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A B S T R A C T

The work described here is part of a continuing project to develop, analyze,
and test some procedures for using discontinuous Galerkin (DG) numerical
methods in multi-layer, isopycnic models of ocean circulation. The steps taken
in the present paper include the following.

(1) Develop an implementation of horizontal viscosity for usage in DG
methods for multi-layer models. This step involves a formulation of the local
DG method that can be used in the context of barotropic-baroclinic splitting, a
widely-used approach to handling the multiple time scales in ocean circulation
models.

(2) Develop techniques that enable a layered model to exhibit thin layers
without computational failures. Layers with negligible thickness can develop
in situations that include coastal upwelling, outcropping of surfaces of con-
stant density to the upper boundary of the fluid due to lateral variations in
temperature, or intersections of density surfaces with bottom topography. For
the sake of DG computations involving thin layers, this paper develops (i) im-
plementations of wind stress, bottom stress, and interfacial shear stress that
do not provoke spuriously large velocities, and (ii) a limiter that maintains
nonnegative layer thicknesses in DG solutions.

(3) Test the above techniques in numerical experiments involving model
problems.

c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This paper describes extensions of previous work by the author to develop procedures for using discontinuous
Galerkin (DG) numerical methods in multi-layer models of ocean circulation. Here, the term “multi-layer” means
that the vertical coordinate is a quantity related to density; under a straightforward vertical discretization of such
a model, the fluid can be approximated as a stack of layers of constant density with thicknesses that can vary with
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position and time. The governing equations for each layer resemble the shallow water equations for a constant-density
fluid, with means for communication between layers.

Previous results by the author on this topic are contained in [17] and [18] and are outlined later in this section.
For the issues addressed in the present paper, part of the motivation arises from the possibility of layers tending to
negligible thickness, although this is not the only motivation. The particular topics addressed here are the following.

• Develop a representation of the horizontal viscosity terms in the momentum equations, in a way that can be used
with a DG spatial discretization and a barotropic-baroclinic time splitting. Various splittings of this nature are
widely used in ocean modeling to handle efficiently the multiple time scales that can be present in the system.
Horizontal viscosity terms are typically included in ocean models in order to parameterize the large-scale
effects of unresolvable sub-grid-scale turbulent motions. In the case of a layered model, these terms can also
help to suppress erratic velocities that can appear near locations where layer thicknesses approach zero. In the
setting of a DG method, viscous terms can be implemented via the “local DG” method, in which the velocity
gradient is used in an auxiliary dependent variable that is computed with an additional weak form (Cockburn
and Shu [8]). The present paper develops a version of this method for usage in multi-layer ocean models with
barotropic-baroclinic splitting.

• Develop implementations of the internal shear stress between fluid layers and the wind and frictional stresses
that are applied at the top and bottom of the fluid, respectively. These terms need to be implemented in any
case, but particular care should be taken in the case of thin layers.

• In regions where the layer thickness approaches zero, it is possible for the computed thicknesses to become
negative in some locations. However, negative thicknesses should be avoided, for reasons that are discussed
in Section 3.3. The work in this paper employs a limiter that ensures that all thicknesses are nonnegative
everywhere, assuming that the average thickness is nonnegative in each grid cell and in each layer. This limiter
is also relevant to the transport of tracers, which are properties or substances that can be carried by a fluid.

Another issue involving DG methods for layered models is the problem of layers interacting with variable bottom
topography. However, this topic is beyond the scope of the present paper.

For spatial discretizations in numerical models of ocean circulation, it has been traditional to use finite difference
and finite volume methods on logically-rectangular grids. Reviews are given, for example, by Griffies [13] and
Higdon [16]. A recent exception to this practice is the usage of finite difference and finite volume methods on
variable-resolution Voronoi grids (Ringler et al. [26], Petersen et al. [25]).

Continuous and discontinuous Galerkin methods have been used extensively to solve the two- and three-dimensional
shallow water equations for a hydrostatic fluid of constant density. Examples include Bao et al. [4], Bonev et al. [7],
Conroy and Kubatko [9], Dawson et al. [10], Giraldo and Warburton [12], Kubatko et al. [20], Wintermeyer et al.
[28], Wirasaet et al. [29], and Xing et al. [30]. On the other hand, Pan et al. [24] developed a nonhydrostatic,
constant-density coastal model with a DG horizontal discretization and a terrain-fitted vertical coordinate with mul-
tiple coordinate surfaces. For the case of variable-density flows, Kärnä et al. [19] developed a hydrostatic coastal
ocean circulation model that uses a DG discretization on an unstructured horizontal grid and a terrain-fitted vertical
coordinate with a moving vertical mesh.

The present paper, and the previous papers [17] and [18], consider hydrostatic modeling of a variable-density
stratified fluid, with a density-based (isopycnic) vertical coordinate and multiple layers. Some advantages of such a
vertical coordinate are outlined in Section 2.1. The previous work includes the following.

� The papers [17] and [18] develop a DG representation of pressure forcing that is valid for an arbitrary vertical
coordinate, not just z, and also accounts for discontinuities in layer interfaces across cell edges.

� The paper [18] develops a version of barotropic-baroclinic time splitting that is suitable for usage with DG
spatial discretizations of layered models.

� An analysis of dispersion relations in [17] shows that DG methods are at least as accurate, and in some cases
much more accurate, than some standard finite difference methods for the propagation of linear inertia-gravity
waves in a hydrostatic fluid of constant density. This analysis assumes that all quantities are independent of
one spatial coordinate, but both components of velocity can be nonzero; the spatial discretization involves a
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uniform grid in x, so DG and finite difference methods are equally applicable. The analysis in [17] is supported
by numerical experiments involving group velocity and the propagation of wave packets. The later paper [18]
includes numerical experiments involving geostrophic adjustment in a multi-layer fluid. During this process, if
a fluid is not in geostrophic balance at some location, then inertia-gravity waves radiate away from that location
to leave a state that is in balance. A key to the process is the propagation of inertia-gravity waves. Again, the
DG method was found to be at least as good as a finite difference method, and in some cases better.

Some widely-quoted advantages of DG spatial discretizations are that they are naturally suited for variable-
resolution unstructured meshes and that they allow polynomial approximations of arbitrary degree while maintaining
high locality. The latter point enables spatial discretizations of arbitrary order, as measured by local truncation errors
and rates of convergence as ∆x → 0 and ∆t → 0. These issues are discussed, for example, by Hesthaven [14]. On
the other hand, the analysis and computations in [17] and [18] augment this point of view by using wave propagation
techniques to determine what can be resolved with fixed values of ∆x and ∆t. This alternate viewpoint gives another
sense in which DG methods can be preferable to some standard finite difference discretizations, in a situation where
the two types of methods are equally applicable.

An outline of this paper is the following. Section 2 addresses the choice of vertical coordinate and states the
governing equations that are used here. Section 3 discusses the generation of thin layers and some numerical issues
that they can cause. Section 4 develops a representation of the horizontal viscosity terms, first without a barotropic-
baroclinic splitting and then with such a splitting. Section 5 describes the time-stepping method that is used here.

Section 6 discusses the implementation of the shear stress terms, and Section 7 describes a limiter that produces
nonnegative values of layer thickness. Numerical computations with some test problems are described in Section 8.
One such problem is a purely diffusive problem that tests the implementation of the viscosity terms, and two others are
multi-layer fluid problems in which one or more layers can have negligible thickness in some locations. A summary
is given in Section 9.

2. Governing equations

This section states pointwise and weak forms of the governing equations that are used throughout this paper. The
equations stated below are similar to equations stated in [17] and [18]. However, those papers did not address the
implementation of the horizontal viscosity and shear-stress terms, which are included in the present paper, and some
broader discussion is given here in order to place those terms in context. This section also includes a brief outline of
barotropic-baroclinic splitting.

2.1. The choice of vertical coordinate

A variety of vertical coordinates have been used in numerical models of ocean circulation. Widely-used choices
include the elevation z and a terrain-fitted vertical coordinate σ. Another option is an isopycnic coordinate, which is
a quantity related to density, such as potential density (density adjusted adiabatically to a pre-determined reference
pressure). In the ocean’s interior, away from boundary layers, such a quantity is nearly constant along fluid trajectories.
In this case, surfaces of constant vertical coordinate are nearly material surfaces, so that a vertical discretization divides
the fluid into layers that remain nearly distinct over long times. This property could be an advantage for long-term
climate simulations or for tracking the paths of quantities or properties that are transported by the fluid. The present
work focuses on isopycnic coordinates, due to these potential advantages.

Another option is a hybrid coordinate, which could be isopycnic in the ocean’s interior, z near the top of the fluid,
and perhaps σ in near-shore regions (Bleck [5]). This possibility is beyond the scope of the present investigation.

Further discussions of vertical coordinates are contained, for example, in [13], [16], and [22].

2.2. Pointwise form of the governing equations

The paper [16] contains a derivation of the partial differential equations for conservation of mass, momentum,
and tracers in a fluid that is in motion relative to a rotating spheroid. In that derivation it is assumed that the vertical
length scale is much smaller than the horizontal length scale, for the fluid motions of interest, so that the hydrostatic
approximation can be used; that is, vertical accelerations are considered negligible. In the derivation in [16], the
vertical coordinate is a generalized coordinate s which is an increasing function of the elevation z at each horizontal
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position and time. Otherwise, the coordinate s is arbitrary. The horizontal coordinates are arbitrary orthogonal
curvilinear coordinates.

For the discussion in the present paper, assume that the vertical coordinate is isopycnic and that the fluid is
approximated as a stack of immiscible layers having constant density. Let the horizontal coordinates be rectangular
coordinates x and y, and assume that all quantities are independent of y and that the Coriolis parameter (described
below) is nonzero and constant. The y-component of velocity can be nonzero, so the Coriolis effect is present. The
assumption of independence on y simplifies the analysis and computations, but it maintains enough complexity to
illustrate the issues being addressed here. In this situation, the spatial domain is an interval in x, and if solid-wall
boundary conditions are used at the ends of this interval then the governing equations describe flow in an infinite
straight channel.

