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Abstract

This paper addresses some issues involving the application of discontinuous
Galerkin (DG) methods to ocean circulation models having a generalized vertical
coordinate. These issues include the following. (1) Determine the pressure
forcing at cell edges, where the dependent variables can be discontinuous. In
principle, this could be accomplished by solving a Riemann problem for the
full system, but some ideas related to barotropic-baroclinic time splitting can
be used to reduce the Riemann problem to a much simpler system of lower
dimension. Such splittings were originally developed in order to address the
multiple time scales that are present in the system. (2) Adapt the general idea
of barotropic-baroclinic splitting to a DG implementation. A significant step is
enforcing consistency between the numerical solution of the layer equations and
the numerical solution of the vertically-integrated barotropic equations. The
method used here has the effect of introducing a type of time filtering into the
forcing for the layer equations, which are solved with a long time step. (3) Test
these ideas in a model problem involving geostrophic adjustment in a multi-
layer fluid. In certain situations, the DG formulation can give significantly
better results than those obtained with a standard finite difference formulation.

Keywords: ocean modeling; multi-layer ocean models; discontinuous Galerkin;
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1. Introduction

The purpose of this paper is to develop, analyze, and test some procedures
for using discontinuous Galerkin (DG) methods in multi-layer models of ocean
circulation.
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This work is an extension of the work described by Higdon [14]. That paper
developed an integral weak form of the lateral pressure forcing that is suitable for
usage with a DG method and with a generalized vertical coordinate that includes
level, terrain-fitted, isopycnic, and hybrid coordinates as special cases. (Such
coordinates are surveyed, for example, in [9] and [13].) This formulation was
then analyzed, implemented, and tested for the special case of a single-layer fluid
of constant density, i.e., for the shallow water equations. That analysis included
numerical dispersion relations, a stability analysis of time-stepping schemes, and
comparisons of accuracy and efficiency with some traditional finite difference
methods. It was also shown that this formulation of the pressure forcing is
automatically well-balanced, in the sense that variable bottom topography does
not produce spurious forcing; further comments on this point are given in Section
2.2.1 of the present paper.

The present work extends the preceding work to multi-layer modeling. In
particular, the following issues are addressed here.

(i) The pressure forcing term developed in [14] includes an integral around
the boundary of a fluid region defined by a coordinate layer in the vertical di-
mension and a grid cell in the horizontal dimensions. (See Figure 1 in the present
paper.) At a cell edge this integral is problematic; the integrand involves the
pressure, which is not well-defined at a cell edge due to discontinuities across the
edge. In principle, the values of dependent variables at a cell edge could be spec-
ified by solving a Riemann problem for the whole system, but in a model with
many layers this process could be highly complicated. Instead, it is shown here
that a simpler approach can be obtained by using ideas related to barotropic-
baroclinic time splitting, a widely-used technique for addressing the multiple
time scales that are present in the system. In such a splitting, the fast and slow
dynamics are separated into distinct subsystems that are solved by different nu-
merical techniques, especially different time-stepping methods. Such a splitting
can also aid the computation of pressure at cell edges by confining the Riemann
problem to a relatively simple system of lower dimension. In particular, a Rie-
mann problem for the vertically-integrated barotropic equations can be used to
remove problems associated with a discontinuous free surface. Any remaining
internal discontinuities can then be addressed with simple averaging.

(ii) The general process of barotropic-baroclinic time splitting is adapted
here to the specific case of DG methods. During the implementation of such
a splitting, one necessary step is to enforce consistency between the numerical
solution of the vertically-integrated barotropic equations and the numerical so-
lution of the layer equations. The layer equations are solved explicitly with long
time steps, although they allow motions varying on both the fast time scale
and the slow time scale. The method described here for enforcing consistency
has the effect of introducing a kind of time filtering into the forcing terms for
the layer equations, and this appears to be a mechanism that enables the layer
equations to be solved with long time steps.

(iii) The methodology in (i) and (ii) is tested in a model problem involving
the adjustment of a multi-layer fluid to a state of geostrophic balance. In this
problem, a discontinuous initial state is not in a state of balance, and the bal-
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anced state is reached via propagation of inertia-gravity waves away from the
location of the initial imbalance. In general, the process of geostrophic adjust-
ment is an important mechanism in the evolution of geophysical fluid flows. In
the test problem considered here, a DG algorithm can give much better results
than a code based on the staggered C-grid, which is one of the finite difference
grids that is traditionally used in ocean modeling.

Discontinuous Galerkin methods have been used extensively to solve the two-
dimensional shallow water equations for a single-layer fluid of constant density;
examples of recent work include Bao et al. [2], Giraldo and Warburton [7],
Kubatko et al. [17], and Wirasaet et al. [24]. In the area of three-dimensional
flows, Kärnä et al. [15] developed a coastal DG model that uses a terrain-fitted
vertical coordinate with a moving vertical mesh, and Aizinger and Dawson [1]
developed a three-dimensional DG shallow water model with a level vertical
coordinate. Applications of DG methods to atmospheric flows include the works
of Nair et al. [20] and Kopera and Giraldo [16]. On the other hand, in the
numerical modeling of the three-dimensional general circulation of the ocean,
operational models tend to use finite difference and finite volume methods on
logically-rectangular grids (e.g., Griffies [9]); a recent exception is the usage of
such methods on variable-resolution Voronoi grids (Ringler et al. [22], Petersen
et al. [21]).

An outline of the present paper is as follows. Section 2 states the governing
equations that will be considered here, including weak forms that are suitable for
usage with DG spatial discretizations. Sections 3 and 4 develop the process of
barotropic-baroclinic time splitting in the context of such spatial discretizations.
Section 5 addresses the problem of computing pressure at cell edges, and Section
6 describes the results of some numerical computations. A summary is given
in Section 7. The Appendix develops the exact solutions of the multi-layer
geostrophic adjustment problem that is studied in Section 6.

2. Governing equations

The paper by Higdon [11] includes a derivation of partial differential equa-
tions that describe the conservation of momentum, mass, and tracers in a hydro-
static fluid that is in motion relative to a rotating spheroid. In that derivation,
the horizontal coordinates are arbitrary orthogonal curvilinear coordinates, and
the vertical coordinate is a generalized coordinate in the sense described above.
Horizontal curvilinear coordinates are also included in the derivations in the
more recent paper [14].

However, in the present paper the horizontal coordinates are assumed to
be Cartesian coordinates, for the sake of notational simplicity. As in [14], the
generalized vertical coordinate is a quantity s that is a non-decreasing function
of the elevation z, at each horizontal position and time. It is also assumed here
that the vertical length scale is much smaller than the horizontal length scale,
for the motions of interest, so that the hydrostatic assumption is satisfied for
those motions.
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2.1. Pointwise form

In the present setting, the equations for conservation of momentum and mass
can be written in the form

∂

∂t

[
u(−ps)

]
+Au − f

(
v(−ps)

)
= −(gzs)

∂P

∂x
+ g

∂τu
∂s

(1)

∂

∂t

[
v(−ps)

]
+Av + f

(
u(−ps)

)
= −(gzs)

∂P

∂y
+ g

∂τv
∂s

(2)

∂

∂t

(
ps
)

+
∂

∂x

(
ups
)

+
∂

∂y

(
vps
)

+
∂

∂s

(
ṡps
)

= 0. (3)

Here, u(x, y, s, t) and v(x, y, s, t) are the x- and y-components of fluid velocity,
respectively; f is the Coriolis parameter; p(x, y, s, t) is the pressure; P (x, y, z, t)
is the pressure in terms of vertical coordinate z (discussed below, in Section
2.2.1); zs = ∂z/∂s, where z(x, y, s, t) is the elevation corresponding to vertical
coordinate s at horizontal position (x, y) and time t; ṡ = Ds/Dt denotes the time
derivative of s following fluid parcels; τu and τv are components of horizontal
stress due to wind forcing and/or internal and bottom friction;

Au =
∂

∂x

[
u
(
u(−ps)

)]
+

∂

∂y

[
v
(
u(−ps)

)]
+

∂

∂s

[
ṡ
(
u(−ps)

)]
;

and Av is obtained from Au by replacing u(−ps) with v(−ps).
In the system (1)–(3) the quantity −ps = −∂p/∂s ≥ 0 serves as a mass

density, and the quantities u(−ps) and u(−ps) are components of momentum
density. In the special case where s is the elevation z, −ps = −pz = ρg, where ρ
is the density of the fluid and g is the (constant) magnitude of the acceleration
due to gravity; and also ṡ = ż = w, which is the vertical component of fluid
velocity. In this case, the system (1)–(3) reduces to a familiar form. Horizontal
viscosity terms could be included in the momentum equations (1)–(2), but those
effects will not be considered in the present discussion.

2.2. Spatial discretization and integral weak forms

Next we state integral weak forms of the momentum and mass equations,
which are needed for implementation of discontinuous Galerkin methods. These
forms are derived in [14] and are summarized here for the sake of usage in later
sections.

In order to limit the complexity of the following discussions, assume from
now on that all quantities in the system (1)–(3) are independent of y. In the
numerical computations described in Section 6, this situation is realized by
assuming flow in an infinite straight channel that is aligned with the y-direction.
In the present framework, both of the velocity components u and v can be
nonzero, but they depend on (x, s, t) instead of (x, y, s, t). It is also assumed
here that the Coriolis parameter f is nonzero and constant.

In addition, it is assumed here that ṡ = Ds/Dt = 0. This assumption implies
that the vertical advection terms need not be carried through the calculations,
but it does not affect the structures of the remaining terms.
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Partition the fluid domain vertically with coordinate surfaces of the form s =
sr for 0 ≤ r ≤ L, where s0 refers to the top of the fluid, sL refers to the bottom,
and s0 > s1 > . . . > sL. Number the resulting layers from top to bottom. In
terms of the vertical coordinate s, layer r is characterized by sr < s < sr−1; in
terms of the elevation z, layer r is characterized by zr(x, t) < z < zr−1(x, t),
where zr(x, t) = z(x, sr, t) and zr−1(x, t) = z(x, sr−1, t) are the elevations of the
bottom and top of the layer, respectively. Also partition the horizontal spatial
interval with grid cells of the form Dj = [xj−1/2, xj+1/2]. These discretizations
are illustrated in Figure 1.

free surface	  

bottom of the fluid domain	  s = sr s = sr−1

z = zr(x, t) z = zr−1(x, t)

Dj Dj−1 xj−1/2 xj+1/2

1

layer  r  	  

s = sr, z = zr(x, t)

s = sr−1, z = zr−1(x, t)

z = zr(x, t) z = zr(x, t)

Dj Dj−1 xj−1/2 xj+1/2

1

s = sr, z = zr(x, t)

s = sr−1, z = zr−1(x, t)

z = zr(x, t) z = zr(x, t)

Dj Dj−1 xj−1/2 xj+1/2

1

s = sr, z = zr(x, t)

s = sr−1, z = zr−1(x, t)

z = zr(x, t) z = zr(x, t)

Dj Dj−1 xj−1/2 xj+1/2

1

s = sr, z = zr(x, t)

s = sr−1, z = zr−1(x, t)

z = zr(x, t) z = zr(x, t)

Dj Dj−1 xj−1/2 xj+1/2

1

Figure 1: Horizontal and vertical discretizations of the fluid domain, as viewed from the side.
The vertical coordinate in this figure is the elevation z. The curves show the locations of
the free surface and the interfaces between layers. The figure allows for the possibility that
these surfaces may be discontinuous at cell edges, in the case of a DG horizontal discretization
and an arbitrary vertical coordinate. The weak forms stated here employ integration on the
volume of fluid associated with grid cell Dj in the horizontal and layer r in the vertical.

The dependent variables that are encountered in the weak forms are the
following. Vertical integration of the continuous mass variable −ps over layer r
yields ∫ sr−1

sr

(−ps) ds = p(x, sr, t)− p(x, sr−1, t) ≡ ∆pr(x, t); (4)

this quantity is the vertical pressure increment over layer r, and it is g times
the mass per unit horizontal area in that layer. Now let

ur(x, t) =
1

∆pr

∫ sr−1

sr

u(−ps) ds (5)

denote the mass-weighted vertical average of u in layer r; the vertically-integrated
x-component of momentum is then ur∆pr. Similarly, the y-component is vr∆pr.

5



2.2.1. Weak form of the u-component of the momentum equation

The weak form of the u-component of the momentum equation, obtained
by integration over grid cell Dj in the horizontal and layer r in the vertical, is
(from [14]) ∫

Dj

{
∂

∂t
(ur∆pr)− fvr∆pr

}
ψ(x) dx + Φu(j, r, ψ)

= Πu(j, r, ψ) + Su(j, r, ψ), (6)

where ψ is an arbitrary smooth test function. Here,

Φu(j, r, ψ) =
[
ur(ur∆pr)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

ur(ur∆pr)ψ′(x) dx (7)

arises from momentum fluxes, and

Su(j, r, ψ) = g

∫
Dj

{
(τu)r−1(x, t)− (τu)r(x, t)

}
ψ(x) dx (8)

represents shear stresses.
The quantity Πu(j, r, ψ) in equation (6) is the weak form of the pressure

term, which is given by

Πu(j, r, ψ) = −
[
Hr(x, t) ψ(x)

]x=xj+1/2

x=xj−1/2

+

∫
Dj

Hr(x, t) ψ′(x) dx

+ g

∫
Dj

{
pr−1(x, t)

∂zr−1

∂x
− pr(x, t)

∂zr
∂x

}
ψ(x) dx. (9)

In equation (9), pr−1(x, t) and pr(x, t) denote the pressures at the top and
bottom of layer r, i.e., pr(x, t) = p(x, sr, t) = P (x, zr(x, t), t). Also,

Hr(x, t) = g

∫ zr−1(x,t)

zr(x,t)

P (x, z, t) dz (10)

=

∫ pr(x,t)

pr−1(x,t)

αp dp (11)

is the vertical integral of the horizontal pressure force, where α = 1/ρ is the
specific volume (volume per unit mass). The derivation of (11) from (10) uses
the hydrostatic condition ∂P/∂z = −ρg = −g/α.

