-resolved fast
forcing that is computed when the barotropic equations are solved explicitly
with short substeps.

Using unsplit (original) variables is particularly valuable when solving the
equation for conservation of mass, as it is possible to maintain conservation
form and thus guarantee conservation of mass in each layer. This is especially
important in long-term simulations.

The main focus here is on the momentum equations, in the particular setting
where the equations are written in flux form so that a numerical advection
scheme can be used for the flux terms. The two formulations, split variables
and unsplit (original) variables, are identical at the level of a linearized anal-
ysis, and they give very similar results in some simple test problems where
analytical solutions are known. In addition, in some eddying double-gyre com-
putations, both formulations are able to produce results that agree well with
reference solutions computed with a code that uses short time steps and no
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barotropic-baroclinic splitting.

However, in the double-gyre computations, there are significant differences
between the two formulations. With the formulation involving unsplit (origi-
nal) variables, it is necessary to reduce the baroclinic time step significantly,
relative to the time step that can be used with split variables. Otherwise, in
one test problem the formulation with unsplit variables produces some grid
noise and a negative layer thickness, and in another problem this formulation
produces pervasive grid noise and a highly inaccurate large-scale flow. The
problem can be traced to the momentum advection terms, and it may be due
to advecting a rapidly-varying momentum density with a rapidly-varying ve-
locity. The grid noise can be removed by introducing a sufficient amount of
horizontal viscosity, but in one example the required viscosity causes a notice-
able reduction in the total kinetic energy in the computed solution, and in
another case the required viscosity causes a major distortion of the flow.

In contrast, the formulation with split variables does not experience these
difficulties. One effect of the computations described here is to provide a fur-
ther validation of the split-variable formulation for the momentum equation,
beyond the testing previously reported by Higdon (2005). The analysis and
computations described in this paper suggest that, in the context considered
here, a good approach is to use unsplit (original) variables in the equation for
conservation of mass and to use split variables in the equations for conserva-
tion of momentum.
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