The dependent variables in the governing equations are defined as follows. Number the fluid layers 1, . . ., R from
top to bottom; let pr(x, t) denote the pressure in the fluid at the bottom of layer r at horizontal position x at time t; and
let p0 denote the atmospheric pressure. Then let

∆pr(x, t) = pr(x, t) − pr−1(x, t) (1)

denote the vertical pressure difference across layer r, for 1 ≤ r ≤ R. For a diagram of dependent variables, see Fig.
1. Due to the hydrostatic condition, the quantity ∆pr is the weight per unit horizontal area in layer r. That is, ∆pr

is g times the mass per unit horizontal area in layer r, where g is the magnitude of the acceleration due to gravity.
The quantity ∆pr thus serves as a two-dimensional mass density, times g, for layer r. In a layer of constant three-
dimensional density, ∆pr(x, t) is proportional to the difference in elevation between the bottom and top of layer r, at
(x, t), so ∆pr can also be regarded informally as a layer thickness. The quantity ∆pr serves as the mass variable in the
partial differential equations stated below.

Now let ur(x, t) and vr(x, t) denote the x- and y-components of velocity, respectively, in layer r at horizontal
position x at time t. The quantities ur∆pr and vr∆pr are then the components of momentum density (times g) in the
x- and y-directions, respectively. They are also components of mass flux, times g.
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Fig. 1. Diagram of dependent variables. This figure is a schematic representation of a side view of the fluid. The horizontal lines represent
interfaces between layers. The layers are numbered 1, . . ., R from top to bottom; pr(x, t) and zr(x, t) denote the pressure and elevation,
respectively, at the bottom of layer r; ∆pr(x, t) = pr(x, t) − pr−1(x, t) is the vertical pressure increment across layer r; and ur(x, t) and vr(x, t)
are the x- and y-components of velocity, respectively, in layer r.

Under the present assumptions, the u-component of the momentum equation in layer r is

∂

∂t
(ur∆pr) +

∂

∂x

[
ur (ur∆pr)

]
− f vr∆pr = −g

∫ zr−1(x,t)

zr(x,t)

∂P
∂x

(x, z, t) dz + g
[
(τu)r−1(x, t) − (τu)r(x, t)

]
+

∂

∂x

(
AH∆pr

∂ur

∂x

)
. (2)

Except for the last term on the right side, this is Eq. (13) in [17]. The last term is the horizontal viscosity term, and it
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is included in the more general equations in Section 7.16 of [16]. The viscosity coefficient AH is assumed here to be
a positive constant.

The first term on the right side of (2) is the pressure forcing term; this term is written in a non-standard form and is
discussed in Section 2.3. In that term, zr(x, t) is the elevation of the bottom of layer r. In the second term on the right
side, (τu)r(x, t) is a shear stress at the bottom of layer r; shear stresses are discussed in Section 6. The last term on
the left side is the Coriolis term, which accounts for the effects of a rotating coordinate system, and f is the Coriolis
parameter. At any location on a rotating spheroid, f = 2Ω sin θ, where Ω is the angular rate of rotation of the spheroid
and θ is the latitude. However, in the present discussion f is assumed constant.

The v-component of the momentum equation in layer r is

∂

∂t
(vr∆pr) +

∂

∂x

[
ur (vr∆pr)

]
+ f ur∆pr = g

[
(τv)r−1(x, t) − (τv)r(x, t)

]
+
∂

∂x

(
AH∆pr

∂vr

∂x

)
. (3)

Eq. (3) does not contain a pressure forcing term, due to the assumption that all partial derivatives with respect to y are
zero. The equation for conservation of mass is

∂

∂t
(∆pr) +

∂

∂x
(ur∆pr) = 0. (4)

2.3. Integral weak forms and horizontal discretization

Next consider the construction of weak forms of the governing equations that can be used to develop discontinuous
Galerkin numerical methods.

Let [a, b] be the horizontal spatial interval, and partition [a, b] into grid cells of the form D j = [x j−1/2, x j+1/2] for
1 ≤ j ≤ J. To obtain a weak form of the u-component (2) of the momentum equation, let ψ be a smooth test function
on cell D j, multiply (2) by ψ(x), and integrate on D j. The result can be written as∫

D j

{
∂

∂t
(ur∆pr) − f vr∆pr

}
ψ(x) dx + Φu( j, r, ψ) = Πu( j, r, ψ) + S u( j, r, ψ)

+

∫
D j

[
∂

∂x

(
AH∆pr

∂ur

∂x

)]
ψ(x) dx (5)

where

Φu( j, r, ψ) =

[
ur(ur∆pr)ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

ur(ur∆pr)ψ′(x) dx (6)

arises from momentum fluxes,

S u( j, r, ψ) = g
∫

D j

{
(τu)r−1(x, t) − (τu)r(x, t)

}
ψ(x) dx (7)

represents shear stresses, and

Πu( j, r, ψ) = −g
∫

D j

[∫ zr−1(x,t)

zr(x,t)

∂P
∂x

(x, z, t) dz
]
ψ(x) dx (8)

represents the lateral pressure forcing. The last term on the right side of (5) is discussed in Section 4.
The representation (8) of Πu( j, r, ψ) is an integral over the region of fluid in layer r and on cell D j. In [17] and

[18] this integral is transformed by a multi-dimensional integration by parts (i.e., by a Green’s identity) to yield a
representation involving integrals along the left, right, top, and bottom edges of this fluid region and also on the
interior of that region. The latter representation is used to implement the pressure term numerically. This approach is
used in order to overcome some difficulties with the lateral pressure forcing that can be encountered when the vertical
coordinate is something other than the elevation z; these issues are described in Section 2.4 of [17].

The weak form of the v-component (3) of the momentum equation is similar to (5), except that a pressure term is
absent. The weak form of the mass equation (4) is analogous but simpler.

In the case of a discontinuous Galerkin numerical method, each dependent variable in each grid cell at each time
level is approximated with a polynomial, with no requirement of continuity across cell edges. Let

{
ψ

( j)
0 , ψ

( j)
1 , . . . , ψ

( j)
M

}
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denote a basis for the space of polynomials used on cell D j. In [17] and [18] these basis functions are assumed
to be Legendre polynomials, with the independent variables scaled and translated to the cell D j. The basis is then
orthogonal on D j. Represent the momentum densities ur∆pr and vr∆pr and the mass variable ∆pr in the form

(ur∆pr)(x, t) =

M∑
n=0

U( j)
r,n(t) ψ( j)

n (x)

(vr∆pr)(x, t) =

M∑
n=0

V ( j)
r,n (t) ψ( j)

n (x) (9)

(∆pr)(x, t) =

M∑
n=0

δ
( j)
r,n(t) ψ( j)

n (x)

for all x ∈ D j, for all t, and 1 ≤ r ≤ R. For notational simplicity, the equations in (9) make no distinction between
the exact values of ur∆pr, vr∆pr, and ∆pr, and their polynomial approximations. The goal of a DG algorithm is to
compute the degrees of freedom U( j)

r,n(t), V ( j)
r,n (t), and δ( j)

r,n(t).
To implement the weak form (5) of the u-component of the momentum equation, insert the representation for

ur∆pr in (9) into the first term in (5), and let the test function ψ be each of the basis functions ψ( j)
0 , ψ( j)

1 , . . . , ψ( j)
M .

The result is a system of M + 1 ordinary differential equations for the degrees of freedom U( j)
r,0(t), . . ., U( j)

r,M(t). The
remaining terms in the weak form (5) are regarded as forcing terms, and these need to be evaluated for ψ = ψ

( j)
0 , . . .,

ψ
( j)
M and at each of the time levels and/or stages that are used in the time-stepping method that is used to solve the

system of ordinary differential equations.
Section 4 addresses the computation of the last term on the right side of (5), which involves the horizontal viscosity.

The shear-stress term S u( j, r, ψ) is discussed in Section 6. The implementations of the remaining forcing terms in
(5) are discussed in [18]. The weak forms of the mass equation and v-component of the momentum equation are
implemented in a manner that is analogous to what has just been described.

2.4. Barotropic-baroclinic splitting

The paper [18] develops a barotropic-baroclinic time splitting for DG approximations to the system of governing
equations stated above. In general, the solutions of this system can include fast external motions; these motions can
be modeled by “barotropic” equations that are obtained by summing, over all layers, the layer equations that are
described in Sections 2.2 and 2.3. This vertically-integrated subsystem resembles the shallow water equations for a
hydrostatic fluid of constant density. In the present work, this subsystem is solved explicitly with relatively short time
steps that are determined by the speed of the fast external gravity waves, which are similar to shallow-water waves.

On the other hand, the equations in the individual layers are solved explicitly with a relatively long time step that
is determined by the speeds of slow internal motions. A potential problem is that the layer equations describe the full
dynamics of the system and thus admit motions varying on both the fast and the slow time scales, so a violation of
the Courant-Friedrichs-Lewy condition seems apparent. However, some procedures described in Section 4.2 of [18]
are used to enforce consistency between the layer equations and the vertically-integrated barotropic equations at the
end of each long time step. It is shown in [18] that this process provides time filtering that yields a slight modification
of the layer equations so that they can be solved successfully with the long time step. These filtered equations are
regarded as “baroclinic” (slow) equations. The barotropic and baroclinic equations are solved together with a time-
stepping method that involves two baroclinic time levels; this method is described in detail in [18] and is sketched
briefly in Section 5.

3. Thin layers

This section describes some ways in which thin layers can be generated, and it also describes some numerical
problems that can be caused by such layers.
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3.1. Generation of thin layers

One situation in which thin layers can arise is the case of coastal upwelling regions, which are found, for example,
off the coast of Oregon. In certain conditions the prevailing wind stress is parallel to the shore, and due to the Coriolis
effect the surface waters tend to shift in a direction perpendicular to the wind stress. If that direction is off-shore,
then the surface waters are peeled away from the coast, and deeper waters then move up to the surface near the coast.
This upwelling contributes to nutrient transport and thus has considerable biological significance. Coastal upwelling
regions occupy a relatively small portion of the ocean’s surface area but account for a relatively large share of the
ocean’s biological productivity (Gill [11]). In a vertically-discrete layered model, upwelling can be represented by
one or more layers tending to negligible thickness on the affected region.

More generally, thin layers can arise due to lateral variations in density across the global ocean. In particular,
the temperatures seen at depth in the tropics may also be seen at the ocean’s upper surface at high latitudes. These
variations imply that surfaces of constant density within the fluid can outcrop to the upper surface, so that certain
layers may not exist physically in certain locations. For example, see Figure 2.1 in [16]. In a numerical model, each
layer can be defined to exist at all horizontal positions but could have zero thickness in some regions. Analogous
situations arise when surfaces of constant density intersect variable topography at the bottom of the fluid, but that case
is not addressed in the present paper.