The quantities ∂P/∂x and ∂P/∂y on the right sides of the momentum equa-
tions (1) and (2) are partial derivatives for fixed z, evaluated at the point
(x, y, z(x, y, s, t), t). However, z need not be the vertical coordinate s that is
used in the model, and relating these partial derivatives to functions of (x, y, s, t)
leads to difficulties that are described in Section 2.4 of [14]. Instead of making
such a conversion, the derivation of equation (6) in reference [14] is based on
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proceeding directly to the weak form from the pointwise form (1), via integra-
tion on the region of fluid consisting of the portion of layer r that lies on the
horizontal spatial interval Dj .

As suggested by Figure 1, the pressure may be discontinuous across cell
edges, and this leads to an ambiguity in the value of the vertically-integrated
pressure Hr(x, t) when x is located on such an edge. This issue is addressed in
Section 5.

In the case of the single-layer shallow water equations for a hydrostatic fluid
of constant density, the region of integration used to obtain the weak form is
the entire water column sitting on cell Dj . In Section 5.4 of [14] it is shown that
the pressure forcing is automatically well-balanced, in the sense that variable
bottom topography does not produce spurious forcing. That analysis assumed a
particular representation of the pressure at cell edges; however, that assumption
can be relaxed to require only that the algorithm for computing pressures at
cell edges produces the continuous values when the free surface is continuous.

2.2.2. Weak forms of the mass and v-momentum equations

The integral weak form of the v-component of the momentum equation is∫
Dj

{
∂

∂t
(vr∆pr) + fur∆pr

}
ψ(x) dx + Φv(j, r, ψ) = Sv(j, r, ψ), (12)

where Φv(j, r, ψ) and Sv(j, r, ψ) are analogues of (7) and (8), respectively. A
pressure term is not present in this equation because all quantities are assumed
to be independent of y. The weak form of the mass equation is∫

Dj

∂

∂t
(∆pr)ψ(x) dx + Φp(j, r, ψ) = 0, (13)

where

Φp(j, r, ψ) =
[
ur(∆pr)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

ur(∆pr)ψ′(x) dx. (14)

3. Barotropic equations

In the numerical modeling of ocean circulation it is a widespread practice
to split the fast and slow dynamics into separate subsystems that are solved by
different techniques. General reviews of this process are given, for example, by
Griffies [9] and Higdon [11]. The splitting process is motivated by the idea of
external and internal modes, which can be developed analytically in idealized
cases of linearized flow. Derivations of these modes for the vertically-continuous
case are included in [11] and in the text by Gill [6], and some special cases for
the vertically-discrete case are developed in the Appendix of the present paper.
These ideas are illustrated in the analysis in Section 5 and in the description of
numerical computations in Section 6.
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In the case of a pure external motion, all fluid layers are thickened or thinned
by approximately the same proportion, at each horizontal location and time, and
the horizontal fluid velocity is approximately independent of vertical position.
Knowledge of the free surface elevation and the horizontal velocity at the top of
the fluid thus reveals (approximately) the mass and velocity fields throughout
the interior. This suggests that external motions might be modeled by a simpler
two-dimensional system instead of a fully three-dimensional system. On the
other hand, internal motions are manifested by undulations of density surfaces
within the fluid, the free surface remains nearly level, and the mass-weighted
vertical average of horizontal velocity is nearly zero. In the case of gravity wave
motions, the restoring force in the external mode is due to the density contrast
between water and air, whereas the restoring force in the internal modes is due
to density contrasts within the fluid and is thus much weaker and generates
much slower motions.

The dynamics of these modes suggest that the fast external motions can
be modeled by a vertically-integrated system that resembles the shallow water
equations for a fluid of constant density; in fact, in the linearized case, vertical
summations approximate projections onto the external mode. (See [11].) The
slower internal and advective motions can be modeled by a more complicated
system that is fully three-dimensional. The fast and slow systems are often re-
ferred to as the “barotropic” equations and “baroclinic” equations, respectively.
The fast barotropic equations can be solved either explicitly with a relatively
short time step or implicitly with a relatively long time step, whereas the slow
baroclinic equations are solved explicitly with a long time step.

In the present section we derive the integral weak forms of the barotropic
equations that correspond to the governing equations stated in Section 2.2. The
pointwise forms of these equations are also stated here. In the following sec-
tion we describe a numerical implementation of a barotropic-baroclinic splitting
based on those equations and on discontinuous Galerkin spatial discretizations.

For the vertically-integrated versions of the integral weak forms stated in
Section 2.2, the dependent variables are the following. Let

pb(x, t) =

L∑
r=1

∆pr(x, t) =

∫ s0

sL

−ps(x, s, t) ds. (15)

(See (4).) This quantity is g times the mass per unit horizontal area in the
entire water column, and it will serve as the barotropic mass variable. Also let

ū(x, t) =

L∑
r=1

∆pr(x, t)

pb(x, t)
ur(x, t) =

1

pb(x, t)

∫ s0

sL

u(x, s, t)(−ps(x, s, t)) ds (16)

(see (5)) denote the mass-weighted vertical average of u over the water column;
this quantity is the u-component of barotropic velocity. The u-component of
barotropic momentum density (times g) is then

pbū =

L∑
r=1

ur(x, t)∆pr(x, t). (17)
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The v-component of barotropic momentum is pbv̄, where v̄ is defined in analogy
to (16).

It will also be useful to refer to the baroclinic velocity, for which the u-
component is u′r(x, t) = ur(x, t)− ū(x, t) for 1 ≤ r ≤ L. The total velocity then
has the decomposition

ur(x, t) = ū(x, t) + u′r(x, t), (18)

and a comparison to (15) and (16) shows

L∑
r=1

∆pr(x, t)

pb(x, t)
u′r(x, t) =

L∑
r=1

∆pr
pb

ur −
L∑

r=1

∆pr
pb

ū = ū− ū = 0. (19)

The baroclinic velocity u′r thus has mass-weighted vertical average equal to zero.
The v-component v′r can be defined similarly.

3.1. Weak form of the barotropic u-momentum equation

To obtain the weak form of the barotropic u-momentum equation, sum the
layer momentum equation (6) over all layers (i.e., for 1 ≤ r ≤ L) to obtain∫

Dj

{
∂

∂t
(pbū)− fpbv̄

}
ψ(x) dx + Φu(j, ψ)

= Πu(j, ψ) + Su(j, ψ). (20)

The momentum variables pbū and pbv̄ are obtained by reference to (17) and its
analogue for the v-component, and the terms Φu(j, ψ), Πu(j, ψ), and Su(j, ψ)
are vertical sums of corresponding terms in (6).

The advection term Φu(j, ψ) can be written as

Φu(j, ψ) =

L∑
r=1

Φu(j, r, ψ)

=
[
Qu(x, t)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

Qu(x, t)ψ′(x) dx, (21)

where

Qu(x, t) =

L∑
r=1

ur(ur∆pr) =

L∑
r=1

(ū+ u′r)(ū+ u′r)∆pr

= ū(pbū) + pb

(
L∑

r=1

u′ru
′
r

∆pr
pb

)
. (22)

The last equality in (22) uses the definition of pb in (15) and the statement (19)
that the mass-weighted vertical average of u′r is zero. The quantity Qu serves
as a flux of barotropic momentum.
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The barotropic stress term Su(j, ψ) is a telescoping sum that reduces to

Su(j, ψ) = g

∫
Dj

{
(τu)top(x, t)− (τu)bot(x, t)

}
ψ(x) dx. (23)

Here, the subscripts top and bot refer to the top and bottom of the fluid domain.
The barotropic pressure term Πu(j, ψ) is

Πu(j, ψ) =

L∑
r=1

Πu(j, r, ψ)

= −
[
H(x, t) ψ(x)

]x=xj+1/2

x=xj−1/2

+

∫
Dj

H(x, t) ψ′(x) dx (24)

+ g

∫
Dj

{
ptop(x, t)

∂ztop
∂x

− pbot(x, t)
∂zbot
∂x

}
ψ(x) dx.

where

H(x, t) =

L∑
r=1

Hr(x, t)

= g

∫ ztop(x,t)

zbot(x,t)

P (x, z, t) dz =

∫ pbot(x,t)

ptop(x,t)

αp dp. (25)

(See (10) and (11).)

3.2. Weak forms of the barotropic mass and v-momentum equations

The integral weak form of the barotropic v-momentum equation is∫
Dj

{
∂

∂t
(pbv̄) + fpbū

}
ψ(x) dx + Φv(j, ψ) = Sv(j, ψ), (26)

where Sv(j, ψ) is an analogue of Su(j, ψ) in (23), and

Φv(j, ψ) =
[
Qv(x, t)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

Qv(x, t)ψ′(x) dx, (27)

with

Qv(x, t) = ū(pbv̄) + pb

(
L∑

r=1

u′rv
′
r

∆pr
pb

)
. (28)

The weak form of the barotropic mass equation is a vertical sum of (13) and
is given by ∫

Dj

∂pb
∂t

ψ(x) dx+ Φp(j, ψ) = 0, (29)

where

Φp(j, ψ) =
[
(pbū)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

(pbū)ψ′(x) dx. (30)

The quantity pbū is the barotropic mass flux (times g).

10



3.3. Pointwise forms of the barotropic equations

For the sake of clarity, it may be useful to note the pointwise forms of the
barotropic equations. Each of the weak forms (20), (26), and (29) includes terms
that have the appearance of integration by parts. For each such equation, un-do
the integration by parts and use the fact that the test function ψ is arbitrary
to obtain the system

∂

∂t
(pbū) +

∂Qu

∂x
− fpbv̄ = −∂H

∂x
+ g

[
ptop(x, t)

∂ztop
∂x

− pbot(x, t)
∂zbot
∂x

]
+ g

[
(τu)top(x, t)− (τu)bot(x, t)

]
∂

∂t
(pbv̄) +

∂Qv

∂x
+ fpbū = g

[
(τv)top(x, t)− (τv)bot(x, t)

]
(31)

∂pb
∂t

+
∂

∂x

(
pbū
)

= 0.

An alternate approach to deriving the weak forms of the barotropic equations
is to begin by integrating the continuous equations vertically over each layer to
obtain equations that are pointwise in horizontal position and time (as in Section
3.3 of [14]), then sum vertically to obtain (31), and finally multiply by a test
function and integrate.

The vertically-integrated equations (31) are similar to the shallow water
equations for a single-layer hydrostatic fluid of constant density. In addition,
for the case of general ocean circulation the dynamics of the barotropic equa-
tions are nearly linear, in the sense that the velocity components ū and v̄ have
maximum magnitudes on the order of at most one percent of the speed of ex-
ternal gravity waves, and the relative variation of pb is typically much less than
one percent.

4. Numerical implementation of barotropic-baroclinic splitting

The present section describes a numerical implementation of a barotropic-
baroclinic splitting of the governing equations stated in Section 2.2, with DG
spatial discretizations.

In the following, the term “layer equations” refers to the system (6), (12),
and (13), which models the momentum and mass in each layer in the fluid. A
significant issue in this discussion is enforcing consistency between the numerical
solution of the layer equations and the numerical solution of the vertically-
integrated barotropic equations. The procedures described here for enforcing
consistency have the effect of introducing a kind of time filtering into the forcing
for the layer equations, and the resulting filtered equations will be regarded as
the slow “baroclinic” equations.

4.1. Discontinuous Galerkin space discretization

In a DG representation of the solution, each dependent variable in each grid
cell is represented as a polynomial in x with coefficients that depend on t. Here,
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we derive a system of ordinary differential equations for the time-dependent
degrees of freedom in those polynomials.

For any positive integer M , let PM (Dj) denote the space of polynomials
of degree M or less on cell Dj . Also, for any integer m ≥ 0 let Pm be the
Legendre polynomial of degree m on the reference interval [−1, 1], with Pm

normalized so that Pm(1) = 1. These polynomials satisfy the orthogonality

condition
∫ 1

−1
PmPn = 2/(2m+ 1) if m = n and

∫ 1

−1
PmPn = 0 otherwise. Now

let

ψ(j)
m (x) = Pm

(
2

∆x
(x− xj)

)
(32)

for xj−1/2 < x < xj+1/2 and 0 ≤ m ≤ M . Here, xj is the center of cell
Dj = [xj−1/2, xj+1/2], and ∆x = xj+1/2−xj−1/2. (For notational simplicity, any
dependence of the grid size ∆x on the index j is suppressed from the notation.)