3.2. Effects of forcing

During the computations described in Sections 8.2 and 8.3, a steady wind stress is applied to the top of a layered
fluid that is initially at rest, and after some simulation time the fluid state includes a location where the thickness of the
top layer varies rapidly from values near zero to greater values. In some cases, the average thickness of the top layer in
one grid cell can be several times greater than the thickness of that same layer in an adjacent cell. Those adjacent cells
are subjected to the same wind forcing, and over a given time interval those adjacent cells receive the same impulse
and thus the same increment in momentum due to this forcing. However, momentum equals mass times velocity,
so the increment in velocity given to the thinner cell is several times greater than the increment in velocity given to
the thicker cell. These cell-to-cell contrasts in velocity increments may contribute to the irregular and nonphysical
velocity fields that can appear if zero horizontal viscosity is used; these irregular velocities can then lead to irregular
mass transport. This problem is addressed by the viscosity term that is developed in Section 4. Some other details
related to forcing are discussed in Section 6.1.

3.3. Avoid negative layer thickness

If the thickness of a fluid layer is near zero, then numerical discretization errors could cause the computed values
of thickness to become negative in some locations. However, this situation should be avoided. One view of the matter
is to consider the shallow water equations for a layer of fluid of constant density. Linearize this system about a state
of zero velocity and constant layer thickness. A calculation shows that if this thickness is negative, then the system is
not hyperbolic, and the initial value problem is ill-posed.

Another viewpoint is to consider Eq. (4) for conservation of mass. In that equation, the mass flux is ur∆pr. If
∆pr < 0, then the direction of mass flow is opposite the direction of the velocity, and there are scenarios where
a negative thickness could become even more negative. For example, this could occur at the right-most grid cell
[b − ∆x, b] if ur > 0 at x = b − ∆x but ur satisfies the solid-wall boundary condition ur = 0 at x = b. Such
circumstances could lead to numerical instability.

A limiter for avoiding negative layer thickness is described in Section 7.

4. Horizontal viscosity

This section addresses the implementation of the term∫
D j

[
∂

∂x

(
AH∆pr

∂ur

∂x

)]
ψ(x) dx, (10)

which is the last term on the right side of the weak form (5) of the u-component of the momentum equation. This
term provides part of the forcing for the system of ordinary differential equations discussed in Section 2.3, so this
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term is computed at specified times and for arbitrary elements ψ of the basis
{
ψ

( j)
0 , ψ

( j)
1 , . . . , ψ

( j)
M

}
on grid cell D j =

[x j−1/2, x j+1/2]. The corresponding term in the v-component of the momentum equation is similar.
The term (10) needs to be implemented in the context of a barotropic-baroclinic splitting. However, for the sake

of clarity we first discuss this term for the case where such a splitting is not used.

4.1. The case where no barotropic-baroclinic splitting is used

An integration by parts shows that the integral (10) is equal to[(
AH∆pr

∂ur

∂x

)
ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

(
AH∆pr

∂ur

∂x

)
ψ′(x) dx (11)

The integral in (11) is computed with a quadrature formula; for the computations described in Section 8, Gauss-
Legendre quadrature is used. It is then necessary to obtain values of ∂ur/∂x at the quadrature points in each grid
cell. In addition, the terms involving x = x j±1/2 require one-sided limits of ∂ur/∂x at those points and a strategy for
evaluating these terms at x j±1/2. It is assumed here that values of ψ, ψ′, ur, and ∆pr are available at all points where
those quantities are needed.

The term (11) can be implemented with the “local DG” method (e.g., Cockburn and Shu [8], Arnold et al. [3],
Aizinger and Dawson [1], Srinivasan et al. [27]), which employs an auxiliary variable to reduce the order of the
derivatives. In the present case, the diffusive flux AH(∆pr)∂ur/∂x contains a coefficient ∆pr which is a known function
of (x, t), whereas in the preceding references the coefficient of the gradient is either a constant or is a function of the
dependent variable that is being diffused. For the present case, let

qr(x, t) =
∂ur

∂x
(x, t) (12)

for all x ∈ D j, for all t, and 1 ≤ r ≤ R. The weak form of Eq. (12) is∫
D j

qr(x, t) ψ(x) dx =

∫
D j

∂ur

∂x
ψ(x) dx =

[
ur ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

ur ψ
′(x) dx, (13)

and the weak form (10)-(11) of the viscosity term becomes∫
D j

[
∂

∂x

(
AH ∆pr qr

)]
ψ(x) dx =

[
AH(∆pr) qr ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

AH(∆pr) qr ψ
′(x) dx (14)

As seen in Section 4.1.3, the first weak form (13) is used to obtain pointwise values of qr at quadrature points and cell
edges, and those results are then used to compute (14).

The formulation (12)–(14) differs somewhat from the formulation introduced in [8]. In that reference, the diffusion
term has the form (a(u)ux)x, where u is the dependent variable in an advection-diffusion equation, and a(u) ≥ 0. Let
b(u) =

√
a(u), and let g(u) be an antiderivative of b(u). The diffusion term is then (a(u)ux)x = (b(u)g′(u)ux)x =

(b(u)q)x, where q = g(u)x. In [8] this representation is used to obtain weak forms corresponding to (13)–(14). An
analogue of that approach to the present case is to try qr =

√
∆pr ∂ur/∂x. However, this would not have the form

g(u)x, and in an analogue of (13) the coefficient
√

∆pr would be grouped with ψ(x) during the integration by parts. It
therefore seemed better to use the approach described above, in (12)–(14).

4.1.1. Values of ur and qr at cell edges in the interior of the spatial domain
Before the weak forms (13) and (14) can be used, it is first necessary to specify formulas for ur and qr at cell

edges. In a DG method these functions can be discontinuous at such points, yet the right sides of (13) and (14) require
values of ur and qr at x j±1/2. Values of ∆pr at cell edges are discussed in Section 4.2.4. In (13) and (14), the values of
ψ at x j±1/2 are one-sided limits from within the interior of cell D j.

For a value of ur at a cell edge that is interior to the spatial interval [a, b], use an average of one-sided limits,

ûr =

{
ur

}
≡

1
2

(
(ur)− + (ur)+

)
. (15)
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Here, the subscripts + and − refer to one-sided limits from the positive and negative directions, respectively, at the
cell edge. For the sake of simplicity, the notation in (15) does not include an index to specify the edge. For a value of
qr at a cell edge that is interior to [a, b], use

q̂r =
∂̂ur

∂x
=

{
qr

}
+ C

[
ur

]
=

1
2

(
(qr)− + (qr)+

)
+ C

(
(ur)+ − (ur)−

)
. (16)

Here, the square brackets [ ] refer to a jump across the edge, and C is a positive constant. For dimensional consistency,
C must have units 1/distance; for the computations described in Section 8, C = 1/∆x, where ∆x is the width of the
grid cells.

In the context of elliptic boundary value problems, Arnold et al. [3] tabulate several possibilities for fluxes at cell
edges, including various combinations of averages and jumps. This suggests the possibility of using more general
formulations than those listed in (15) and (16). However, the formulas given above were found to be effective in the
computations described in Section 8.

A motivation for the expression for q̂r in (16) is the following. The quantity

AH∆pr
∂ur

∂x
= AH(∆pr)qr

in (14) is a diffusive flux that results from spatial variations in ur. In (16), the terms (qr)− and (qr)+ account for
variations of ur within the grid cells that lie on each side of the cell edge. However, a jump in ur at the edge is

another kind of spatial variation in ur that gives rise to diffusion, and this possibility is represented by the term C
[
ur

]
in (16). These two separate process are combined in (16). If ur is continuous at the edge, then (16) reduces to
q̂r =

(
(qr)− + (qr)+

)
/2.

4.1.2. Values of ur and qr at solid wall boundaries
Next consider the case where a cell edge is an endpoint of the spatial interval [a, b], and assume that this endpoint

represents a solid wall. At such a wall, the fluid satisfies the boundary condition ur = 0, which specifies no flow
across the boundary. If, in addition, the horizontal viscosity coefficient AH is positive, then the fluid also satisfies the
no-slip boundary condition vr = 0 at that wall.

In the present subsection, the no-normal-flow boundary condition ur = 0 is used to implement the weak forms (13)
and (14) for the u-component of the momentum equation. The no-slip condition vr = 0 can be used in an analogous
manner to implement the weak forms for the v-component; the details for that case will be omitted here.

First consider the grid cell D1 = [x1/2, x3/2] = [a, a+∆x]. At the interior edge x3/2 = a+∆x, use the representations
of ûr and q̂r in (15) and (16). At the boundary edge x1/2 = a, let

ûr = 0

q̂r = (qr)+ + C
(
(ur)+ − 0

)
, (17)

where C has the same value as in (16). The zero in the second equation in (17) is included in order to point out
explicitly that zero is the target value for ur at that cell edge.

In the equation for q̂r in (17), the term (qr)+ represents the diffusive effect of spatial variations of ur within the
grid cell D1, in the limit x → a+. The term C

(
(ur)+ − 0

)
represents the diffusive effect of any difference between the

actual value of (ur)+ and its target value of zero. This second term is an analogue of Newton’s law of cooling, which
states that the rate of heat flow in or out of a point mass is proportional to the difference between the temperature of
the mass and the temperature of its surroundings.

Now consider the grid cell DJ = [xJ−1/2, xJ+1/2] = [b − ∆x, b]. At the boundary edge xJ+1/2 = b, use ûr = 0 and

q̂r = (qr)− + C
(
0 − (ur)−

)
. (18)

The choice of signs in the second term can be explained by regarding that term as a finite difference approximation to
∂ur/∂x.
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4.1.3. Implementation of the weak forms (13) and (14)
The values of ûr and q̂r that are developed in Sections 4.1.1 and 4.1.2 are substituted for ur and qr, respectively, in

the terms in (13) and (14) that are evaluated at x j±1/2. The resulting formulas are the approximations to (13) and (14)
that are used in the computational algorithm.

The weak form (13) for qr is then used as follows. In analogy to (9), let

qr(x, t) =

M∑
n=0

Q( j)
r,n(t) ψ( j)

n (x) (19)

for all x ∈ D j, for all t, and 1 ≤ r ≤ R. Insert the representation for qr in (19) into the left side of (13), and let ψ be each
of the basis functions ψ( j)

0 , ψ( j)
1 , . . . , ψ( j)

M . The result is a set of M + 1 algebraic equations for the degrees of freedom
Q( j)

r,0(t), . . ., Q( j)
r,M(t). These degrees of freedom can be used in (19) to compute values of qr at the quadrature points

and endpoints of each grid cell. The values at endpoints are one-sided limits that can be used in the representations
of q̂r in (16), (17), and (18). The results of these computations are then used to compute the weak form (14) of the
viscosity term.