The set
{
ψ

(j)
0 , ψ

(j)
1 , . . . , ψ

(j)
M

}
is a (modal) basis of the space PM (Dj), with the

orthogonality relations∫
Dj

ψ(j)
m ψ(j)

n =

{
∆x

2m+1 if m = n

0 if m 6= n.
(33)

The dependent variables in the layer equations (6), (12), and (13) can be
represented as

(ur∆pr)(x, t) =

M∑
n=0

U (j)
r,n(t) ψ(j)

n (x)

(vr∆pr)(x, t) =

M∑
n=0

V (j)
r,n (t) ψ(j)

n (x) (34)

(∆pr)(x, t) =

M∑
n=0

δ(j)
r,n(t) ψ(j)

n (x)

for all x ∈ Dj , all t, and 1 ≤ r ≤ L. (With an abuse of notation, the approx-
imations to ur∆pr, vr∆pr, and ∆pr are also denoted by ur∆pr, vr∆pr, and

∆pr.) The coefficients U
(j)
r,n(t), V

(j)
r,n (t), and δ

(j)
r,n(t) will be regarded as “degrees

of freedom” for the corresponding momentum and mass variables.
To obtain a DG discretization of equation (6), the u-component of the mo-

mentum equation in layer r, insert the representations of ur∆pr and vr∆pr in
(34) into the left side of (6) and require that this equation hold for all ψ ∈
PM (Dj). Equivalently, this equation should hold for ψ = ψ

(j)
m for 0 ≤ m ≤M .

The orthogonality condition (33) then yields

dU
(j)
r,m

dt
= fV (j)

r,m(t)

+
2m+ 1

∆x

[
−Φu(j, r, ψ(j)

m ) + Πu(j, r, ψ(j)
m ) + Su(j, r, ψ(j)

m )
]

(35)
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for 0 ≤ m ≤M , all layers r with 1 ≤ r ≤ L, and all grid cells Dj . The quantities

Φu(j, r, ψ
(j)
m ), Πu(j, r, ψ

(j)
m ), and Su(j, r, ψ

(j)
m ) are obtained from (7), (8), and (9),

and they involve integrals of dependent variables and other derived quantities
on the cell Dj and also the pointwise values of various quantities at the edges of
Dj . In practice, with an explicit time-stepping method the quantities Φu, Πu,
and Su can be computed from pointwise evaluations and numerical quadrature
schemes. For reasons of complexity, only explicit time-stepping methods will
be considered in the present paper, both for the layer equations and for the
barotropic equations.

The DG discretization of the v-momentum equation (12) in layer r is

dV
(j)
r,m

dt
= −fU (j)

r,m(t)

+
2m+ 1

∆x

[
−Φv(j, r, ψ(j)

m ) + Sv(j, r, ψ(j)
m )
]

(36)

for 0 ≤ m ≤ M , 1 ≤ r ≤ L, and all j. The DG discretization of the layer mass
equation (13) is

dδ
(j)
r,m

dt
= −

(
2m+ 1

∆x

)
Φp(j, r, ψ(j)

m ), (37)

where Φp(j, r, ψ
(j)
m ) is obtained from (14).

Discontinuous Galerkin discretizations of the barotropic equations can be
obtained in a similar manner. The dependent variables in the barotropic equa-
tions (20), (26), and (29) can be represented as

(pbū)(x, t) =

M∑
n=0

U
(j)
n (t) ψ(j)

n (x)

(pbv̄)(x, t) =

M∑
n=0

V
(j)
n (t) ψ(j)

n (x) (38)

pb(x, t) =

M∑
n=0

δ
(j)
n (t) ψ(j)

n (x)

for all x ∈ Dj and all t. Calculations similar to the preceding yield

dU
(j)
m

dt
= fV

(j)
m (t)

+
2m+ 1

∆x

[
−Φu(j, ψ(j)

m ) + Πu(j, ψ(j)
m ) + Su(j, ψ(j)

m )
]

(39)

dV
(j)
m

dt
= −fU (j)

m (t)

+
2m+ 1

∆x

[
−Φv(j, ψ(j)

m ) + Sv(j, ψ(j)
m )
]

(40)

dδ
(j)
m

dt
= −

(
2m+ 1

∆x

)
Φp(j, ψ(j)

m ) (41)
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for 0 ≤ m ≤M and all cells Dj .

4.2. Consistency between the layer equations and the barotropic equations

A numerical implementation of a barotropic-baroclinic splitting, for the sys-
tems considered here, can be based on solving the fast barotropic equations with
a short time step and solving the layer equations explicitly with a long time step
that is appropriate for representing the slow motions in the system. However,
this approach encounters two difficulties.

(i) The vertical sums of the momentum and mass variables computed with
the layer equations need not equal exactly the computed values of the corre-
sponding barotropic variables, even though the barotropic equations are derived
by summing the layer equations vertically. This discrepancy is due to different
numerical discretizations being used for the two systems, and the discrepancy
is at the level of truncation error.

(ii) In general, the layer equations can admit both fast and slow motions, and
the long time step used for those equations could lead to numerical instability.

Some procedures developed in this subsection will address both of these diffi-
culties simultaneously. These procedures are related to some methods developed
by Higdon [10], [12] (and in unpublished work by others mentioned in [10] and
[12]) for the case of finite difference and finite volume methods. In both the
DG and finite difference/volume cases, the main idea is to produce the desired
consistency by introducing suitable (small) adjustments to the forcing terms in
the layer equations. These adjustments also yield a type of time filtering that
addresses difficulty (ii) stated above. In the case of finite difference/volume
methods, the adjustments are applied directly to the pointwise values of the de-
pendent variables that are computed with such methods. On the other hand, in
the case of DG methods the adjustments are applied to the degrees of freedom
for those variables. Due to the different nature of the setting considered here,
the procedures for the present case are described in some detail.

4.2.1. An algorithm for obtaining consistency in the mass equations

Here we address the consistency between the barotropic mass and the masses
in the layers.

Let tn and tn+1 = tn + ∆t denote consecutive time levels for which the layer
equations are solved, and assume that the fast barotropic equations are solved
with time step ∆t/N , where N denotes the number of barotropic subintervals
of the baroclinic time interval [tn, tn+1]. Denote the approximation to the layer
mass (∆pr)(x, tn+1) by

(∆pr)n+1(x) =

M∑
m=0

(
δ(j)
r,m

)n+1

ψ(j)
m (x)

for all x ∈ Dj , and denote the approximation to the barotropic mass pb(x, tn+1)
by

pn+1
b (x) =

M∑
m=0

(
δ

(j)
m

)n+1

ψ(j)
m (x).
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The consistency condition

L∑
r=1

(∆pr)n+1(x) = pn+1
b (x)

is equivalent to
L∑

r=1

(
δ(j)
r,m

)n+1

=
(
δ

(j)
m

)n+1

(42)

for 0 ≤ m ≤M , since the functions ψ
(j)
0 , ψ

(j)
1 , . . ., ψ

(j)
M are linearly independent

on cell Dj . That is, the consistency condition can be enforced mode-by-mode.
Statements analogous to (42) can be made for the components of momentum.

Equation (37) for mode m of the layer mass can be discretized with a time-
stepping method of the form(

δ(j)
r,m

)∗
=
(
δ(j)
r,m

)n
− (2m+ 1)

∆t

∆x

(
A(j)

r,m

)n+1

, (43)

where(
A(j)

r,m

)n+1

=
[
Fn+1
r (x)ψ(j)

m (x)
]x=xj+1/2

x=xj−1/2

−
∫
Dj

Fn+1
r (x)

dψ
(j)
m

dx
dx.

Here, the quantity Φp(j, r, ψ
(j)
m ) in (37) is obtained from (14), and Fn+1

r (x) is a
discretization of the layer mass flux ur∆pr. Values of Fn+1

r (x) at cell edges are
obtained from a mass flux algorithm (e.g., upwind), and values of Fn+1

r (x) in
the interior of cell Dj are obtained from the degrees of freedom for dependent
variables. The quantities used to compute Fn+1

r (x) are not necessarily evaluated
at time tn+1; instead, the superscript n+1 simply indicates that these quantities
are used to obtain the solution at time tn+1.

The quantity
(
δ

(j)
r,m

)∗
on the left side of (43) would be the numerical solution

at time tn+1, except for the need to enforce the consistency condition (42). The
condition (42) will be enforced with the modified method(

δ(j)
r,m

)n+1

=
(
δ(j)
r,m

)n
− (2m+ 1)

∆t

∆x

(
B(j)

r,m

)n+1

, (44)

where (
B(j)

r,m

)n+1

=

[(
Fn+1
r (x) + w(j)

r C(j)(x)
)
ψ(j)
m (x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

(
Fn+1
r (x) + w(j)

r C(j)(x)
) dψ(j)

m

dx
dx. (45)

The quantity C(j) is a flux adjustment, and w
(j)
1 , . . ., w

(j)
L are nonnegative

weight coefficients with sum 1 which are used to distribute the flux adjustment
to the various layers. These quantities are specified below.
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Now assume that equation (41) for mode m of the barotropic mass is dis-
cretized with time step ∆t/N and an equation of the form(

δ
(j)
m

)n,i+1

=
(
δ

(j)
m

)n,i
−
(

2m+ 1

∆x

)
∆t

N

(
A

(j)
m

)n,i+1

(46)

for 0 ≤ i ≤ N − 1. The superscript “n, i” refers to barotropic substep i of the
baroclinic time interval [tn, tn+1], i.e.. to time tn,i = tn + (i/N)∆t, and(
A

(j)
m

)n,i+1

=
[
Fn,i+1(x)ψ(j)

m (x)
]x=xj+1/2

x=xj−1/2

−
∫
Dj

Fn,i+1(x)
dψ

(j)
m

dx
dx. (47)

Here, Fn,i+1 is a discretization of the barotropic mass flux pbū which is used to
compute the solution at barotropic time step tn,i+1. (Also see (30).) A relation
between quantities defined on the barotropic and baroclinic time grids is given
by (

δ
(j)
m

)n,0
=
(
δ

(j)
m

)n
and

(
δ

(j)
m

)n,N
=
(
δ

(j)
m

)n+1

,

where single superscripts refer to baroclinic time levels.
The cumulative effect of the discretization (46) over all of the barotropic

subintervals of the baroclinic time interval [tn, tn+1] is obtained by summing
(46) for 0 ≤ i ≤ N − 1 and canceling some terms to obtain(

δ
(j)
m

)n+1

=
(
δ

(j)
m

)n
− (2m+ 1)

∆t

∆x

[
1

N

N−1∑
i=0

(
A

(j)
m

)n,i+1
]
. (48)

On the other hand, the vertical sum (for 1 ≤ r ≤ L) of the layer method (44) is

L∑
r=1

(
δ(j)
r,m

)n+1

=

L∑
r=1

(
δ(j)
r,m

)n
− (2m+ 1)

∆t

∆x

[
L∑

r=1

(
B(j)

r,m

)n+1
]
. (49)

A comparison of (48) and (49) shows that the consistency condition (42) is
satisfied at time tn+1, assuming that it is already satisfied at time tn, if and
only if

L∑
r=1

(
B(j)

r,m

)n+1

=
1

N

N−1∑
i=0

(
A

(j)
m

)n,i+1

,

i.e., the vertical sum of the layer forcing equals the time average of the barotropic
forcing. A sufficient condition for this to occur is

L∑
r=1

(
Fn+1
r + w(j)

r C(j)
)

=
1

N

N−1∑
i=0

Fn,i+1. (50)

(See (45) and (47).) Since the weights have sum equal to 1, (50) holds if and
only if

C(j) = −
L∑

r=1

Fn+1
r +

1

N

N−1∑
i=0

Fn,i+1. (51)

The quantity C(j) is then inserted into equation (45) in order to specify com-
pletely the method (44) for updating the masses in the layers.

16



4.2.2. Remarks on consistency of mass

Following are some remarks about preceding process of obtaining consis-
tency.

(a) The first sum on the right side of (51) is the vertical sum of discretizations
of the mass fluxes ur∆pr in the layers, and the second term is a time average of
discretizations of the barotropic mass flux pbū. As ∆x → 0 and ∆t → 0, these
quantities approach the same limit, since pbū =

∑L
r=1 ur∆pr in the continuous

problem. The quantity C(j) in (51) is thus due entirely to truncation error, and
its usage in (44) and (45) amounts to a manipulation of truncation error so as
to achieve the desired goal of consistency between the barotropic mass equation
and the mass equations in the layers.

(b) The quantity C(j) in (51) has units of mass flux (more precisely, g times
mass flux, or pressure times velocity) and can therefore be written as C(j) =
pbua, where ua has units of velocity. The (small) velocity ua is used to adjust
the mass fluxes in the layers so that the vertical sum of the adjusted layer fluxes
equals the time average of the barotropic flux.

(c) The weights w
(j)
1 , . . ., w

(j)
L in (45) are used to distribute the flux cor-

rection C(j) over the various layers. In the code that was used to perform the
computations described in Section 6, these weights are relative layer thicknesses,
as measured by the cell averages of ∆pr and pb =

∑L
r=1 ∆pr. To be more pre-

cise, the zero-order degrees of freedom in the representations (34) and (38) are
cell averages, since the basis functions of positive degree have integral zero on
cell Dj (due to orthogonality of Legendre polynomials). Assume that the cell

averages
(
δ

(j)
r,0

)∗
obtained from (43) with m = 0 are nonnegative, for all layers

r and all cells Dj . (In general, this may require a suitable usage of limiters,
although this point will not be addressed in the present paper.) The weights
used here are then given by

w(j)
r =

(
δ

(j)
r,0

)n+1

∑L
k=1

(
δ

(j)
k,0

)n+1 (52)

for 1 ≤ r ≤ L. These weights are computed at quadrature points in the cells and
also at cell edges. In the case of cell edges, the quantities in (52) are chosen in
an upwind fashion, where “upwind” is defined by the sign of the quantity C(j)

in (51) (or, equivalently, by the sign of the adjustment velocity ua discussed
in remark (b) above). The application of the adjustment in (44) and (45) for
the case m = 0 is then a simple upwind finite-volume step starting from data(
δ

(j)
r,0

)∗
, and the nonnegativity of cell averages is therefore preserved under the

adjustment process.

4.2.3. Interpretation as time filtering of the forcing in the layer equations

The vertical sum in (51) can be regarded as the fast part of the flux in
the mass equation in the layers, as this vertical summation approximates a
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projection onto the external mode. (See the beginning of Section 3.) This part
of the forcing is not resolved on a time grid with the relatively long time step
∆t, which is used in the layer equations and is intended to resolve the slow
motions in the system. On the other hand, the second term on the right side
of (51) is a time average of well-resolved fluxes that are computed when the
barotropic equations are solved with relatively short time steps. The usage of
the flux correction C(j) from (51) in the layer method (44)–(45) amounts to
subtracting layer r’s share of the unresolved fast forcing from the layer equation
and then replacing it with the time average of well-resolved forcing from the
barotropic equation. In this sense, the method (44)–(45) can be regarded as a
time-filtered method for which the long time step ∆t can be used successfully,
as in the numerical computations in Section 6.

The same interpretation can be given to the process of obtaining consistency
in the momentum equations that is described below, in Section 4.2.4. In par-
ticular, the correction term (59) used in that section is a close analogue of the
correction term (51) discussed above.

Analogous interpretations for the mass and momentum equations in the case
of finite difference methods are given by Higdon [12].

4.2.4. Consistency in the momentum equations

Here we address the consistency between the barotropic u-component of
momentum and the u-component of momentum in the layers. The v-component
can be treated similarly.

In the case of the mass equations, consistency is obtained by an adjustment
of the lateral mass fluxes in the layers. Adjustment of fluxes maintains the
local conservation of mass in the numerical method, and it also enables the
preservation of nonnegative cell averages of layer thickness, as noted in Remark
(c) in Section 4.2.2. However, in the case of the momentum equations several
processes are represented (momentum advection, Coriolis term, pressure, and
stresses), and for the momentum variables it is less clear that an adjustment
of fluxes would be suitable. Instead, a different approach will be used for the
momentum equations.

Denote the approximations to the layer momentum (ur∆pr)(x, tn+1) and
barotropic momentum (pbū)(x, tn+1) in cell Dj by

(ur∆pr)n+1(x) =

M∑
m=0

(
U (j)
r,m

)n+1

ψ(j)
m (x)

(pbū)n+1(x) =

M∑
m=0

(
U

(j)
m

)n+1

ψ(j)
m (x).

In analogy to (42), the consistency of these quantities is equivalent to

L∑
r=1

(
U (j)
r,m

)n+1

=
(
U

(j)
m

)n+1

(53)
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for 0 ≤ m ≤M .
Assume that equation (35) for mode m of the u-component of layer momen-

tum is discretized with a time-stepping method of the form(
U (j)
r,m

)∗
=
(
U (j)
r,m

)n
+ ∆t

(
G(j)

r,m

)n+1

(54)

for 0 ≤ m ≤ M and 1 ≤ r ≤ L, where
(
G

(j)
r,m

)n+1

is an approximation to the

right side of (35). The quantity
(
U

(j)
r,m

)∗
on the left side of (54) would be the

numerical solution at time tn+1, except for the need to enforce the consistency
condition (53). That condition will be enforced with the modified method(

U (j)
r,m

)n+1

=
(
U (j)
r,m

)n
+ ∆t

(
G(j)

r,m

)n+1

+ (∆t)w(j)
r

(
E(j)

m

)n+1

=
(
U (j)
r,m

)∗
+ (∆t)w(j)

r

(
E(j)

m

)n+1

, (55)

where w
(j)
1 , . . ., w

(j)
L are nonnegative weight coefficients with sum 1, and

(
E

(j)
m

)n+1

is a depth-independent correction term that is derived below. In the code that
was used to perform the computations described in Section 6, the weights are

w(j)
r =

(
δ

(j)
r,0

)n+1

/
(
δ

(j)
0

)n+1

;

this formulation assumes that the mass variables have already been made con-
sistent (compare to (52)), so that the weights have sum equal to 1.

Now assume that equation (39) for mode m of the u-component of barotropic
momentum is discretized by an equation of the form(

U
(j)
m

)n,i+1

=
(
U

(j)
m

)n,i
+

∆t

N

(
G

(j)
m

)n,i+1

(56)

for 0 ≤ i ≤ N − 1. Sum equation (56) for 0 ≤ i ≤ N − 1 and cancel some terms
to obtain (

U
(j)
m

)n+1

=
(
U

(j)
m

)n
+ ∆t

[
1

N

N−1∑
i=0

(
G

(j)
m

)n,i+1
]
. (57)

On the other hand, the vertical sum (for 1 ≤ r ≤ L) of the layer method (55) is

L∑
r=1

(
U (j)
r,m

)n+1

=

L∑
r=1

(
U (j)
r,m

)n
+ ∆t

L∑
r=1

(
G(j)

r,m

)n+1

+ (∆t)
(
E(j)

m

)n+1

. (58)

A comparison of (57) and (58) shows that the consistency condition (53) for
mode m is satisfied at tn+1, assuming that it is already satisfied at time tn, if
and only if(

E(j)
m

)n+1

= −
L∑

r=1

(
G(j)

r,m

)n+1

+

[
1

N

N−1∑
i=0

(
G

(j)
m

)n,i+1
]
. (59)
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Substitution of this result into (55) then yields a method for layer momentum
that is consistent with the algorithm for the barotropic momentum.

The correction term
(
E

(j)
m

)n+1

in (59) has some properties analogous to

those of the term C(j) in (51). In particular, the quantity (59) is due entirely
to truncation error, and its usage amounts to subtracting layer r’s share of the
unresolved fast forcing from the layer equation and replacing it with the time
average of well-resolved forcing from the barotropic equation, thus introducing
a kind of time filtering into the forcing for the method (55).

In practice, the correction
(
E

(j)
m

)n+1

can be computed in a manner that is

simpler than what is suggested by equation (59). Vertical summation of the
layer method (55) yields

L∑
r=1

(
U (j)
r,m

)n+1

=

L∑
r=1

(
U (j)
r,m

)∗
+ (∆t)

(
E(j)

m

)n+1

.

The consistency condition (53) is then satisfied if and only if

(∆t)
(
E(j)

m

)n+1

=
(
U

(j)
m

)n+1

−
L∑

r=1

(
U (j)
r,m

)∗
. (60)

This result can be substituted into (55) in order to obtain the necessary adjust-

ment to
(
U

(j)
r,m

)∗
for 1 ≤ r ≤ L.

A verbal description of the algorithm is the following. Use equation (54) to
compute the tentative momentum variables, subtract their vertical sum from
the barotropic momentum variable, and then distribute this difference over the
various layers. This description may cause the method to seem like an improvi-
sation, but the preceding analysis gives the method a systematic derivation.

4.3. A time-stepping method

This subsection outlines a time-stepping method for barotropic-baroclinic
splitting of the system of governing equations considered here. This method
is similar to a two-level time-stepping method developed by Higdon [10] for
barotropic-baroclinic splitting in the case of finite difference and finite volume
methods, but it is modified here for the present case of DG spatial discretiza-
tions.

A great deal of recent research has been devoted to developing and analyzing
higher-order Runge-Kutta time-stepping methods that can be used with DG
spatial discretizations. (See, e.g., Dawson et al. [4], Gottlieb et al. [8], Kubatko,
et al. [18] and Seny et al [23].) However, the time-stepping method discussed
here is already configured for usage with a barotropic-baroclinic time splitting,
and it gives very good results in the numerical computations described in Section
6 and in the analysis and computations described in [14].

In the present discussion of time-stepping, the “barotropic” equations con-
sist of the system (39)–(41) of ordinary differential equations that are obtained
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from DG spatial discretization; the unknown quantities in this system are the
time-dependent degrees of freedom in the representation (38) of the barotropic
momentum and mass variables. The “baroclinic” equations consist of the equa-
tions (35)–(37) for the degrees of freedom for momentum and mass in the layers,
but with the modifications described in Section 4.2 to obtain consistency with
the barotropic variables. These modifications consist of equations (44)–(45)
for mass, equation (55) for the u-component of momentum, and an analogous
equation for the v-component of momentum.

For the sake of computing certain forcing terms, it is assumed here that
the velocity components ur(x, t) and vr(x, t) and layer thickness ∆pr(x, t) are
split into barotropic and baroclinic components. (This comment applies to the
pointwise functions, not to degrees of freedom.) The splitting of u is given in
(18), and the splitting of v is analogous. A splitting of ∆pr(x, t) for the case of
isopycnic coordinates is described in Section 5.1.

The following algorithm describes the evolution of the system from time tn
to time tn+1 = tn+∆t, where ∆t is appropriate for modeling the slow motions in
the system. The time interval [tn, tn+1] will be regarded as a “baroclinic” time
interval, and the baroclinic equations are solved explicitly with time step ∆t.
The fast barotropic equations are solved explicitly with time step ∆t/N , where
N is the number of barotropic subintervals of the baroclinic time interval. The
computation of the pressure terms for the barotropic and baroclinic equations
is discussed in Section 5.

The algorithm includes prediction and correction of the dependent variables.

4.3.1. Prediction steps

(1) Predict the barotropic degrees of freedom, using an algorithm that is
described below. During the computation of forcing terms (i.e., mass advec-
tion, momentum advection, pressure) use baroclinic quantities from time tn
and barotropic quantities obtained during the course of the time-stepping.

(2) Predict the degrees of freedom for the masses in the layers, i.e., degrees
of freedom for layer thicknesses. In the computation of the mass flux term, all
time-dependent quantities are taken from time tn. For an advective velocity at
cell edges in layer r, use an unweighted average of the one-sided limits of ur.
For a mass flux at cell edges, the computations described in Section 6 use the
upwind flux. At the end of this step, enforce consistency with the predicted
degrees of freedom for barotropic mass at time tn+1.

(3) Predict the degrees of freedom for the momentum densities in the lay-
ers. In the Coriolis and momentum advection terms, use data from time tn.
For the momentum flux at cell edges, use the upwind flux and the same ad-
vective velocity at cell edges as for the mass in step (2). For the quantities
used to compute the pressure term, use baroclinic data from time tn and time
averages of predicted barotropic data over all of the barotropic substeps of the
baroclinic interval [tn, tn+1]. Enforce consistency with the predicted barotropic
momentum.
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4.3.2. Correction steps

(4) Correct the barotropic degrees of freedom. When baroclinic quantities
are needed during the computation of forcing terms, use unweighted time aver-
ages from times tn and tn+1.

(5) Correct the degrees of freedom for the masses in the layers. During the
computation of the advective velocity at cell edges and mass fluxes at interior
quadrature points, use unweighted averages of baroclinic quantities at times tn
and tn+1 and time averages of corrected barotropic quantities over all substeps
of [tn, tn+1]. Enforce consistency with the corrected degrees of freedom for
barotropic mass at time tn+1.

(6) Correct the degrees of freedom for the momentum densities in the layers.
During the computation of forcing terms (except the Coriolis terms), use time
averages of baroclinic and barotropic quantities. Represent the Coriolis terms
with unweighted averages of degrees of freedom from times tn and tn+1, so that
the Coriolis terms are implemented implicitly; for each mode and each grid cell,
this requires the solution of a 2× 2 linear system. Enforce consistency with the
corrected barotropic momentum.

4.3.3. Time-stepping for the barotropic equations

The barotropic equations can be solved with a method that follows the
same general outline as the method described above for the overall barotropic-
baroclinic splitting, but simplified to fit the barotropic system. That is, at
each barotropic substep, predict the degrees of freedom for barotropic mass
and momentum with forward steps, and then correct with steps that employ
unweighted time averages in the forcing terms. All parts of the algorithm are
explicit, except for an implicit representation of the Coriolis terms.

In equation (39) for the degrees of freedom in the u-component of barotropic
momentum, the advection term (21) includes the vertically-integrated momen-
tum flux

Qu(x, t) = ū(pbū) + pb

(
L∑

r=1

u′ru
′
r

∆pr
pb

)
(61)

stated in (22). In the case of isopycnic coordinates, which are used in Sections
5 and 6, the ratio ∆pr/pb is purely baroclinic, and in that case the quantity in
parentheses in (61) varies essentially on the slow time scale. Denote that quan-
tity by Qbcl

u . Due to its slow variation, the quantity Qbcl
u can be held constant in

time during the barotropic time integration. When the barotropic equations are
solved during the prediction step of the overall barotropic-baroclinic algorithm,
evaluate Qbcl

u at time tn; during the correction step for the overall algorithm,
use an average of values from times tn and tn+1.

At cell edges, the term ū(pbū) can be discretized with an upwind flux, where
ū serves as an advective velocity and pbū serves as a momentum density. At
such edges, use an average of one-sided limits of Qbcl

u and a Lax-Friedrichs
interpolation of the coefficient pb; the latter process is discussed in Section 5.2.
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5. Computation of pressure at cell edges

The integral weak form (9) of the pressure forcing in the u-momentum equa-
tion includes a vertical integral Hr(x, t) (in (10)–(11)) of the pressure. If x is in
the interior of a grid cell, then this integral is well-defined. However, at a cell
edge the pressure may be discontinuous, in a DG discretization, so in that case
there is ambiguity about the value of pressure and thus ambiguity about the
value of Hr. If this ambiguity is not resolved then the numerical method could,
in effect, violate Newton’s third law of motion.

A standard approach to determining solution values at a cell edge is to solve
a Riemann problem (e.g., LeVeque [19]), in which one-sided limits of the solution
are used to define a piecewise constant initial state; the dynamics of the system
of partial differential equations then gives values of the dependent variables at
the cell edge. However, an ocean circulation model could have many layers
(e.g., dozens), and if the hydrostatic condition is assumed then those layers are
strongly coupled in the vertical direction. In this case, a Riemann problem could
be highly complicated. The present section describes how some ideas related to
barotropic-baroclinic splitting can be used to confine the Riemann problem to
a simpler system of lower spatial dimension and thus facilitate the process of
computing the pressure at cell edges.