4.2. Viscosity terms with barotropic-baroclinic splitting included

Now extend the preceding ideas to the case where a barotropic-baroclinic time splitting is used to solve the
governing equations. A brief outline of barotropic-baroclinic splitting is given in Section 2.4, and further details are
given in [18] for the context of a DG spatial discretization.

4.2.1. Splittings of mass and velocity
First consider splittings of the mass and velocity variables for a layered model of the type considered in this paper.

Let

pb(x, t) =

R∑
r=1

∆pr(x, t) (20)

for all x in the spatial domain [a, b] and all times t. The quantity pb is the pressure at the bottom of the fluid minus the
atmospheric pressure at the top of the fluid; it is also g times the mass per unit horizontal area for the water column
extending from the bottom of the fluid to the top. Now let p′b(x) denote the value of pb(x, t) when the fluid is at the
global rest state consisting of level interfaces between layers and a level free surface at the top of the fluid, and let
η(x, t) =

(
pb(x, t) − p′b(x)

)
/p′b(x) denote the relative perturbation of pb from the rest state. Then

pb = (1 + η)p′b. (21)

Now define ∆p′r by the relation

∆pr(x, t) =
(
1 + η(x, t)

)
∆p′r(x, t) (22)

for 1 ≤ r ≤ R and all (x, t). Eq. (22) is motivated by the idea that an external motion causes all fluid layers to
thicken or thin by approximately the same proportion (e.g., [18]); the factor 1 + η represents the relative thickening or
thinning of the layers. The quantity η can vary on the fast external time scale, whereas ∆p′r varies mainly on the slow
internal time scale. The quantities η and ∆p′r are then regarded as barotropic and baroclinic variables, respectively. A
comparison of (20), (21), and (22) shows

p′b(x) =

R∑
r=1

∆p′r(x, t) (23)

for all (x, t).
For a splitting of the velocity component u, let

ū(x, t) =

R∑
r=1

∆pr(x, t)
pb(x, t)

ur(x, t) =

R∑
r=1

∆p′r(x, t)
p′b(x)

ur(x, t) (24)
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denote the mass-weighted vertical average of u over all layers. The quantity ū is associated with the vertically-
integrated barotropic equations, and it can vary on the fast time scale. The residual u′r(x, t) = ur(x, t) − ū(x, t) varies
mainly on the slow time scale, and it serves as a baroclinic velocity. The velocity ur then has the barotropic-baroclinic
splitting

ur(x, t) = ū(x, t) + u′r(x, t) (25)

for 1 ≤ r ≤ R and all (x, t). The velocity component v can be split in a similar manner.
The preceding splitting of the mass and velocity fields was developed by Bleck and Smith [6]. Note that in these

splittings, the prime notation (i.e., ′) refers to baroclinic variables, not derivatives.

4.2.2. The viscosity term in the layers
The viscosity term (10) includes a factor ∆pr. In order to reduce the complexity of the method that is developed

below, this factor is approximated by the slowly-varying baroclinic quantity ∆p′r, which is defined by the relation
∆pr = (1 + η)∆p′r in (22). The term η is the relative perturbation of pb from its rest value, so η is approximately the
relative perturbation in the height of the entire water column. In the mid-ocean the maximum value of |η| is on the
order of 10−3 or less, so deleting the factor 1 + η has a small effect relative to the uncertainty in the choice of the
viscosity coefficient AH in (10). Some remarks on the values of ∆p′r are contained in Section 4.2.4.

The viscosity term to be considered here is then∫
D j

[
∂

∂x

(
AH∆p′r

∂ur

∂x

)]
ψ(x) dx,

which can be approximated by[
AH(∆̂p′r) q̂r ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

AH(∆p′r) qr
dψ
dx

dx (26)

Here, ∆̂p′r and q̂r are values of ∆p′r and qr = ∂ur/∂x, respectively, that are used at the cell edges x = x j±1/2.
The quantity qr can be split as

qr(x, t) =
∂ur

∂x
=

∂ū
∂x

+
∂u′r
∂x
≡ q̄(x, t) + q′r(x, t) (27)

for 1 ≤ r ≤ R and all (x, t). Here, q̄ = ∂ū/∂x and q′r = ∂u′r/∂x are the barotropic and baroclinic components,
respectively, of qr. The relation (27) can then be inserted into the integral in (26).

For values of q̂r at cell edges that are interior to the spatial domain [a, b], use the representation in (16), as
expressed in terms of split variables. A comparison of (16), (25), and (27) shows

q̂r =
1
2

(
(qr)− + (qr)+

)
+ C

(
(ur)+ − (ur)−

)
=

1
2

(
(q̄)− + (q̄)+

)
+

1
2

(
(q′r)− + (q′r)+

)
+ C

(
(ū)+ − (ū)−

)
+ C

(
(u′r)+ − (u′r)−

)
=

{
q̄
}

+ C
[
ū
]

+

{
q′r

}
+ C

[
u′r

]
. (28)

The quantity
{
q̄
}
+C

[
ū
]

is the barotropic contribution to q̂r, and the quantity
{
q′r

}
+C

[
u′r

]
is the baroclinic contribution.

For values of q̂r at solid walls at the endpoints of the spatial domain [a, b], use the conditions (17) and (18), but
expressed in terms of the splitting (27), qr = q̄ + q′r. That is, at the boundary edge x1/2 = a, use

q̂r =

[
(q̄)+ + C(ū)+

]
+

[
(q′r)+ + C(u′r)+

]
. (29)

At the edge xJ+1/2 = b, use

q̂r =

[
(q̄)− −C(ū)−

]
+

[
(q′r)− −C(u′r)−

]
. (30)

In these equations, the barotropic and baroclinic terms are grouped by the brackets.
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Pointwise values of q̄ = ∂ū/∂x and q′r = ∂u′r/∂x can be obtained via the approximate weak forms∫
D j

q̄(x, t) ψ(x) dx =

[̂
ūψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

ū
dψ
dx

dx

∫
D j

q′r(x, t) ψ(x) dx =

[
û′r ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

u′r
dψ
dx

dx, (31)

in analogy to the weak form (13) for qr discussed earlier. For the values of ̂̄u and û′r at cell edges that are interior to the
spatial domain [a, b], use averages of one-sided limits; at solid boundaries, use ̂̄u = 0 and û′r = 0. The implementation
of the weak forms in (31) is similar to the implementation of (13) that is described in Section 4.1.3.

4.2.3. The viscosity term in the barotropic equations
As noted in Section 2.4, the barotropic equations are obtained by summing, over all layers, the governing equations

for each layer. The weak form for the viscosity term in the barotropic system is then obtained by summing the weak
form (26) to yieldAH

 R∑
r=1

(∆̂p′r) q̂r

ψ(x)

x=x j+1/2

x=x j−1/2

−

∫
D j

AH

 R∑
r=1

(∆p′r) qr

 dψ
dx

dx. (32)

For points in the interior of cell D j,

R∑
r=1

(∆p′r) qr =

R∑
r=1

(∆p′r) (q̄ + q′r) =

 R∑
r=1

∆p′r

 q̄ +

R∑
r=1

(∆p′r)q
′
r. (33)

For cell edges that are interior to the spatial domain [a, b], Eq. (28) implies

R∑
r=1

(∆̂p′r) q̂r =

 R∑
r=1

∆̂p′r

 {q̄
}

+ C
[
ū
] +

R∑
r=1

(∆̂p′r)
({

q′r
}

+ C
[
u′r

])
. (34)

The first term on the right side of (34) is a baroclinic quantity times a sum of barotropic quantities, whereas the second
term on the right side is purely baroclinic. For cell edges that are located at solid wall boundaries, similar formulas
can be obtained by referring to equations (29) and (30).

4.2.4. Values of ∆p′r
The weak form (26) of the viscosity term contains values of ∆p′r in the interior of cell D j and values of ∆̂p′r at

cell edges. Possible choices for the latter include averages of one-sided limits and minima or maxima of such limits.
However, in some computations similar to those in Section 8.2, all of those choices for edge values produced irregular
values of velocity near locations where a layer thickness tends to zero at the top of the fluid.

The problem is that as the layer thickness tends to zero, the diffusive flux AH(∆p′r)∂ur/∂x also tends to zero. This
is consistent with the fact that the diffusive flux provides forcing to the momentum in layers, and the momentum
density also tends to zero as the layer thickness tends to zero. However, wind forcing at the top of the fluid can lead
to irregular velocity at the locations in question, as described in Section 3.2, and additional diffusion is needed to
control that behavior. For one approach to this problem, let ∆p̃r(x, t) = max

(
∆p′r(x, t),∆pr,min

)
at all quadrature points

and endpoints in each grid cell. Here, ∆pr,min is a pre-determined threshold, and values at endpoints are regarded as
one-sided limits. The values of ∆ p̃r(x, t) are the same as ∆p′r, except that they are not allowed to be less than ∆pr,min.
Then use the values of ∆p̃r(x, t) as the values of ∆p′r in the viscosity term; in the case of cell edges, use averages of
one-sided limits of ∆ p̃r. This method was used in the computations reported in Section 8.

5. Time-stepping

The present section contains some remarks on time-stepping for the coupled barotropic-baroclinic system that
has been described in preceding sections. This information is needed for the discussion of interior shear stresses in
Section 6.2 and for the description of numerical computations in Section 8.
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In principle, any number of time-stepping methods could be tried for this system. The present work uses a two-
time-level, predictor-corrector method that was developed in [18] for DG methods and is based on a similar method
that was developed in [15] in the context of finite difference spatial discretizations. Let tn and tn+1 be consecutive
time levels for the (slow) baroclinic subsystem. First, the barotropic dependent variables are predicted by solving the
(fast) barotropic equations over many subintervals of the baroclinic time interval [tn, tn+1]. During this process, the
barotropic variables are updated at each substep, whereas all baroclinic quantities in forcing terms are held constant
in time, with values taken from time tn.

Next, the layer equations are used to step the layer variables explicitly from time tn to time tn+1. During this
process, all barotropic quantities in forcing terms are taken to be time averages of values computed over all barotropic
substeps of [tn, tn+1] during the prediction step for the barotropic equations. This averaging is used in order to prevent
rapidly-varying motions from being aliased onto the coarse baroclinic time grid. Consistency between the layer
equations and barotropic equations is then enforced, as mentioned briefly in Section 2.4.

The barotropic variables are then corrected; in this case, all baroclinic quantities are time averages involving
values at time tn and predicted values for time tn+1. The layer variables are then corrected, with barotropic quantities
represented by time averages computed during the barotropic correction. Consistency is again enforced.