In the present discussion, it is assumed that the vertical coordinate is an
isopycnic coordinate and that a vertical discretization divides the fluid into
layers of constant density. Let αr denote the specific volume (reciprocal of
density) in layer r, for 1 ≤ r ≤ L, where r increases downward. Thus α1 >
α2 > . . . > αL.

5.1. Pressure splitting

It is first necessary to develop a splitting of the pressure field into barotropic
and baroclinic components. (A splitting of velocity is given in (18).) The
quantity pb(x, t) defined in (15) is equal to g times the mass per unit horizontal
area in the water column; the pressure at the bottom of the fluid is then pb(x, t)
plus the atmospheric pressure at the top of the fluid. Now let p′b(x) be the value
of pb(x, t) when the fluid is at the global rest state consisting of zero velocity
and a level free surface and level interfaces between layers. (Here, a prime (’)
does not denote differentiation.) Define η(x, t) to be the relative perturbation
of pb(x, t) from its rest value; i.e.,

η(x, t) =
pb(x, t)− p′b(x)

p′b(x)
. (62)

Then
pb(x, t) =

(
1 + η(x, t)

)
p′b(x), (63)

and p′bη is the perturbation in water column mass (times g) from its rest value.
The quantity p′bη is also the perturbation in bottom pressure. Given the defini-
tion (62) of η, and given the vertical pressure increment ∆pr(x, t) across layer
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r (from (4)), define ∆p′r(x, t) so that

∆pr(x, t) =
(

1 + η(x, t)
)

∆p′r(x, t). (64)

It follows from (15), (63), and (64) that

L∑
r=1

∆p′r(x, t) = p′b(x). (65)

The splitting in (64) is due to Bleck and Smith [3], and it is based on the idea
that an external signal causes all fluid layers to thicken or thin by approximately
the same proportion. The factor 1 + η represents this thickening or thinning,
and the remaining factor ∆p′r (approximately) represents the internal motions.
The quantity ∆p′r thus varies (approximately) on the slow time scale, and it can
be regarded as the baroclinic component of the layer thickness. The quantities
pb and η can vary on the fast time scale and can be regarded as barotropic
variables.

Now define p′0 = 0, and let p0 be the atmospheric pressure. Summation of
(64) over layers 1 through r yields

pr(x, t) = p0 +
(

1 + η(x, t)
)
p′r(x, t) (66)

for 0 ≤ r ≤ L. Here, pr and p′r denote the total and baroclinic pressures,
respectively, at the bottom of layer r for 1 ≤ r ≤ L. If p0 is constant, then
according to some remarks in Section 5.1 of [14], p0 can be subtracted from the
fluid pressure during the derivation of the pressure forcing term (9). After a
substitution of notation, one can then use p0 = 0 in the resulting formulas. In
those formulas, one can also use the splitting

pr(x, t) =
(

1 + η(x, t)
)
p′r(x, t) (67)

in place of (66).
The definition of ∆p′ in (64) is stated in terms of vertical pressure increments

between layer interfaces, but the same relation can be used for any two points in
the fluid that have the same horizontal position. The relations (66) and (67) can
be extended similarly. The notation in (64), (66), and (67) is used here because
the primary usage of these formulas will be in relation to layer interfaces.

5.2. Riemann problem and Lax-Friedrichs interpolation

The analysis given below requires values of η at cell edges, and this suggests
the usage of a Riemann problem. (The method stated here actually computes
p′bη, as this can be expressed in terms of conserved quantities that are depen-
dent variables in the system, and a division then yields η.) For purposes of
determining quantities at a cell edge, the Riemann solution is used only in a
neighborhood of the cell edge and for values of t that are arbitrarily close to,
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but later than, the time when the piecewise constant initial state is imposed.
The following discussion is thus local in both space and time.

As noted in Section 3.3, the barotropic equations are similar to the shallow
water equations, and their dynamics are nearly linear in the sense described in
that section. For the short-time behavior that is necessary to obtain a suitable
value of p′bη at a cell edge, we will employ the linearized shallow water equations
with the Coriolis term f set to zero. The solution of this system is derived via
the method of characteristics in Section 5.6 of [14], and in that section it is
pointed out that if this solution is used to obtain a mass flux for the linearized
system, the resulting flux is the Lax-Friedrichs flux. For the present case of p′bη,
the calculations in [14] suggest

(p′bη)LF
j−1/2 =

1

2

[
(p′bη)− + (p′bη)+

]
+

1

2c

[
(pbū)− − (pbū)+

]
(68)

for a value of p′bη at the cell edge xj−1/2 between cells Dj−1 and Dj . Here,
the subscripts − and + refer to left and right limits from within cells Dj−1

and Dj , respectively, and dependences on t are not included in the notation.
The quantity c is the local gravity wave speed, i.e., c =

√
gh, where h is the

mean depth of the fluid at the cell edge. The result (68) will be regarded as a
“Lax-Friedrichs interpolation” of the quantity p′bη at cell edge xj−1/2.

In the case where the elevation of the bottom topography is not constant,
the elevation (and thus p′b) could be discontinuous at cell edges. In that event,
define an edge value (p′b)j−1/2 to be the minimum of the left and right limits of
p′b at the cell edge; equivalently, let the elevation at the edge be the maximum of
the left and right limits of the elevations within cells Dj−1 and Dj . Use (p′b)j−1/2

in the definition (62) of η at the cell edge; and for the quantities (pbū)− and
(pbū)+ in (68), use the ratios (p′b)j−1/2/(p

′
b)− and (p′b)j−1/2/(p

′
b)+ to determine

the momentum in the portion of the fluid that lies above the elevation of the
edge. The preceding ideas are analogous to some ideas discussed in Section 5.3
of [14] for the case of the shallow water equations.

For the Riemann solution considered here, the method of characteristics
shows that discontinuities propagate with velocities c and −c from the location
of the initial discontinuity. This pattern is then found in the quantity 1 + η,
which represents the thickening or thinning of the layers in a multi-layer model.
Figure 2 shows an example of such a pattern, for a purely external mode.

Next consider the effect of a Riemann solution for 1 + η on a general fluid
state. An example is illustrated in Figure 3. In a DG representation, the baro-
clinic layer thicknesses ∆p′r can be discontinuous across the cell edge xj−1/2,
and consequently the interior layer interfaces in a baroclinic state can also be
discontinuous across that edge. The total layer thicknesses ∆pr are obtained by
multiplying ∆p′r by 1 + η, as in (64). In the resulting state, the discontinuities
of the interior interfaces across the cell edge are maintained. In addition, the
moving discontinuities in 1 +η introduce discontinuities in layer thicknesses, in-
terface elevations, and free-surface elevation that propagate across the adjacent
cells.
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Figure 2: Riemann solution for the barotropic quantity 1 + η. In a multi-layer model this
quantity represents the proportional thickening or thinning of layers, and it closely approx-
imates the behavior of the mass field in the external mode. The present figure illustrates
an example of 1 + η in terms of perturbations of a multi-layer fluid from its rest state. The
horizontal lines show the free surface and the interfaces between the layers, and the shaded
region indicates the bottom of the fluid region. The vertical line shows the location xj−1/2 of
the initial discontinuity. The discontinuities in 1 + η propagate with velocities c and −c from
that location.

However, at the cell edge xj−1/2 the elevation of the free surface is (nearly)
continuous, as illustrated in the configuration shown in Figure 3. To be more
precise, the change in elevation from the bottom to the top of the fluid is

L∑
r=1

∆zr =

L∑
r=1

(αr/g)∆pr = (1 + η)

L∑
r=1

(αr/g)∆p′r. (69)

(The first equality follows from the hydrostatic condition.) For the moment,
assume that the elevation of the bottom topography is continuous across a cell
edge. The quantity 1 + η is continuous across the edge, due to the nature of
the Riemann solution. The quantity

∑L
r=1 ∆p′r(x, t) is simply p′b(x) (see (65));

this is the value of pb at the global rest state, and it is continuous if the bottom
topography is continuous. Any discontinuity in the quantity

∑L
r=1(αr/g)∆p′r

is therefore due to jumps in the elevations of interfaces, combined with density
contrasts across layers. However, at any horizontal location the variation in
density over the entire depth of the fluid is on the order of one percent, so
any discontinuities in (69) are likely to be very small. In the case where the
bottom topography is discontinuous at a cell edge, the preceding argument can
be extended by using ideas analogous to those used in the paragraph after
equation (68).
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Figure 3: Layer structure when a purely baroclinic state is combined with a Riemann solution
for the barotropic quantity 1 + η. The baroclinic layer thicknesses and interior interface
elevations can be discontinuous across the cell edge xj−1/2. The total layer thicknesses are
obtained by multiplying the baroclinic layer thicknesses by 1 + η. For a baroclinic state, the
free surface is (essentially) continuous everywhere. Since the Riemann solution for 1 + η is
continuous at the cell edge, the free surface in the state illustrated here is also (essentially)
continuous at the cell edge. For purposes of determining quantities at a cell edge, the Riemann
solution is used only in a neighborhood of that edge.

The algorithm described in the next subsection employs the conjecture that
any discontinuities in the free surface are so small that they may be neglected
during the development of that algorithm.

5.3. Computation of vertically-integrated pressure

We now address the computation of the quantity Hr(x, t) in (10)–(11), which
is repeated here as

Hr(x, t) = g

∫ zr−1(x,t)

zr(x,t)

P (x, z, t) dz (70)

=

∫ pr(x,t)

pr−1(x,t)

αp dp. (71)

The present discussion is concerned mainly with the computation of Hr(x, t) in
the context of solving the baroclinic equations with long time steps. At the end
of this subsection are some remarks on computing the vertical sum of Hr(x, t)
when the vertically-integrated barotropic equations are solved with short time
steps.

At quadrature points in the interiors of grid cells, the quantity Hr(x, t) is
well-defined and can be computed with the form (71). However, in the case
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where Hr is used to solve the baroclinic equations on a baroclinic time interval
[tn, tn+1], it is advisable to split the pressure field into barotropic and baroclinic
components. For convenience, assume that the atmospheric pressure is constant,
so that one can set p0 = 0 and use the splitting (67) of the pressure. In the case
of constant α the representation (71) becomes

1

2
α(1 + η)2

[
(p′r)2 − (p′r−1)2

]
. (72)

When this expression is implemented, use time averages of (1 + η)2 over all
barotropic substeps in order to avoid the aliasing of fast motions onto the coarse
baroclinic time grid. On the other hand, the baroclinic state varies slowly in
time, and the values of p′ can be values from time tn during a prediction step
and an average of values from times tn and tn+1 during a correction step.

Next consider the computation of pressure, and then Hr, at cell edges. For
definiteness, consider the pressure at the edge xj−1/2 between cells Dj−1 and
Dj . To determine the pressure at that edge, consider the mass field obtained
by combining a baroclinic state with a Riemann solution for the barotropic
quantity 1 + η. The combination of 1 + η with a baroclinic state yields a mass
field of the kind illustrated in Figure 3.

In such a configuration, the free surface is (essentially) continuous across
the cell edge xj−1/2, but the layer interfaces need not be continuous across
that edge. Because of the density contrasts between layers, the pressure could
therefore be discontinuous in x across the edge; however, the jump in pressure
across the edge for fixed z is typically small, due to the relatively small vertical
variation of density that is mentioned near the end of the preceding subsection.
At the edge xj−1/2, let p′+(z) and p′−(z) denote the right and left limits of
p′, respectively. Also let ηLF denote the Lax-Friedrichs interpolation of η at
that edge; this interpolation is obtained by evaluating the Riemann solution at
xj−1/2, as described in Section 5.2. (For the sake of simplicity, dependences on
j and t are not included in this notation.) The right and left limits of total
pressure at this edge are then

P+(z) = p′+(z)
(

1 + ηLF

)
(73)

P−(z) = p′−(z)
(

1 + ηLF

)
, (74)

respectively. For an approximation to the total pressure at the edge, let

P (z) =
1

2

(
P+(z) + P−(z)

)
=

1

2

(
p′+(z) + p′−(z)

)(
1 + ηLF

)
. (75)

Any differences between P+(z) and P−(z) are typically small, and the following
derivation relies on the assumption that the simple average in (75) is adequate
for determining a pressure that can be used to compute Hr at a cell edge.
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The pressures (73) and (74) yield vertical pressure increments between layer
interfaces on either side of the edge xj−1/2. Since each layer has constant den-
sity, the hydrostatic relation ∆p = ρg∆z yields differences in elevation between
interfaces, which in turn yield the elevations of interfaces on each side of the
cell edge. Here, “elevation” refers to elevations of interfaces in a fluid state that
combines a baroclinic solution with a Riemann solution for 1 + η, such as the
state illustrated in Figure 3.

In a numerical implementation of the weak form (9) of the pressure forcing
in cell Dj = [xj−1/2, xj+1/2], the contribution from the pressure along the edge
xj−1/2 can be represented by

(Hr)j−1/2 = g

∫ z+
r−1

z+
r

P (z) dz. (76)

Here, P (z) is given in (75); and z+
r and z+

r−1 are the elevations of the bottom

and top of layer r in cell Dj , in the limit x → x+
j−1/2, as determined with the

procedure that is outlined above. For later reference, also let p+
1 , . . ., p+

L denote
the corresponding total pressures at each interface, in the limit x → x+

j−1/2.

Thus p+
r = (1 + ηLF )p′r

+
, where p′r

+
is the right limit of p′ along interface r.

Now insert (75) into (76) to obtain

(Hr)j−1/2 =
1

2
g

∫ z+
r−1

z+
r

P+(z) dz +
1

2
g

∫ z+
r−1

z+
r

P−(z) dz. (77)

For the first integral on the right side of (77), the interval of integration is
the entire vertical extent of layer r in cell Dj , in the limit x → x+

j−1/2. This

integral can be converted into an integral with respect to p, in the manner of
(71), so that the first term on the right side of (77) is

1

2
g

∫ z+
r−1

z+
r

P+(z) dz =
1

2

∫ p+
r

p+
r−1

αp dp

=
1

2
αr

(
(p+

r )2 − (p+
r−1)2

)
=

1

2
αr

(
1 + ηLF

)2(
(p′r

+
)2 − (p′r−1

+
)2
)
. (78)

The second equality uses the assumption that layer r has a constant specific
volume αr. In the last expression, use time averages of (1 + ηLF )2 over all
barotropic substeps.

In general, the evaluation of the second integral on the right side of (77)
can be more complicated the evaluation of the first integral. The values of the
integrand P−(z) are defined in (74) and involve the left-hand limits of p′, which
depend on values of p′ from within the neighboring cell Dj−1. In analogy to the
elevations z+

0 , . . ., z+
L of interfaces in the limit x→ x+

j−1/2 from within cell Dj ,

define elevations z−0 , . . ., z−L of interfaces in the limit x → x−j−1/2 from within
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cell Dj−1. The elevations z−0 , . . ., z−L need not coincide with the elevations z+
0 ,

. . ., z+
L , due to possible discontinuities in p′ across the cell edge. Accordingly,

the evaluation of the second integral on the right side of (77) requires that the
interval of integration [z+

r , z
+
r−1] be divided into subintervals, each of which is

an intersection of [z+
r , z

+
r−1] with an interval of the form [z−q , z

−
q−1] for 1 ≤ q ≤

L. The integral on each such subinterval is evaluated in a manner that is an
analogue of (78).

In a fluid state that combines a baroclinic state with a Riemann solution for
1 +η, as illustrated in Figure 3, the top and bottom of layer r can contain short
vertical segments within the interiors of grid cells Dj−1 and Dj . Integrals of
pressure over those segments should therefore be included in the representation
of the pressure term (9). In the limit t → t̄+, where t̄ is the time where the
Riemann problem is posed, the discontinuities migrate to the cell edge xj−1/2.
The integrals over the short vertical segments can therefore be expressed in
terms of one-sided limits of pressures and elevations from within the cells Dj−1

and Dj . The formulas are analogues of those given above, so the details are
omitted here.

In the representation (77), the two integrals have the same limits of inte-
gration. This representation thus assumes that the fluid regions on each side
of the cell edge are in contact over the entire extent of the vertical interval
z+
r ≤ z ≤ z+

r−1. This assumption is enabled by the fact that the free surface
is (essentially) continuous when the Riemann solution for 1 + η is combined
with the baroclinic state, as illustrated in Figure 3, and this circumstance relies
on the usage of the barotropic-baroclinic splitting. In contrast, without such a
splitting one encounters a discontinuous configuration like that shown in Figure
1, and it is necessary to deal with the possibility that the fluid in one cell may
extend above the fluid in the neighboring cell. Aizinger and Dawson [1] treat
this problem by smoothing the free surface, but such a procedure is not needed
when a barotropic-baroclinic splitting is used.

Next consider the computation of the pressure term for the vertically-integrated
barotropic equations. In this case one uses the quantity H(x, t) =

∑L
r=1Hr(x, t)

given in equation (25). At quadrature points in the interiors of grid cells, use
the vertical sum of the quantity (72). That sum involves a vertical sum of terms
involving p′; this baroclinic sum is held constant during a barotropic integration,
while the factor (1 + η)2 is updated at each barotropic time step. On the other
hand, at a cell edge use a vertical sum of the quantity (Hr)j−1/2 in (77); this
includes a vertical sum of (78) and its analogue for left-hand limits. One then
obtains a baroclinic quantity times the factor (1 + ηLF )2, which is updated at
each barotropic time step.

6. Numerical computations

The present section describes some numerical computations that test the
ideas developed in the preceding sections.

The test problems used here involve the process of geostrophic adjustment.
Oceanic flows are typically close to a state of geostrophic balance, i.e., the
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Coriolis terms and pressure forcing terms in the momentum equations are nearly
equal; when viewed from above, the fluid at each elevation flows along curves
of constant pressure. If the fluid departs from such a state, such as when
the densities of some fluid regions are altered due to temperature changes or
freshwater inputs, then the system tends to adjust to a geostrophically-balanced
state of some nature. During the adjustment process, the difference between the
present state and the future balanced state propagates away in the form of wave
motions.

In the analysis and numerical computations reported in [14], the DG algo-
rithms developed in that paper were found to provide highly accurate simula-
tions of inertia-gravity waves, whereas this is not always the case with finite
difference methods based on the staggered B- and C-grids that have tradition-
ally been used in ocean modeling. These results were stated in terms of the
single-layer shallow water equations, but the velocity and length scales in those
results make them pertinent to internal motions in a multi-layer fluid. These
results suggest that DG methods might be effective in simulating geostrophic
adjustment, and the purpose of the present computations is to test this idea for
a multi-layer fluid.

6.1. Problem configuration

For each of the computations described here, the initial state consists of
zero velocity and piecewise constant layer thicknesses, and the final steady state
is a geostrophically-balanced solution having a form derived in the Appendix.
In each case, the initial layer thicknesses are determined by an eigenvector of
the eigenvalue problem (A.17) associated with modal solutions (A.11) of the
linearized equations for a multi-layer fluid. One such mode is the external mode,
and the others are internal modes. Different modes are thus tested individually
in these computations.

In the configuration used here, the fluid consists of 10 layers having specific
volumes ranging downward from 0.975× 10−3 m3/kg to 0.972× 10−3 m3/kg in
equally-spaced increments. When the system is at the rest state consisting of
zero velocity and level interfaces and a level free surface, the layer thicknesses
(in meters) are 20, 30, 45, 60, 80, 100, 125, 150, 180, 210, ordered from top to
bottom, for a total depth of 1000 meters.

As assumed in earlier sections of this paper, all flow variables are indepen-
dent of y, and the Coriolis parameter is nonzero and constant. Solutions are
computed on spatial intervals of the form −xmax ≤ x ≤ xmax, with solid-wall
boundary conditions at the ends. Solutions are plotted on smaller subintervals.
In each computation, xmax is chosen large enough so that any reflections from
the solid walls are not visible in the display intervals during the time interval
of integration. This problem configuration can be regarded as modeling a fluid
flow in an infinite straight channel in a rotating reference frame.

For the modal solutions derived in the Appendix, the speed of inertia-gravity
waves in mode j in the nondispersive limit is

c(j) =
c√
λ(j)

, (79)
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where c =
√
αLp̃L (see (A.16)); λ(0), λ(1), . . ., λ(L−1) are the (dimensionless)

eigenvalues of (A.17); j = 0 refers to the external mode; and 1 ≤ j ≤ L − 1
refers to the internal modes. (Here, L = 10.) For the example considered here,
c ≈ 99.00 m/sec, λ(0) ≈ 0.9995, and λ(1), . . ., λ(9) range from approximately
3.64× 103 to approximately 3.16× 105. Thus c(0) ≈ 99.02 m/sec, and c(1), . . .,
c(9) range from 1.64 m/sec down to 0.18 m/sec.

The exact solutions derived in the Appendix involve the Rossby radius of
deformation (A.27), a length scale associated with the deformation of the layer
interfaces in the geostrophically-balanced state. For mode j, this quantity is

R(j) =
c(j)

f
, (80)

where f is the Coriolis parameter. In these computations f = 10−4 sec−1, so
R(0) ≈ 990 km, and R(1), . . ., R(9) range from 16.4 km to 1.8 km. A plot of the
internal Rossby radii is given in Figure 4.
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Figure 4: Rossby radius of deformation, in kilometers, for the internal modes (1 ≤ j ≤ 9) in the
example considered here. For the external mode (j = 0), the Rossby radius is approximately
990 km.

For modal solutions, the vertical dependences of the horizontal velocity com-
ponents and of the relative perturbations in layer thickness are determined by
the eigenvectors of (A.17). In the case of the external mode (j = 0), the ver-
tical dependence is very close to uniform; for the example considered here, the
relative variation in the components is approximately 0.1%. In the case of the
internal modes, the components of the eigenvectors oscillate, with the rate of
oscillation increasing as j increases. This is a discrete analogue of the behavior
of eigenfunctions for the continuous case that is discussed, for example, in [11].

For the initial conditions used here, the relative perturbation in layer thick-
ness at time t = 0 is given in (A.30). In that equation, ε is a dimensionless
constant of either sign, and φr is component r of the eigenvector φ. In these
computations, each eigenvector is normalized so that the maximum of the ab-
solute values of the components is 1; |ε| is thus equal to the maximum relative
perturbation in layer thickness at the initial time. For the computations involv-
ing internal modes that are described in Sections 6.2–6.4, the value ε = 0.01
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was used. Some larger values of ε were also tested (e.g., 0.1, 0.2, 0.3), and for
these values the computed solutions seemed reasonable. However, results with
the smaller value ε = 0.01 are shown here in order to enable comparisons to
exact solutions of the linearized equations.

The computations described here use a code based on the discontinuous
Galerkin algorithms described in previous sections of this paper. For these
computations, the grid cells have uniform width ∆x = 10 km, and piece-
wise quadratic functions are used to approximate the spatial dependence in
each of the dependent variables. For the barotropic equations the time step
is ∆tbtp = 16 sec, and for the baroclinic equations the time step is ∆tbcl =
960 sec. The Courant number for the barotropic equations is then ν(0) =
c(0)∆tbtp/∆x = 0.158, and the Courant number for the baroclinic equations
is ν(1) = c(1)∆tbcl/∆x = 0.157.

The two-level time-stepping method used for the barotropic equations is de-
scribed in Section 4.3 and is the same as the one described in [14] for the shallow
water equations. A stability analysis in that paper showed that this method is
stable for those equations if the Courant number is at most 0.16, in the case of
piecewise quadratic spatial approximations. In some numerical computations
described in [14], this method gave results that were highly accurate, and the
net efficiency is similar to that of higher-order methods with longer time steps.
The time-stepping method used here for the overall barotropic-baroclinic split-
ting is a direct generalization of the method used for the barotropic equations
and is also described in Section 4.3.

In the following discussions, the results obtained with the DG code are com-
pared to results obtained with a code that uses finite difference and finite volume
methods on a staggered rectangular C-grid. (On a C-grid, normal components
of velocity are defined at the centers of edges of mass cells.) This C-grid code
was used to obtain the numerical results reported in [10], and the algorithms
in the code are described in detail in that reference. In particular, the C-grid
code uses a barotropic-baroclinic time splitting and a two-level time-stepping
method that is similar to the one described in Section 4.3 of the present paper.

6.2. First internal mode

Computational results will be shown here for individual modal solutions.
First consider the mode corresponding to j = 1; this is the internal mode with
smallest eigenvalue and largest wave velocity. For this mode, Figure 5 shows a
side view of the fluid. The horizontal dashed lines show the positions of the free
surface and the layer interfaces at the initial time, and the solid curves show
those positions in the corresponding geostropically-balanced steady state. For
this mode, the free surface is essentially level, and the wave motion is manifested
by undulations of interfaces within the fluid.

For the sake of reducing clutter in the plot, Figure 5 shows only the top 120
meters of the fluid (out of 1000 meters), so that only the top three interfaces
(out of nine) are shown. Also, the perturbations of the elevations of the free
surface and the interfaces from their rest positions are multiplied by 20, for
the sake of visibility. For the discontinuous elevations in the initial state, the
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Figure 5: Side view of the top 120 meters of the fluid, for the first internal mode (j = 1).
The horizontal dashed lines show the positions of the free surface and the top three interfaces
at the initial time, and the solid curves show those positions in the geostrophically-balanced
steady state. In this plot, the perturbations from the rest states are multiplied by 20 for the
sake of visibility.

maximum jump is actually approximately 4.8 meters, for the case ε = 0.01 that
is used here. (In the case ε = 0.3 mentioned above, the jumps are so large that
some of the layers are completely disconnected at the location of the jump.)

Figure 6 shows the corresponding y-component v of velocity, as a function
of x, in the top layer in the geostrophically-balanced steady state. The vertical
dashed lines are located at x = ±R(1), where R(1) is the Rossby radius for mode
1. The graphs of v in the other layers have the same basic shape, so only one
layer is shown. Relative to the cross-section of the fluid shown in Figure 5, v is
the component of velocity into the page. In the geostrophic state, the velocity is
proportional to the pressure forcing (see, e.g., the steady-state version of (A.1)),
so v is maximal where the interfaces are steepest. For the small parameter value
ε = 0.01 used here, the maximum value of v is approximately 1.6 cm/sec; larger
values of ε would yield steeper interfaces and thus larger values of v. In the
steady state, the x-component of velocity is u = 0.