A significant issue in the choice of a time-stepping method is the maximum allowable time step, as expressed by
the Courant-Friedrichs-Lewy condition. If the two-level method used here is specialized to the case of a single-layer
fluid without barotropic-baroclinic splitting, the result is a time-stepping method for the shallow water equations. In
[17] this method is included in a stability analysis of several time-stepping methods, as applied to the shallow water
equations linearized about a rest state and with piecewise polynomial spatial approximations of degrees 1, 2, and 3.
For the case of piecewise quadratic approximations, for example, the stability analysis in [17] shows that for this
two-level method the maximum permissible value of the Courant number c∆t/∆x is approximately 0.16; here c is a
wave speed. This bound on the Courant number may seem small, and it is less than the bound for the other time-
stepping methods that are discussed in [17], which are Runge-Kutta methods. However, the two-level method uses
few operations per time step than the other methods.

For example, two of the methods analyzed in [17] are four-stage Runge-Kutta methods. In the case of piecewise
quadratic spatial approximations, the maximum allowable Courant numbers for these two methods are 0.23 and 0.30.
These methods use twice as many operations per time step as the two-level method used here, but their maximum
allowable time step is not twice as long.

Accuracy is another consideration in the choice of time-stepping method. The earlier paper [17] contains an analy-
sis of dispersion relations for the linearized shallow water equations. Part of this analysis considers DG discretization
in space, with solution in time performed either exactly or with the two-level time-stepping method. In each case,
with piecewise quadratic spatial approximations, the numerical dispersion relations are nearly identical to the exact
dispersion relations for the partial differential equations; see Figs. 3–6 in [17]. In the situation covered by this anal-
ysis, the two-level time-stepping method has high accuracy, and this observation is consistent with the results of the
numerical experiments reported in [17] and [18]. A comment on spatial accuracy is that if the spatial discretization
uses the B-grid or the C-grid finite difference approximations, which are widely used in ocean modeling, then there
can be large differences between the exact and numerical dispersion relations, for some ranges of parameters. See
Figs. 1–2 in [17].

A final issue is the complexity of implementation. As indicated above, when a barotropic-baroclinic time splitting
is used, it is necessary to pass information back and forth between the two subsystems. If a multi-stage Runge-Kutta
method is used to solve the layer equations, this communication would be more complicated than with the two-level
method, which was designed explicitly for usage with barotropic-baroclinic splitting.

6. Shear stresses

This subsection is concerned with the shear stress term (7), which appears in the weak form (5) of the u-component
of the momentum equation in layer r and is repeated here as

S u( j, r, ψ) = g
∫

D j

{
(τu)r−1(x, t) − (τu)r(x, t)

}
ψ(x) dx. (35)

Here, (τu)r−1 and (τu)r are the shear stresses acting on the interfaces at the bottoms of layers r − 1 and r, respectively.
More precisely, these stresses represent the shear force per unit horizontal area exerted by the layer above an interface
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on the layer below the interface. An explicit representation (from, e.g., [17]) for a continuously-stratified fluid is

τu = τwb
u + ρAD

∂u
∂z
, (36)

where τwb
u is the sum of the wind stress at the top of the fluid and the frictional stress along the bottom, ρ is the

density of the fluid, and AD is a diapycnal (i.e., across density surfaces) viscosity coefficient. The shear stress in the
v-component of the momentum equation is analogous to the above.

The pointwise shear stress term g
[
(τu)r−1 − (τu)r

]
is implemented in [15] in the setting of finite difference spatial

discretizations. The discussion in the present subsection is an extension of that method to the case of DG spatial
discretizations.

6.1. Wind and bottom stresses
The wind stress acts on the upper boundary of the fluid. However, in a multi-layer isopycnic model it would not

be good to apply this stress strictly to the upper boundary of the top layer. During one time step on a given grid cell,
the wind stress would apply an impulse to the top layer on that cell, and this impulse would represent an increment
in momentum in that layer on that cell. Momentum equals mass times velocity, so as the thickness tends to zero, the
imparted velocity increases without bound. This situation can then lead to computational failure.

Instead, in a numerical implementation it is useful to represent the wind stress as decaying linearly down to zero
over a prescribed vertical distance (Bleck and Smith [6]); for the computations described in Sections 8.2 and 8.3, this
distance is assigned to be one meter. With this formulation, if a layer at the top of the fluid has thickness less than
this prescribed value, then it receives only a portion of the applied wind stress. As the thickness of such a layer tends
to zero, the net wind forcing on that layer also tends to zero; this is in keeping with the fact that the shear stress term
provides forcing to the momentum density, which also tends to zero as the layer thickness tends to zero. If, on a given
grid cell, the top layer is sufficiently thin but the layer below it has sufficient mass, then the top layer is essentially
inactive in that cell and the wind stress is instead applied to the active layer below it.

In general, the preceding technique is not a remedy for the problem mentioned in Section 3.2, which involves
thicknesses of the top layer varying rapidly from values near zero to greater values. That case can include thicknesses
that are greater than the prescribed vertical distance that is discussed in the preceding paragraph.

The stress at the bottom of the fluid can be parameterized as ρcD|ubot |ubot (see [6]), where ubot = (ubot, vbot) is
the horizontal velocity at the bottom of the fluid and cD is a dimensionless drag coefficient. This formulation follows
the sign convention that the stress is the shear force per horizontal unit area exerted by an upper region on a lower
region; the drag exerted on the bottom of the fluid is then −ρcD|ubot |ubot. Like the wind stress, the bottom stress can
be implemented as decaying linearly to zero over a predetermined vertical distance.

6.2. Stresses within the fluid
The term ρAD∂u/∂z in the stress (36) represents the effect of vertical variations of horizontal velocity within

the fluid. Given pointwise values of u, this term can be approximated by finite differences in the vertical direction.
However, for a model that employs a stack of layers of constant density, widely-varying layer thicknesses can cause
problems with the choice of a vertical increment ∆z. For the computations described in Sections 8.2 and 8.3, ∆z
was assigned the constant value

√
2AD/| f |, which is the thickness of the Ekman frictional boundary layer (e.g., Gill

[11]). Here, f is the Coriolis parameter. The interface friction at the bottom of layer r is then approximated by
ρAD(ur − ur+1)/∆z.

A more satisfactory representation of the shear stress might be obtained with a higher-order vertical discretization
that employs polynomial representations of the vertical variation of each dependent variable within each coordinate
layer. However, this possibility is beyond the scope of the present investigation.

Now consider an algorithm for solving the u-component of the momentum equation in layer r on the (long)
baroclinic time interval [tn, tn+1] = [tn, tn + ∆t]. In the equations for the degrees of freedom U( j)

r,0(t), . . ., U( j)
r,M(t) for the

momentum density ur∆pr (see Section 2.3), first incorporate all terms except for the shear stress between layers. This
remark includes the wind and bottom stresses and a tentative implementation of the Coriolis terms (see below), and it
applies both to the prediction step and to the correction step for this momentum equation. Given the resulting values
of the degrees of freedom, compute corresponding pointwise values of the quantity ur∆pr at the quadrature points in
each grid cell. Denote such values by (ur∆pr)∗. Then, at each quadrature point, define u∗∗r by

(∆pr)n+1u∗∗r = (ur∆pr)∗ + g∆t
[
(τu)∗∗r−1 − (τu)∗∗r

]
, (37)
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where

(τu)∗∗r = ρAD
u∗∗r − u∗∗r+1

∆z
(38)

if 1 ≤ r ≤ R − 1 and (τu)∗∗0 = (τu)∗∗R = 0. That is, (τu)∗∗ = 0 at the top and bottom of the fluid, and Eq. (38) holds at
each of the interfaces within the fluid. The form of Eq. (37) is motivated by the structure of the continuous momentum
equation (2).

Eq. (37) is concerned only with the frictional shear stresses between layers, not the wind or bottom stresses, as the
latter have already been implemented by this stage. This equation has the form of a finite difference implementation
of the pointwise form of shear stress, but its sole purpose is to obtain values of velocity that can be used to compute
the weak form (35). In particular, Eq. (37) is equivalent to

(∆pr)n+1u∗∗r = (ur∆pr)∗ +
ρgAD∆t

∆z

[
u∗∗r−1 − 2u∗∗r + u∗∗r+1

]
(39)

for 2 ≤ r ≤ R − 1,

(∆p1)n+1u∗∗1 = (u1∆p1)∗ +
ρgAD∆t

∆z

[
0 − (u∗∗1 − u∗∗2 )

]
(40)

for the uppermost layer, and

(∆pR)n+1u∗∗R = (uR∆pR)∗ +
ρgAD∆t

∆z

[
(u∗∗R−1 − u∗∗R ) − 0

]
(41)

for the bottom layer. Eqs. (39)–(41) constitute a tridiagonal system of equations for u∗∗1 , . . ., u∗∗R . This system is solved
for each quadrature point in each grid cell. The solutions are used to compute the shear stresses (38) at quadrature
points, which are then used to compute the integral weak form (35) of the shear stress term.

This integral weak form is then included in the discrete equations for the degrees of freedom for the momentum
density ur∆pr. In the time-stepping method developed in [18], the Coriolis terms are implemented implicitly during
the correction step for the layer equations, and during the correction step the final action in the algorithm is to re-do
this implicit implementation.

Eq. (39) implies that, as the thickness of layer r tends to zero, u∗∗r →
(
u∗∗r−1 + u∗∗r+1

)
/2 if 2 ≤ r ≤ R − 1. If the

thickness of the top layer tends to zero, then Eq. (40) implies u∗∗1 → u∗∗2 ; if the thickness of the bottom layer tends to
zero, then (41) implies u∗∗R → u∗∗R−1. These properties imply a regularization of the shear stress that inhibits spurious
forcing in thin layers.

7. A limiter for layer thickness

With a DG spatial discretization, it is possible for the layer thickness ∆pr to have negative values at some locations,
even if the average value of ∆pr is positive in each grid cell. This situation is due to excessive variations in the
polynomial approximations to ∆pr, and it is primarily a problem with thin layers.

Section 3.3 gives motivations for preventing negative values of layer thickness during a computation. In particular,
if ∆pr < 0 then the mass flux ur∆pr has a sign that is opposite the sign of the velocity ur. This suggests that the
computational algorithm should be designed so that all values of ∆pr that affect the mass transport remain nonnegative.
The weak form of the mass equation (4) is∫

D j

{
∂

∂t
(∆pr)

}
ψ(x) dx +

[
(ur∆pr)ψ(x)

]x=x j+1/2

x=x j−1/2

−

∫
D j

(ur∆pr)ψ′(x) dx = 0. (42)

The present work then uses the criterion that an algorithm should at least maintain nonnegative values of ∆pr at
the endpoints and quadrature points in each grid cell. Towards that goal, the present section develops a limiter on
variations in ∆pr. Although this limiter focuses on endpoints and quadrature points, the limiter actually produced
positive values everywhere in some computations reported in Sections 8.2 and 8.3.

The main idea of the limiter is the following. Assume that, on a given grid cell and in a given layer at a given time,
the mean value of ∆pr is nonnegative. Then, if needed, reduce the variation of ∆pr from its mean so that the values of
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the modified ∆pr lie within a specified range, at the endpoints and quadrature points in that cell. The limiting process
does not affect cell averages of ∆pr, so it conserves the total mass in each grid cell in each layer.

The idea of reducing the variation from the mean has been used, for example, by Zhang and Shu [31] in the context
of scalar nonlinear hyperbolic conservation laws; by Xing et al. [30], Bonev et al. [7], and Wintermeyer et al. [28]
with the shallow water equations for a single-layer fluid; and by Srinivasan et al. [27] for scalar convection-diffusion
equations. The present work adapts and extends that approach to DG modeling of a multi-layer stratified fluid.

For definiteness, the following analysis assumes that the representation (9) of dependent variables is a modal
representation, in which ψ( j)

n is the Legendre polynomial of degree n with independent variable scaled and translated
to grid cell D j. The analysis can also be extended to the case of nodal DG methods, in which the basis functions
are Lagrange interpolation polynomials and the degrees of freedom are pointwise values of dependent variables at
interpolation points. For the case considered here, the representation of ∆pr is

(∆pr)(x, t) =

M∑
n=0

δ
( j)
r,n(t) ψ( j)

n (x) (43)

for all x ∈ D j, for all t, and 1 ≤ r ≤ R. Here, ψ( j)
0 (x) = 1 for all x ∈ D j, and the set

{
ψ

( j)
0 , ψ

( j)
1 , . . . , ψ

( j)
M

}
is orthogonal

on D j. Each of the terms in (43) for 1 ≤ n ≤ M then has integral zero on D j, and δ( j)
r,0(t) is the mean value of ∆pr on

cell D j at time t. It was assumed above that this mean value is nonnegative.
Let A denote the mean (average) value of ∆pr on cell D j at time t; for simplicity, the dependence of A on r, j, and

t is not included in the notation. Then A = δ
( j)
r,0(t) ≥ 0, and Eq. (43) is equivalent to

(∆pr)(x, t) = A +

M∑
n=1

δ
( j)
r,n(t) ψ( j)

n (x). (44)

The sum for 1 ≤ n ≤ M in (44) is the deviation of ∆pr from its mean. The limiter developed here is based on
modifications of (44) having the form

(̃∆pr)(x, t) = A + β

 M∑
n=1

δ
( j)
r,n(t) ψ( j)

n (x)

 = A + β
[
(∆pr)(x, t) − A

]
, (45)

where β is a constant that satisfies 0 ≤ β ≤ 1. In general, β can depend on r, j and t.
To specify the limiter, let γmin and γmax be constants for which 0 ≤ γmin < 1 < γmax; these constants are chosen by

the user. The goal is to find a constant β such that 0 ≤ β ≤ 1 and

γminA ≤ (̃∆pr)(x, t) ≤ γmaxA (46)

for all endpoints and quadrature points in cell D j. That is, the modified thickness (̃∆pr)(x, t) should be at least some
specified fraction of the cell mean and at most some specified multiple of that mean. If possible, use β = 1; otherwise,
choose β as large as possible in order to minimize the modification of the solution. The parameter γmax may be
unnecessary, but it is mentioned here as a possibility. The computations reported in Sections 8.2 and 8.3 used the
values γmin = 0.2 and γmax = 2.0.

The construction of the parameter β given in Section 7.1, for given r, j, and t, is based on the maximum and
minimum of ∆pr at the endpoints and quadrature points in cell D j. If the only goal of the limiting process is to
prevent negative values of ∆pr at those points, then it would suffice to use γmin = 0, along with the minimum of ∆pr

at those points. On the other hand, if the goal is to produce nonnegative values of ∆pr everywhere in D j, then using
γmin = 0 would require that one obtain the minimum of ∆pr over all of D j. The minimum value at the endpoints
and quadrature points is only an approximation to that quantity. Using positive values of γmin could compensate for
the error in that approximation and thereby create the possibility of obtaining nonnegative values of ∆pr everywhere.
Details will not be pursued here analytically. However, the limiter produced positive values of ∆pr everywhere in the
numerical experiments reported in Sections 8.2 and 8.3.

A more general problem in limiting is that of suppressing spurious numerical oscillations, even in situations where
the positivity of solutions is not an issue. One such technique begins with representing the solution in each grid cell
in terms of a Taylor expansion, re-arranged so that each term of positive degree has mean value zero on that cell.
If circumstances warrant, use coefficients between 0 and 1 to reduce the magnitudes of some or all of the terms of
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positive degree. Various methods can be used to determine such coefficients, and different terms could be reduced by
different amounts. This type of method has been used, for example, by Aizinger et al. [2], Kuzmin [21], and Michoski
et al. [23], and it is related to the method used in the present paper. A more general survey of limiting is given in the
book by Hesthaven [14].

7.1. The contraction factor β

The factor β in (45) serves to contract the deviation of ∆pr from its mean, when needed. To construct β, let B be
the maximum of ∆pr at the endpoints and quadrature points in cell D j at time t, and let b be the minimum of ∆pr at
those points. (The dependence of B and b on r, j and t is omitted from the notation.) The condition (46) is satisfied at
all of those points if and only if

A + β
[
B − A

]
≤ γmaxA

γminA ≤ A + β
[
b − A

]
.

The factor β also satisfies 0 ≤ β ≤ 1, so the largest value of β that satisfies the necessary constraints is

β = min
{

1,
(γmax − 1)A

B − A
,

(1 − γmin)A
A − b

}
. (47)

7.2. Implementation in a multi-layer model

During the process of solving the equation for conservation of mass on each grid cell and in each layer, the limiter
is applied at the end of the process, after the degrees of freedom δ

( j)
r,0, . . ., δ( j)

r,M have been computed and the pointwise
values of ∆pr have been computed at the endpoints and quadrature points.

First, the pointwise values of ∆pr are used to compute the parameter β in (45) and (47). The limiter is then applied
to the degrees of freedom by replacing δ( j)

r,n with

βδ
( j)
r,n = δ

( j)
r,n − (1 − β)δ( j)

r,n (48)

for 1 ≤ n ≤ M; see Eq. (45). Similarly, the limiter is applied to the pointwise values of ∆pr by replacing ∆pr with

(̃∆pr) = A + β
[
(∆pr) − A

]
= ∆pr − (1 − β)

[
(∆pr) − A

]
. (49)

This modification of ∆pr cannot be done in isolation, as it necessarily affects the layers above and/or below layer
r. Therefore, the adjustment expressed in (45)–(49) is followed by a compensating adjustment in an adjacent layer.
Adjustments are done in two steps; sweep vertically from the bottom layer up to the top layer, in order to remedy any
negative thicknesses in thin layers along the bottom, and then sweep from the top downward to the bottom in order to
deal with any thin layers at the top. The two sweeps are analogous, so only the upward sweep is described here.

During the upward sweep, subtract (1 − β)δ( j)
r,n from the existing degree of freedom δ

( j)
r,n for mode n in layer r,

and then add that same quantity to δ( j)
r−1,n, the degree of freedom for that same mode in the layer immediately above.

Similarly, subtract (1 − β)
[
(∆pr) − A

]
from ∆pr at each endpoint and quadrature point, and add the same amount to

∆pr−1, the thickness of the layer immediately above.
The quantity ∆pr is g times the mass per unit horizontal area in layer r. This two-dimensional density function is

modified by the adjustment just described. However, the adjustment is conservative, in the following senses:
(i) The sum ∆pr(x, t) + ∆pr−1(x, t) is g times the two-dimensional density for layers r and r − 1 combined, at

horizontal position x and time t, and this sum is not altered at any of the endpoints or quadrature points of any grid
cell.

(ii) The adjustment does not affect the cell average A = δ
( j)
r,0(t) ≥ 0, so the total mass in each layer in each cell is

not modified. Instead, the adjustment affects only the shapes of the interfaces between layers.
An adjustment in ∆pr could cause a change in ∆pr−1 that in turn creates a need to adjust ∆pr−1. This adjustment

process can then have a ripple effect upward through the water column. However, the adjustments stop when the
process reaches a layer that is sufficiently thick.

Statements analogous to (i)–(ii) can also be made about the degrees of freedom δ
( j)
r,n.
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8. Numerical computations

This section describes the results of some numerical computations that test the methods developed in preceding
sections. For the numerical algorithms that were used in these computations, the aspects that are not developed in the
present paper were described and tested in the earlier papers [17] and [18]. Section 8.1 describes a purely diffusive,
idealized test problem that checks the formulation of horizontal viscosity that is developed in Section 4. Sections 8.2
and 8.3 present numerical solutions of problems that involve upwelling, downwelling, and thin layers in multi-layer
fluids.

8.1. Pure diffusion

For the present test, assume that a two-layer fluid occupies an infinite straight channel for which y is unbounded
and 0 ≤ x ≤ L. At the top of the fluid, apply a constant wind stress in the y-direction. De-activate all other forcing
terms in the momentum equations, except for the horizontal viscosity. Also de-activate the mass equation, so that
∆pr never varies in time. Under these assumptions, the v-component (3) of the momentum equation in the top layer
reduces to

∂

∂t
(v∆p) = gτ +

∂

∂x

(
AH∆p

∂v
∂x

)
. (50)

Here, the subscripts that indicate the layer have been deleted; and τ denotes the wind stress, which is independent of
(x, y, t). The quantity ∆p can vary with x but is independent of t. At the boundaries x = 0 and x = L, impose the
no-slip condition v = 0.