Figure 7 shows values of v in the top layer as computed with the DG code. In
the top frame of that figure, the solid curve shows the computed values of v at the
end of model day 10 (i.e., after 900 baroclinic time steps and 54000 barotropic
steps), and the dashed curve shows the exact geostrophically-balanced steady-
state solution. The solid curve shows dispersive waves radiating away from the
location x = 0 where the initial state is discontinuous. The middle frame in
Figure 7 is the same as the top frame, except that a shorter spatial interval is
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Figure 6: Velocity component v in the geostrophically-balanced steady state for the first
internal mode. Relative to the cross-section shown in Figure 5, v is the component of velocity
into the page. The vertical dashed lines are located at x = ±R(1), where R(1) is the Rossby
radius for this mode.

shown. In this frame the solid and dashed curves do not coincide. However, the
solid curve shows a snapshot at one instant, whereas the remarks after equations
(A.22)–(A.24) in the Appendix indicate that the solution oscillates in time with
an angular frequency approximately equal to f . In the bottom frame in the
figure, the solid curve shows a time average of v over 65 baroclinic time steps
(which approximates the inertial period 2π/f), beginning at the end of model
day 10. This averaging removes the effect of the oscillation, and the resulting
graph agrees very closely with the exact steady state. Plots of the solution at
later times (not shown here) show that the magnitude of this oscillation decays
as t→∞.
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Figure 7: Values of v for the first internal mode, as computed with the DG code. In the top
frame, the solid curve shows v at the end of model day 10, and the dashed curve shows the
geostrophically-balanced steady state. The units on the horizontal axis are kilometers. The
middle frame is the same as the top frame, except that a smaller spatial interval is used. In
the bottom frame, the solid curve shows a time average of v over one inertial period beginning
at the end of model day 10.
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For a comparison, Figure 8 shows results obtained with the C-grid code
that is mentioned at the end of Section 6.1. The three frames in this figure
have the same format as the frames in Figure 7, except that circles are used to
plot the numerical results in the lower two frames; the finite difference method
produces pointwise values at grid points, and the circles illustrate what was
actually computed. At the grid points, the time average shows good agreement
with the exact steady state. For this computation, the grid size is ∆x = 10 km,
as with the computation with the DG code. However, in the present case the
barotropic and baroclinic time steps are 80 sec and 4800 sec, respectively, which
are much longer than those used in the DG computations. Some remarks on
accuracy and efficiency are given in Section 6.4.
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Figure 8: Values of v for the first internal mode, as computed with a C-grid code. The plotting
format is the same as in Figure 7, except that circles are used in the middle and bottom frames
to show the pointwise values that are computed at the grid points.

6.3. Fourth internal mode

Next consider the mode corresponding to j = 4; this is the internal mode
with the fourth-largest wave velocity. Figure 9 shows the values of v at model
day 20 as computed with the DG code, along with the exact steady-state solu-
tion. This figure has the same format as Figure 7, and the results seen in the
two figures are similar. In the case of the present figure, the waves propagate
away from the location x = 0 more slowly, as expected. Again, the DG code
provides an accurate simulation of geostrophic adjustment.

In contrast, Figure 10 shows results obtained with the C-grid code that is
mentioned above. The top frame in the figure shows that, by model day 20,
the wave energy has propagated only a relatively short distance, and the middle
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Figure 9: Values of v for the fourth internal mode (j = 4), as computed with the DG code.
The plotting format is the same as in Figure 7, except that the solution is shown at the end
of model day 20.

frame shows some pointwise values that differ greatly from the steady-state
solution. The time averages shown in the bottom frame show better agreement,
but a time series at a fixed location (not shown) reveals a persistent oscillation;
the wave energy essentially sits there, without a proper adjustment of the kind
produced by the DG code.

This behavior can be explained by considering the group velocities in nu-
merical methods and their relation to Rossby radii and grid size. For the modal
solutions considered here, the dependence with respect to (x, t) is described
by the system (A.22)–(A.24), which has the structure of the linearized shallow
water equations. Analyses of numerical methods for the shallow water system
can therefore be applied here. In the present computations, the grid cells have
length 10 km. As shown in Figure 4, the Rossby radius R(1) for the first inter-
nal mode is nearly 2∆x, whereas the Rossby radius R(4) for the fourth internal
mode is approximately 0.5∆x. According to an analysis of dispersion relations
(e.g., [5], [14]), the C-grid gives a reasonably good approximation to the prop-
agation of inertia-gravity waves if the Rossby radius exceeds ∆x. However, if
the Rossby radius equals 0.5∆x, then the C-grid yields group velocity zero at
all wavenumbers, in the case where all quantities are independent of y and the
time integration is performed exactly. For smaller values of Rossby radius, the
group velocity can have the wrong sign, so that energy propagates in the wrong
direction.

On the other hand, the analysis of DG methods given in [14] indicates high
accuracy for all wavenumbers, regardless of the relation between Rossby radius
and grid size. In particular, see Figures 3-6 in [14], which show plots of dispersion
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Figure 10: Values of v for the fourth internal mode, as computed with a C-grid code. At
the model time shown here, very little adjustment has taken place, as the group velocity
for inertia-gravity waves in this mode is nearly zero on a C-grid, with the present choice of
parameters.

relations for 0 ≤ k∆x ≤ π, where k is the wavenumber. Those plots include the
cases R = 2∆x and R = 0.5∆x, for both the continuous-time and discrete-time
problems. In each plot, the physical mode in the dispersion relation for the DG
method nearly coincides with the exact dispersion relation for inertia-gravity
waves over the entire interval 0 ≤ k∆x ≤ π.

6.4. Discussion of modes and efficiency

Some potential disadvantages of DG methods, relative to finite difference
methods, is that they require the computation of multiple degrees of freedom
per dependent variable in each grid cell at each time level, and for explicit time-
stepping methods the stability constraints on the maximum allowable Courant
number are more restrictive.

However, in some numerical experiments with shallow-water inertia-gravity
waves reported in [14], the higher spatial accuracy of the DG methods compen-
sated for those potential disadvantages. More specifically, for a given choice of
∆x, solutions with finite difference methods on a B-grid and on a C-grid were
computed with a much longer time step than could be used for a DG method.
(With a B-grid, the values of velocity components are defined at the corners of
mass cells.) However, the B-grid and C-grid solutions were much less accurate
than the DG solution. Major reductions in ∆x, and thus ∆t, produced finite-
difference solutions with accuracy comparable to the DG solutions, but those
reductions eliminated the apparent advantages of the finite difference methods
regarding Courant number and degrees of freedom.
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For the case of the multi-layer geostrophic adjustment problem considered
in the present paper, suppose that some number of internal modes needs to be
modeled accurately. If a finite difference method based on the C-grid is used,
then the grid size should be smaller than all of the corresponding Rossby radii.
In contrast, a DG method does not require such a restriction, so a DG method
can proceed with a substantially larger value of ∆x than can be used with a
C-grid code. This offsets (at least partially) the nominal disadvantages of DG
methods associated with a restricted Courant number and the multiple degrees
of freedom. A more precise comparison of efficiency depends on the number of
internal modes that would need to be resolved.

The preceding remarks apply to the case of one horizontal dimension, where
finite difference methods and DG methods are equally applicable. However,
DG methods have significant advantages regarding applicability to unstructured
meshes and irregular domains; those issues are beyond the scope of the present
paper.

6.5. External mode

Finally, consider the case of the external mode, which corresponds to j = 0.
The computations shown here for this mode have the same format as for the
internal modes discussed above, except for two differences. First, as noted in
Section 6.1, external waves move much more rapidly than internal waves, so
for the plots shown in the present case the spatial interval is longer and the
time intervals are shorter. Second, the parameter ε in the initial condition
(A.30) is taken to be ε = 0.001. This quantity represents the maximum relative
perturbation in layer thicknesses at the initial time. In the case of an external
mode, all layers are thickened or thinned by approximately the same proportion,
at each time and horizontal location; over the 1000-meter depth of the fluid used
in the present example, the value ε = 0.001 produces a perturbation of 1 meter
in the elevation of the free surface.

Figure 11 shows a side view of the top 120 meters of the fluid. The solid
curves show the positions of the free surface and the top three layer interfaces
after 20 baroclinic time steps, i.e., after 320 minutes, as computed with the
DG code. The dashed curves show the positions of those surfaces in the exact
geostrophically-balanced steady state. The vertical dashed lines are located at
x = ±R(0), where R(0) is the Rossby radius of deformation for the external
mode. As time increases, the discontinuities in the surfaces move out of the
picture, and for large times the computed positions of the free surface and the
interfaces essentially coincide with their positions in the geostropically-balanced
steady state.

Figure 12 shows the velocity component v. A dashed curve shows the values
of v in the geostropically-balanced steady state, and a solid curve shows v as
computed with the DG code. As in the case of internal modes, the solution
oscillates in time with angular frequency approximately equal to the Coriolis
parameter f , with an amplitude that decays slowly in time. The solid curve
shows a time average of v over 65 baroclinic time steps (which approximates
one inertial period 2π/f), beginning at baroclinic step 100 (1600 minutes). For
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Figure 11: Side view of the top 120 meters of the fluid, for the external mode (j = 0). The solid
curves show the free surface and the top three interfaces after 20 baroclinic time steps (320
minutes), as computed with the DG code, and the dashed curves show the positions of those
surfaces in the geostrophically-balanced steady state. The vertical dashed lines are located
at x = ±R(0), where R(0) is the Rossby radius for this mode. In this plot, the perturbations
from the rest states are multiplied by 10 for the sake of visibility.

the parameter value ε = 0.001 used for the present computation, the maximum
value of v in the steady-state solution is approximately 9.9 cm/sec. The two
curves in the figure agree closely. Again, the DG code provides an accurate
simulation of geostrophic adjustment.

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500

DG,    external mode,    time−averaged   v   in the top layer,    from step 100

Figure 12: Values of v for the external mode, as computed with the DG code. A solid curve
shows the time average of v over one inertial period, beginning after 100 baroclinic time steps,
and a dashed curve shows the values of v in the geostrophically-balanced steady state.

An accurate steady state for the external mode is also obtained in a com-
putation with the C-grid code (not shown here). This is to be expected, as
the Rossby radius of deformation for this mode is much greater than the grid
size, and in this case the C-grid gives better representations of inertia-gravity
waves than it does when the Rossby radius is comparable to or smaller than the
grid size. However, the C-grid computation for the present problem shows sub-
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stantial numerical dispersion near the location of the propagating discontinuity,
whereas this effect is much less pronounced in the DG solution.

7. Summary

This paper discusses three issues related to the usage of discontinuous Galerkin
methods for the numerical solution of multi-layer models of ocean circulation.

(1) The weak form of the pressure forcing that is developed here includes
a vertical integral of the pressure. At a cell edge this is problematic, since
the pressure in a DG formulation may be discontinuous across cell edges. In
principle, values of the solution at a cell edge can be obtained by solving a
Riemann problem for the full system, but in a multi-layer model with many
layers this process could be complicated.

Instead, a simpler formulation can be obtained by using the idea of barotropic-
baroclinic splitting to confine the Riemann problem to a simpler system of lower
spatial dimension. In this formulation, a Riemann problem for the barotropic
equations yields a free surface that is continuous at a cell edge. When this is
combined with the baroclinic solution, the internal interfaces between layers can
be discontinuous across the cell edge. However, in such a state any discontinu-
ities in pressure across the cell edge are small, due to the continuity of the free
surface and the small vertical variations in the density of the fluid. The pressure
at the cell edge is then obtained via a simple average of left and right limits.

(2) For a barotropic-baroclinic time splitting in an ocean circulation model,
a widely-used procedure is to (i) solve the governing equations in each layer ex-
plicitly with a relatively long time step, and (ii) solve the vertically-integrated
barotropic equations either explicitly with a relatively short time step or im-
plicitly with a long step. Explicit solutions of the barotropic equations are
considered here. At the end of each long time step, the numerical solutions
of the layer equations must be adjusted so that the vertical sums of the layer
variables are equal to the corresponding variables computed with the barotropic
equations. Any inconsistencies between the layer equations and the barotropic
equations are at the level of truncation error, and the enforcement of consistency
amounts to a manipulation of truncation error.

In the case of a DG formulation, the condition of consistency is expressed in
terms of the degrees of freedom for the dependent variables. For the formulation
that is developed here, the adjustments of the layer variables are obtained via
correction terms that amount to subtracting the unresolved fast part of the
forcing from the layer equations and then replacing this part with the time
average of well-resolved forcing that is computed when the barotropic equations
are solved explicitly with short time steps. This process is a kind of time filtering
of the forcing terms, and it appears to be a mechanism that enables the layer
equations to be solved stably with a long time step.

(3) The ideas described above are tested in a model problem involving
geostrophic adjustment in a multi-layer fluid. During such an adjustment, a
fluid that is not in geostrophic balance adjusts to a balanced state via propa-
gation of waves away from the location of the imbalance. For the multi-layer
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example described in this paper, the adjustment takes place via internal and/or
external inertia-gravity waves. Explicit representations of the balanced state
are derived here analytically.

With the barotropic-baroclinic splitting used here, the internal motions
are modeled almost entirely by the baroclinic equations (i.e., the layer equa-
tions with the time filtering of forcing implied by the adjustments described
above), and the external motions are modeled almost entirely by the vertically-
integrated barotropic equations. The usage of external and internal modes then
makes it possible to test the barotropic and baroclinic subsystems independently.
In the tests described here, the DG representations for each subsystem provide
accurate simulations of geostrophic adjustment for their respective modes.
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Appendix A. Geostrophic adjustment in a multi-layer fluid

Here we develop exact steady-state solutions for the geostrophic adjustment
problem that is used in the numerical computations described in Section 6.