Initialize the system to a state of rest, and beginning at time t = 0 impose the constant wind stress τ. As t → ∞,
the system approaches a steady state for which the friction at the boundaries balances the wind forcing, i.e., the rate of
energy loss at the boundaries equals the rate of energy input at the top of the fluid. The steady-state velocity v, which
depends only on x, then satisfies the boundary value problem

d
dx

(
AH∆p

dv
cx

)
= − gτ for 0 < x < L (51)

v(0) = v(L) = 0. (52)

Now assume that the thickness of the top layer, in terms of linear distance, is cx + d, where c and d are constants
with c ≥ 0 and d > 0. Then (∆p)(x) = ρg(cx + d) for 0 ≤ x ≤ L, where ρ denotes the density of the fluid in the
top layer. A linear variation of ∆p is chosen here in anticipation of a configuration that is encountered in Section 8.2.
Two integrations of Eq. (51), combined with the boundary conditions (52), yield

v(x) =
τ

cρAH

[
L

log (1 + xc/d)
log (1 + Lc/d)

− x
]

(53)

if c > 0 and

v(x) =
τ

2dρAH
x(L − x) (54)

if c = 0.
Computed steady-state solutions can be compared to these analytical solutions in order to test the numerical

implementation that has been developed here for the viscosity term. The above problem is not physically realistic,
but instead it is used only for test purposes. The algorithms used here employ a barotropic-baroclinic splitting, so the
de-activation of terms mentioned above applies both to the barotropic equations and to the baroclinic equations.

For the computations described below, the spatial interval is partitioned into 10 grid cells with length ∆x = 10 km,
so L = 100 km, or 105 meters. The wind stress applied to the top of the fluid is τ = 0.01 N/m2. The viscosity
coefficient is AH = 80 m2/s, which is the same as is used in Sections 8.2 and 8.3. In each of the configurations
described below, the top layer has a mean thickness of 50 meters, and the specific volume (reciprocal of density) of
that layer is 0.975 × 10−3 m3/kg. The bottom layer has mean thickness 450 meters, but that layer is inactive in this
test. The baroclinic and barotropic time steps are the same as those used in Sections 8.2 and 8.3. For convenience,
the times associated with numerical results are stated in terms of model days instead of the number of steps. In the
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DG spatial discretization that is used here, quadratic polynomials are used to approximate v in each grid cell; a brief
discussion of polynomial degree is included in Section 8.2.

Fig. 2 shows solutions that are obtained when the thickness of the top layer varies linearly from 20 meters at x = 0
to 80 meters at x = L. In the upper frame in the figure, the solid curve is a graph of the computed v as a function of x
at time t = 200 days. The dashed curve is a plot of the steady-state solution (53). These plots of v are not symmetric
about the midpoint x = L/2, due to the nonsymmetric nature of the quantity ∆p that appears in the diffusive flux
AH(∆p)dv/dx. In the lower frame of Fig. 2, the numerical solution at time t = 800 is plotted with a solid curve, and
the analytical steady state is plotted with a dashed curve. By this time, the system has nearly reached a steady state,
and the two curves are indistinguishable in the present plot. The numerical steady state thus agrees very closely with
the analytical steady state. Similar behavior, not illustrated here, is obtained if the top layer has a constant thickness
of 50 meters; in that case, the solutions are symmetric about the midpoint x = L/2.
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Fig. 2. Plots of v in the purely diffusive test problem, for the case where the thickness of the top layer varies linearly from 20 meters at
x = 0 to 80 meters at x = L. In the upper frame, the solid curve is a graph of the computed v as a function of x at time t = 200 days. The
dashed curve is a plot of the steady-state solution (53). The lower frame is an analogous plot for model day 800; in this case the two curves
are indistinguishable, as the numerical steady state agrees closely with the analytical steady state.

The first paragraph in Section 4.2.2 states that, in the setting of a barotropic-baroclinic splitting, the factor ∆p =

(1 + η)∆p′ in the diffusive flux in the viscosity term can be approximated with the baroclinic quantity ∆p′. For the
computation shown in Fig. 2, the quantity η is nonzero, but the approximation ∆p ≈ ∆p′ appears not to degrade
significantly the accuracy of the computed solution.

Section 4.2.4 gives a reason for maintaining a minimum value of ∆p′ in the diffusive flux. This stipulation was
included in the computations that are described in Sections 8.2 and 8.3, with a value of ∆pr,min that is equivalent to an
elevation difference of 20 meters. If the actual layer thickness is less than that amount, then the modification of ∆p′ in
the diffusive flux has the effect of increasing the rate of diffusion. The effect of this procedure is illustrated in Fig. 3.
In that figure, the dashed curves show the analytical steady state (53) for the case where the thickness of the top layer
varies linearly from 10 meters at x = 0 to 90 meters at x = L. The solid curves show numerical solutions when the
values of ∆p′ in the diffusive flux have a corresponding linear variation, except that a max function is used to prevent
∆p′ from being less than the equivalent of 20 meters. The increased rate of diffusion causes some reduction in the
steady-state computed values of v, but the pattern of spatial variation of those values is similar to what is seen in the
analytical steady state.

The solutions in Figs. 2 and 3 appear to satisfy the no-slip boundary conditions v(0) = v(L) = 0. However, in
this DG algorithm these boundary conditions are enforced only weakly, in the sense described in Sections 4.1.2 and
4.2.2. The weak formulation of the viscosity term is used to compute the degrees of freedom for momentum, which
are the quantities that are actually computed during the time-stepping for the DG method. Pointwise values of the
solution are obtained by combining the degrees of freedom with basis functions, as indicated in the representations
(9) of dependent variables. In the case of the numerical steady-state solution illustrated in Fig. 2, for example, the
computed boundary values of v are v(0)=̇ − 1.7 × 10−3 m/s and v(L)=̇6.5 × 10−5 m/s.
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Fig. 3. Plots of v in the purely diffusive test problem, for the case where the thickness of the top layer varies linearly from 10 meters at
x = 0 to 90 meters at x = L. In the numerical experiments described in Sections 8.2 and 8.3 for the multi-layer fluid problem, the values of
∆p′ appearing in the diffusive flux are taken to be no less than the equivalent of 20 meters. The present test illustrates the effect of such a
condition. In this case, the restriction on ∆p′ increases the rate of diffusion near the left end of the spatial interval, and this reduces slightly
the computed values of v.

8.2. Upwelling, downwelling, and a thin layer in a two-layer fluid

The present subsection describes the results of some numerical computations involving the full algorithm as
applied to a fluid with two layers. In this test, a wind stress is applied at the top of the fluid, and this stress generates
lateral transport that causes the upper layer to have negligible thickness in some locations. A test with three fluid
layers is described in Section 8.3.

For the present test, assume that the fluid occupies an infinite straight channel with vertical sidewalls and a flat
bottom. Let x denote a coordinate in the direction across the channel, and let y be a coordinate along the length of the
channel. Assume that all quantities in this problem are independent of y.

When the fluid is at the rest state, the upper layer has a uniform thickness of 50 meters, and the lower layer
has thickness 450 meters. The specific volumes of the upper and lower layers are 0.975 × 10−3 m3/kg and 0.970 ×
10−3 m3/kg, respectively. The Coriolis parameter in the momentum equations is f = 10−4 s−1, which is similar to
the Coriolis parameter on Earth at latitude 45◦N. The interval in x is partitioned into 50 grid cells, each with length
∆x = 10 km = 104 m, so the width of the channel is 500 km.

The horizontal viscosity is AH = 80 m2/s; some experiments with smaller values of AH yielded some numer-
ical noise in the velocity field in certain locations. The diapycnal viscosity AD in the interior shear stress (36) is
AD = 10−4 m2/s. The friction at the bottom of the fluid is represented in the manner described in Section 6.1, with
dimensionless drag coefficient cD = 0.003 as used in [6].

The DG spatial discretization uses polynomials of degree two in each grid cell. In the analysis of dispersion
relations in [17], which is mentioned in Sections 1 and 5 of the present paper, polynomials of degree two produced
results that were noticeably better than polynomials of degree one, but polynomials of degree three yielded diminish-
ing returns. Those results are taken here as a suggestion for the choice of polynomial degree. Polynomials of degree
two were also used in the numerical computations described in [17] and [18].

The computations described in the present paper employ the two-level time-stepping method that is outlined in
Section 5. The timesteps for this method are determined as follows. A modal analysis similar to the analysis in the
Appendix of [18] shows that, for the particular two-layer fluid considered here, the internal and external gravity wave
speeds are approximately 1.5 m/s and 70.0 m/s, respectively, for small perturbations of the rest state. However, for
the present problem it is assumed that the quantity “c” in the Courant number c∆t/∆x for the layer equations should
be the internal wave speed plus some upper bound on the fluid speed. In the present computations, the timestep ∆tbcl

for the layer equations, i.e., the baroclinic timestep, is 450 seconds. The bound c∆t/∆x < 0.16 for quadratic spatial
discretizations, which is stated in Section 5, is equivalent to c < 3.56 m/s when ∆x = 104 m. Given that the internal
wave speed is approximately 1.5 m/s, this bound allows a fluid speed up to 2 m/s. For the (fast) barotropic equations,
there are 23 barotropic substeps per baroclinic step, so the barotropic timestep is ∆tbtp = 450/23 seconds. Given that
the external wave speed is approximately 70.0 m/s, the Courant number for the barotropic equations is approximately
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0.14.
The system is initialized to a state of rest, and beginning at time t = 0 a constant wind stress τ = 0.1 N/m2 is

applied at the top of the fluid in the positive y-direction, which is along the length of the channel. The wind stress
appears in the v-component (3) of the momentum equation, and it has an immediate effect of inducing positive values
of v in the upper layer over the entire spatial interval. The Coriolis term − f vr∆pr in the u-component (2) of the
momentum equation then induces positive values of u in the upper layer.

The effect of this lateral transport in the x-direction (i.e., Ekman transport [11]) is illustrated in Fig. 4. The top
frame in the figure shows a cross-section of the fluid at time t = 50 days. In this figure, the horizontal coordinate is the
cross-channel coordinate x, the vertical coordinate is elevation, and the wind stress at the top of the fluid is directed
into the page. During the time interval 0 ≤ t ≤ 50, positive values of u in the upper layer induce a rightward shift of
fluid in that layer. At day 50, the upper layer has negligible thickness near the left end of the interval, and at the right
end of the interval the upper layer is thicker than at the rest state. Additional lateral transport is seen in the middle
frame in Fig. 4, which shows the computed solution at time t = 100 days. The bottom frame in that figure shows
the computed solution after 600 days. By this time, the system is essentially at a steady state; the computation was
executed to time t = 1000 days, but plots of the solution after day 600 showed no visible changes relative to day 600.
In the steady state, the wind stress at the top of the fluid is balanced by frictional forces along the bottom of the fluid,
at the interface between the layers, and at the sidewalls.
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Fig. 4. Cross-sections of a two-layer fluid in an infinite straight channel at model days 50, 100, and 600. Each plot shows the free surface
at the top of the fluid and the interface between the two layers. At time t = 0 the system is at rest, and for that case the free surface and
the interface would be represented by straight horizontal line segments. Elevation z = 0 is the location of the free surface at the rest state.
Beginning at time t = 0, a constant wind stress is applied to the top of fluid along the direction of the channel, which is into the page. Due
to the Coriolis effect, the fluid in the upper layer is shifted to the right. Near the left end of the spatial interval, the upper layer is reduced
to negligible thickness. By day 600, the system is at an approximate steady state. A more detailed view of the free-surface elevation at day
600 is given in the bottom frame of Fig. 6.

In the bottom frame in Fig. 4, the upper layer appears to have negligible thickness on an interval that extends
from x = 0 to approximately x = 360 km. On that interval, the thickness of the upper layer is at most a few tenths
of a meter, as illustrated in Fig. 5. The pattern shown in that figure remains stationary after model day 600. In this
example, the limiting process described in Section 7 succeeds in maintaining positive layer thicknesses everywhere.

Fig. 6 shows plots of the velocity components v in the upper and lower layers, as functions of x, at time t = 600
days. The figure also includes a plot of the elevation of the free surface at the top of the fluid, at that same time.

In the context of plots of cross-sections of the fluid, such as those shown in Fig. 4, positive and negative values of
v would represent flow into and out of the page, respectively. Fig. 6 shows that on the portion of the spatial interval
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Fig. 5. Thickness of the upper layer in the two-layer fluid at model day 600. This pattern remains stationary for hundreds of model days.
The vertical scale is logarithmic.

where the upper layer has negligible thickness, the values of v in the upper and lower layers are essentially the same.
Elsewhere, the velocity in the upper layer is greater than in the lower layer. In the latter case, for the upper layer the
dependence of v on x has an asymmetry that is an analogue of the patterns seen in Figs. 2 and 3, which illustrate the
effect of the viscosity term for cases where ∆p′ varies linearly with x except for a requirement that ∆p′ be at least as
large as a positive threshold value. A linear variation in the thickness of the upper layer is also seen in the present
case, as illustrated on the right end of the bottom frame of Fig. 4.
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Fig. 6. The top frame shows values of the along-channel velocity v in the upper layer of the two-layer fluid at model day 600. The middle
frame shows v in the lower layer at that same time. In the bottom frame, the solid curve shows the elevation of the free surface at the top of
the fluid at day 600, and the horizontal dotted line shows the position of the free surface when the fluid is at the rest state. On the interval
0 < x < 360 km, the upper layer has negligible thickness, and the velocities in the two layers are essentially the same. Elsewhere, the upper
layer is thicker and can slide over the lower layer. The larger values of v in the upper layer near the right end of the spatial interval imply
larger values of the slope of the free surface in that region, due to geostrophic balance in the u-component of the momentum equation.

The relationships between the computed values of v in the upper and lower layers can be explained as follows.
On the interval where the upper layer has negligible thickness, the velocities in the upper and lower layers are locked
together, due to the implementation of interfacial shear stress that is described in Section 6.2. In this case, the shear
stress at the top of the fluid is balanced by frictional stress along the bottom of the fluid. The bottom stress depends
on velocity, so this balance determines v in this region. On the other hand, on the portion of the spatial interval where
the upper layer has non-negligible thickness, the velocities in the two layers can differ. In that case, the upper layer
can slide over the lower layer, and the wind stress is balanced by the frictional stress between layers, which in turn is
balanced by the bottom stress. Details of these processes are described in [15], which develops analytical steady state
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solutions for this test problem, in the inviscid case AH = 0.
The analysis in [15] uses the same representations of interfacial stress and bottom stress as in the present paper,

with the same values of parameters. In the case where AH = 0, the steady-state value of v in the lower layer is
approximately 0.18 m/s, and the steady-state value of v in the upper layer is approximately 1.54 m/s in the region
where the upper layer has non-negligible thickness. These values of v are very close to the maximum values of v in
the two layers that are attained in the computed solution with AH = 80 m2/s, as revealed by zoomed-in views (not
included here) of plots of the computed solution.

In the plot of the elevation of the free surface that is given in the bottom frame of Fig. 6, the free surface has a
greater slope on the region where the upper layer has non-negligible thickness and thus has larger values of v. This
situation is a result of geostrophic balance. In the steady state illustrated here, u = 0, and the u-component (2) of the
momentum equation reduces to a balance between the Coriolis term and the pressure gradient. Larger values of v in
the upper layer imply larger values of the Coriolis term and thus larger values of the pressure gradient in that layer;
the latter then implies a greater slope of the free surface.

8.3. A three-layer fluid

Next consider a fluid with three layers. For the test computation described here, the layers have specific volumes
0.975 × 10−3 m3/kg, 0.973 × 10−3 m3/kg, and 0.970 × 10−3 m3/kg, ordered from top to bottom. Refer to these layers
as layers 1, 2, and 3, respectively. When the fluid is at the rest state, the layers have uniform thicknesses 50 m, 100 m,
and 350 m, respectively. All other aspects of the problem are the same as with the two-layer fluid discussed in Section
8.2.

Fig. 7 shows cross-sections of the three-layer fluid at model days 50, 100, and 600. As before, the applied wind
stress generates lateral transport that produces thin layers at the top of the fluid near the left end of the spatial interval.
By day 50, layer 2 has outcropped to the upper surface of the fluid, and by day 100 layer 3 has also outcropped to
the upper surface. By day 600 the interface between layers 2 and 3 has dropped to the bottom of the fluid domain, so
that layer 3 has negligible thickness near the right end of the interval. At day 600, the system has not quite reached a
steady state.

Fig. 8 shows a plot of the thickness of the top layer at day 600. On the left half of the spatial interval, the top layer
has thickness between 10−4 and 10−3 meters, and on another portion of the interval the top layer has a thickness of
a few tenths of a meter. Similar plots of the thicknesses of the other layers (not included here) show that the middle
layer has a maximum thickness of about 0.1 meter on the left half of the spatial interval, and the bottom layer has a
similar thickness near the right end of the interval. Each of the layers has positive thickness everywhere.

9. Summary

This paper continues a development, begun in [17] and [18], of various procedures that are needed for using
discontinuous Galerkin spatial discretizations for multi-layer models of ocean circulation.

One step taken here is to develop an implementation of the horizontal viscosity terms in the momentum equations.
This is done by adapting the “local DG” method for usage with barotropic-baroclinic time splitting, a technique that
is widely used to deal with the multiple time scales that are present in the system. In general, the local DG method
consists of introducing an auxiliary dependent variable q, which is related to the diffusive flux, and then developing a
weak Galerkin form for this additional unknown. The additional weak form is used to compute values of q that can
then be used in the weak form of the viscosity term. In the implementation developed here, the auxiliary variable for
the u-component of the momentum equation is q = ∂u/∂x.

In the setting considered in the present paper, the velocity and mass variables are split into barotropic (rapidly-
varying) and baroclinic (slowly-varying) components; the splitting of velocity then induces a splitting of the auxiliary
variable q. These split variables appear in the viscosity terms in the layer equations and also in the vertically-integrated
barotropic equations that are used to model the fast external motions in the system. The layer equations are solved
with relatively long timesteps, and the fast barotropic equations are solved with relatively short substeps. When the
layer equations are solved on a long time interval, the barotropic quantities are represented by time averages over all
of the substeps of that interval, and in the barotropic part of the algorithm the slow variables are held constant over
each of the long time intervals when the barotropic variables are updated with short substeps.

The quantity q = ∂u/∂x is a factor in the diffusive momentum flux. At the edges of grid cells, this quantity is
represented as a combination of two effects: (i) averages of one-sided limits of q from within the interiors of cells,
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Fig. 7. Cross-sections of a three-layer fluid at model days 50, 100, and 600. Each plot shows the free surface at the top of the fluid and the
interfaces between the layers.

0 50 100 150 200 250 300 350 400 450 500
x  (km)

10-4

10-2

100

m
et

er
s

Thickness of the top layer,  day 600

Fig. 8. Thickness of the top layer in the three-layer fluid at model day 600. The vertical scale is logarithmic.

in order to represent the diffusive effects of variations of u near the edges, and (ii) terms involving jumps in u at cell
edges, which represent diffusive actions across those edges. In the case of a barotropic-baroclinic splitting, these
representations at cell edges are split into barotropic and baroclinic components.

This paper also addresses the possibility that thin layers could develop as the state of the fluid evolves. In order to
prevent computational failure in this situation, the following steps are taken here.

(i) Shear stresses are implemented so as to inhibit the development of erratic velocities associated with thin layers.
In particular, the implementation of the shear stress between fluid layers has a vertically-implicit aspect that regularizes
the shear forcing on thin layers. Also, the wind forcing at the top of the fluid is assumed to decay to zero over a short
vertical interval instead of being applied strictly to the top layer, which could be arbitrarily thin. A similar process is
applied to the frictional stress at the bottom of the fluid.

(ii) In the event that a layer becomes thin in a region, it is possible for the computed layer thickness to become
negative in portions of some grid cells, even if the cell averages of thickness remain positive. This would be due to
excessive variation in the polynomial approximations to layer thickness. Accordingly, this paper describes a limiter
on the variations of such approximations, when such limiting is needed. When this limiter is applied on a given grid
cell in a given layer, the deviation of the thickness from the mean is reduced; in the case of a modal DG method this
contraction of the deviation is applied both to the degrees of freedom and to the pointwise values of thickness. A
compensating adjustment is made in an adjacent layer, either above or below, so that the adjustment only affects the
shape of the interface between the two layers. These adjustments are performed in an upward sweep from the bottom
of the fluid and a downward sweep from the top. The limiter conserves mass within each layer and in each grid cell.
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Numerical computations with model problems are then used to test the methods that are developed here. The
first test is a purely diffusive problem that tests the implementation of the viscosity terms. As t → ∞, computed
solutions converge to an exact analytical steady state, provided that the same formulas for diffusive flux are used in
the numerical and analytical problems. The second test applies the full algorithm to a fluid with two layers. In this
case, a wind stress applied at the top of the fluid generates lateral transport that leads to upwelling on one part of the
spatial domain and downwelling on another part of the domain. A layer with negligible thickness develops on a part
of the domain, and the algorithm successfully maintains nonnegative thickness and prevents the appearance of erratic
velocities. In a third test, which uses a fluid with three layers, the algorithm again succeeds in representing layers that
develop negligible thickness due to upwelling and downwelling.
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