Appendix A.1. Governing equations

Assume that the fluid consists of a stack of layers having constant specific
volumes α1 > α2 > . . . > αL, with indices increasing downward. In this special
case, the lateral pressure forcing in each layer can be expressed as ∇M , where
∇ = (∂/∂x, ∂/∂y), and M = αp + gz is the Montgomery potential. (See, e.g.,
[11].) The hydrostatic condition ∂p/∂z = −ρg = −g/α implies ∂M/∂z = 0
within a layer of constant density. In the case of a single-layer fluid, ∇M =
∇(αptop + gztop); if the atmospheric pressure ptop is constant, then ∇M =
g∇ztop. This latter quantity is the pressure forcing term for the shallow water
equations, so the Montgomery potential provides a generalization of the shallow-
water forcing to the multi-layer case.

Now assume that the flow is a small perturbation of the rest state consisting
of zero velocity and a level free surface and level interfaces between layers,
and also assume that the bottom of the fluid domain is level. Denote the
equilibrium pressures at the free surface and interfaces by p̃0, p̃1, . . ., p̃L; here,
p̃r refers to the bottom of layer r if 1 ≤ r ≤ L. Also let ∆p̃r = p̃r − p̃r−1 > 0
denote the vertical pressure increment across layer r in the rest state. Denote
the perturbations in pressures at the free surface and interfaces by p0 = 0,
p1(x, t), . . ., pL(x, t); the quantity ∆pr(x, t) = pr(x, t) − pr−1(x, t) is then the
perturbation in the vertical pressure increment across layer r. (This notation
differs from the notation introduced in Section 2, where pr and ∆pr refer to total
values instead of perturbations.) Also let M̃r denote the Montgomery potential
in layer r at the rest state, and let Mr denote the perturbation in Montgomery
potential in that layer.

As initially assumed in Section 2.2, assume here that all flow variables are
independent of y and that the Coriolis parameter f is nonzero and constant. In
this setting, the linearized governing equations can be written as

∂ur
∂t
− fvr = − ∂Mr

∂x
(A.1)

∂vr
∂t

+ fur = 0 (A.2)

∂

∂t
(∆pr) + (∆p̃r)

∂ur
∂x

= 0 (A.3)
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for 1 ≤ r ≤ L, and
Mr −Mr+1 = pr(αr − αr+1) (A.4)

for 1 ≤ r ≤ L− 1. Equations (A.1)–(A.3) refer to fluid layer r. Equation (A.4)
applies to interface r, which lies at the bottom of layer r and thus separates
layers r and r + 1. This interface condition follows from the fact that α jumps
across an interface, whereas z does not.

A boundary condition at the top of the fluid can be obtained from the fact
that the pressure perturbation p0 satisfies p0 = 0, since the rest state and the
perturbed states experience the same atmospheric pressure. At the bottom of
the fluid, the perturbation in Montgomery potential satisfies

ML(x, t) = αLpL(x, t), (A.5)

since there can be a nonzero perturbation in bottom pressure but not in bottom
elevation.

The system (A.1)–(A.4) can be reduced to three equations by using the
algebraic relation (A.4) to eliminate the variable ∆pr from the mass equation
(A.3); the resulting system then consists entirely of differential equations. For
simplicity, assume that α1, . . ., αL are evenly spaced with increment ∆α > 0. At
each interior interface (i.e., 1 ≤ r ≤ L− 1), pr = (Mr −Mr+1)/∆α. Therefore,
for the interior layers (i.e., 2 ≤ r ≤ L− 1),

∆pr = pr − pr−1 =
Mr −Mr+1

∆α
− Mr−1 −Mr

∆α

=
−Mr−1 + 2Mr −Mr+1

∆α
. (A.6)

For the top layer (r = 1), the upper boundary condition p0 = 0 implies

∆p1 = p1 − p0 = p1 =
M1 −M2

∆α
. (A.7)

In the case of the bottom layer (r = L), the boundary condition (A.5) implies

∆pL = pL − pL−1

=
ML

αL
− ML−1 −ML

∆α

=
1

∆α

[(
1 +

∆α

αL

)
ML −ML−1

]
. (A.8)

Equations (A.6)–(A.8) can be combined into the form

∆pr =
(DM)r

∆α
(A.9)

for 1 ≤ r ≤ L, where the definition of (DM)r is inferred from (A.6)–(A.8), and
the result can be inserted into (A.3) to obtain

∂

∂t

(
(DM)r

)
+ (∆α)(∆p̃r)

∂ur
∂x

= 0. (A.10)

The resulting system (A.1), (A.2), (A.10) has unknowns ur, vr, Mr for 1 ≤ r ≤
L.

45



Appendix A.2. Modal solutions

The unknowns ur, vr, Mr are all associated with layers, not interfaces. Here,
we obtain modal (separated) solutions in which these unknowns have the same
vertical dependences. When functions of the form

ur(x, t) = û(x, t)φr

vr(x, t) = v̂(x, t)φr (A.11)

Mr(x, t) = M̂(x, t)φr

are substituted into (A.1), (A.2), and (A.10), the result is

∂û

∂t
− fv̂ = − ∂M̂

∂x
(A.12)

∂v̂

∂t
+ fû = 0 (A.13)

for all (x, t) and

(Dφ)r
∂M̂

∂t
+ (∆α)(∆p̃r)φr

∂û

∂x
= 0 (A.14)

for 1 ≤ r ≤ L and all (x, t). Here, (Dφ)r has the same form as (DM)r, but
with the symbol φ replacing the symbol M . More precisely,

(Dφ)1 = φ1 − φ2

(Dφ)r = −φr−1 + 2φr − φr+1 if 2 ≤ r ≤ L− 1 (A.15)

(Dφ)L = −φL−1 +

(
1 +

∆α

αL

)
φL.

Since equation (A.14) holds for all (x, t) and all r, there exists a constant µ
such that

(Dφ)r = µ(∆α)(∆p̃r)φr = (µc2)
∆α

αL

∆p̃r
p̃L

φr (A.16)

for 1 ≤ r ≤ L, where c =
√
αLp̃L. In the special case of a single layer of constant

density, the hydrostatic condition implies c =
√
gh, where h is the thickness of

the fluid layer; in that case c is the speed of gravity waves in the nondispersive
limit.

The equations (A.16), for 1 ≤ r ≤ L, can be written as a matrix eigenvalue
problem

Aφ = λBφ, (A.17)

where φ is a column vector with components φ1, . . ., φL; A is an L×L tridiagonal
matrix with entries implied by the equations in (A.15); λ = µc2; and B is
diagonal with diagonal entries implied by the right side of (A.16). The quantity
λ = µc2 is dimensionless. Standard arguments show that the eigenvalues λ of
the problem (A.17) are real and positive; in addition, eigenvectors corresponding
to distinct eigenvalues are orthogonal with respect to the inner product defined
by the matrix B. Denote the eigenvalues of (A.17) by λ(0), λ(1), . . ., λ(L−1), with
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0 < λ(0) ≤ λ(1) ≤ . . . ≤ λ(L−1), and let φ(0), φ(1), . . ., φ(L−1) be corresponding
eigenvectors. These eigenvectors give the possible vertical dependences in the
modal solutions (A.11).

Next consider the dependences with respect to (x, t) in those solutions. With
the separation constant µ that is used in (A.16), the mass equation (A.14) can
be written as

µ
∂M̂

∂t
+

∂û

∂x
= 0. (A.18)

For modal solutions of the form (A.11), the relations (A.9) and (A.16) imply

∆pr(x, t) =
(Dφ)r

∆α
M̂(x, t) = µ(∆p̃r)φrM̂(x, t);

thus
∆pr(x, t)

∆p̃r
= µM̂(x, t)φr.

The quantity ∆pr(x, t)/∆p̃r is the relative perturbation in layer thickness, and
it will be denoted here by δr(x, t). For the modal solutions considered here, this
relative perturbation has the representation

δr(x, t) = µM̂(x, t)φr ≡ δ̂(x, t)φr, (A.19)

so the mass equation (A.18) can be written as

∂δ̂

∂t
+

∂û

∂x
= 0, (A.20)

and the u-component (A.12) of the momentum equation becomes

∂û

∂t
− fv̂ = − 1

µ

∂δ̂

∂x
. (A.21)

The relation λ = µc2 implies 1/µ = (c/
√
λ)2, where λ is an eigenvalue of (A.17).

Let û(j)(x, t), v̂(j)(x, t), and δ̂(j)(x, t) be the dependent variables in the sys-
tem (A.21), (A.13), (A.20) corresponding to eigenvalue λ(j) and eigenvector φ(j)

of the eigenvalue problem (A.17). These functions satisfy the system

∂û(j)

∂t
− fv̂(j) = −

(
c√
λ(j)

)2
∂δ̂(j)

∂x
(A.22)

∂v̂(j)

∂t
+ fû(j) = 0 (A.23)

∂δ̂(j)

∂t
+

∂û(j)

∂x
= 0. (A.24)

This system has the structure of the linearized shallow water equations in the
case where all quantities are independent of y. Solutions take the form of inertia-
gravity waves (see, e.g., Section 6.2 of [14]), and an analysis of the dispersion re-
lations for such waves (with space-time dependences of the form exp(ikx− iωt))
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shows that the waves are dispersive and that the limit of the group and phase
velocities as k → ∞ is c/

√
λ(j). For a solution arising from a localized signal,

the long-time behavior on any bounded spatial interval consists of slow variation
in x and time oscillations with an angular frequency approximately equal to f ,
assuming that any energy is present at such wavelengths. Examples are seen in
Section 6.

In summary, for modal solutions of the form (A.11), the vertical dependences
are given by the components of the eigenvectors φ(0), φ(1), . . ., φ(L−1), and
the corresponding dependences with respect to (x, t) are given by solutions
of the system (A.22)–(A.24). Arbitrary initial conditions can be satisfied via
superposition. As illustrated by the example considered in Section 6, mode
j = 0 is the external mode, and modes j = 1 through j = L− 1 are the internal
modes.

Appendix A.3. Geostrophic adjustment in a model problem

We now derive exact steady-state solutions of the system (A.22)–(A.24) cor-
responding to a case of piecewise constant initial data. Combining these so-
lutions with the vertical dependences given by the eigenvectors then produces
steady-state solutions to the linearized governing equations for the multi-layer
fluid. This case is a multi-layer analogue of a model problem for the linearized
single-layer shallow water equations analyzed in the text by Gill [6]. The steady-
state solutions are in geostrophic balance, and the transition from the initial
state to the balanced state is an example of geostrophic adjustment. In this
development, the external mode and the various internal modes are treated
individually.

In the following discussion, the superscripts (j) are deleted from all quanti-
ties, for the sake of notational simplicity, but throughout it is understood that
we are considering a single modal solution of the form (A.11).

It will be seen below that steady-state solutions of the system (A.22)–(A.24)
depend on the initial state, and the determination of the final steady state
is governed by the conservation of potential vorticity. For the case where all
quantities are independent of y, the vorticity is ζ = ∂v/∂x − ∂u/∂y = ∂v/∂x.
For a modal solution, the vorticity in layer r is

ζr =
∂v̂

∂x
φr ≡ ζ̂(x, t)φr.

Differentiate the v-equation (A.23) with respect to x and use the mass equation
(A.24) to obtain

∂

∂t

(
ζ̂ − f δ̂

)
= 0

and thus
ζ̂(x, t)− f δ̂(x, t) = ζ̂(x, 0)− f δ̂(x, 0) (A.25)

for all (x, t). Equation (A.25) is a statement of the conservation of potential
vorticity in the present setting.
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To obtain steady-state solutions, delete the time derivatives in the system
(A.22)–(A.24). The second and third equations then state û = 0. The first
equation becomes a statement of geostrophic balance, and a differentiation of
that equation with respect to x yields

f ζ̂ =

(
c√
λ

)2
∂2δ̂

∂x2
. (A.26)

Let

R =
1

f

(
c√
λ

)
; (A.27)

this quantity is the Rossby radius of deformation corresponding to the speed
c/
√
λ for inertia-gravity waves in the nondispersive limit, for the modal solution

being considered here. Now substitute (A.27) and (A.25) into (A.26) to obtain

R2 ∂
2δ̂

∂x2
− δ̂ =

1

f

[
ζ̂(x, 0)− f δ̂(x, 0)

]
. (A.28)

Given initial data and boundary conditions, equation (A.28) is used to determine

the steady state for δ̂. The steady-state version of the u-equation (A.22) then
yields

v̂ = fR2 ∂δ̂

∂x
(A.29)

as the steady state for v̂.
Now consider the special case where the initial state is defined by û(x, 0) =

v̂(x, 0) = 0 for all x and

δ̂(x, 0) =

{
ε for x > 0
−ε for x < 0;

here, ε is a dimensionless nonzero constant that can have either sign. According
to equation (A.19), the relative perturbation in the thickness of layer r at time
t = 0 is then

∆pr(x, 0)

∆p̃r
= δr(x, 0) = δ̂(x, 0)φr =

{
εφr for x > 0
−εφr for x < 0.

(A.30)

In this case ζ̂(x, 0) = 0, so the right side of equation (A.28) is −δ̂(x, 0). For

solutions of that equation, impose the boundary condition that δ̂ is bounded as
x→ ±∞. Some calculations show that the resulting solution of equation (A.28)
is

δ̂steady(x) = ε sign(x)
(

1− e−|x|/R
)
, (A.31)

where sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. The steady state values
of the components of velocity are

ûsteady(x) = 0 (A.32)

v̂steady(x) = εfRe−|x|/R; (A.33)
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the latter equation follows from (A.29) and (A.31).
Multiplication of (A.31)–(A.33) by φr, the rth component of the eigenvec-

tor φ, then gives the velocity components ur and vr and the relative pertur-
bation in layer thickness, δr = ∆pr(x, t)/∆p̃r, for layer r in the steady-state
geostrophically-balanced modal solution corresponding to the initial data con-
sidered here. Some plots of solutions for some examples are shown in Section
6.
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