
Notes on Computational Mathematics:

Matlab

Robert L. Higdon
Department of Mathematics

Oregon State University
Corvallis, Oregon 97331-4605

Revised April 1996

Introduction

These notes were originally developed for a course in computational mathematics
given in the Department of Mathematics at Oregon State University. The goals of the
course are to give an introduction to some standard mathematical software packages and
to describe some mathematical topics that can be illuminated by computational examples
and experimentation. The present notes were developed for the portion of the course that
is concerned with Matlab.

Matlab is a software package for numerical computation and graphics developed by
The MathWorks, Inc., http://www.mathworks.com , (508) 647-7000. MATLAB is a
trademark of The MathWorks, Inc. Much more information about this package can be
obtained from the MATLAB User’s Guide and the MATLAB Reference Guide, which are
available from The MathWorks. These notes are based on Version 4.2 of Matlab.

Copyright c© 1994, 1996, by Department of Mathematics, Oregon State University.
Permission is granted to copy this document for non-profit purposes, provided that this
copyright notice is preserved on all copies.

Matlab fundamentals

1. Beginning and ending a session
2. The help and demo facilities
3. Variables and expressions
4. Numbers
5. Command-line editing
6. Listing your variables
7. Executing operating system commands while in Matlab
8. Directories and search path
9. Printing
10. Saving your variables
11. Loading numbers from external files

1. Beginning and ending a session
To begin a Matlab session, type matlab at the prompt from the operating system,

and then press the return key. While you are in Matlab, enter commands at the prompt
>> .

Occasionally you may enter a command and then decide that you want to stop execu-
tion of that command. For example, the command may be taking a long time to execute,
and you might not want to wait that long. To stop execution, type ctrl c ; that is, hold
down the control key and press c .

To end a Matlab session, type quit at the Matlab prompt. It is possible to save the
values of the variables that are created during the session; this is discussed later.

2. The help and demo facilities
Matlab has an extremely good on-line help facility. If you type help at the Matlab

prompt, Matlab will display a list of help topics. One of these items, for example, is
matlab/plotxy - Two dimensional graphics. ; if you then type help plotxy , you
will see a list of functions related to plotting two-dimensional data. One of the items in
this list is plot - Linear plot. ; if you type help plot , the result is a description of
how to use the plot function.

If you type demo at the Matlab prompt, you will receive a menu that lists several
demonstrations of the capabilities of Matlab. These demonstrations are very informative.

3. Variables and expressions
Variables can be assigned values that are either scalars, vectors, or matrices.
Scalar variables can be assigned values by using an equal sign, e.g., x = 1 . The usual

arithmetic operations on scalars are indicated by the following symbols: + for addition,
- for subtraction, * for multiplication, / for right division, \ for left division, ^ for
exponentiation. For example, 1/4 is the same as 4\1, and x^2 denotes the square of x.

If you type a semicolon ; at the end of a command, Matlab will not print the output
of that command.

Matlab is case-sensitive. For example, x and X are not the same.

1

4. Numbers
The format of numerical output can be selected by the format command. Any of

the following commands can be typed at the Matlab prompt >> , and the form of the
numerical output is determined as indicated. For information about other formats, consult
the help facility by typing help format at the Matlab prompt.

format Default. Save as format short .
format short Fixed-point format with 4 digits after the decimal place;

converts to exponential form for large numbers.
format short e Exponential format with 5 digits.
format long Fixed-point format with 14 digits after the decimal point.
format long e Exponential format with 15 digits.
format rat Approximate by ratios of small integers.

Large and small numbers can be entered in exponential format. For example, 1e6 is
the same as 106, and 1e-6 is the same as 10−6.

The imaginary unit is denoted by both i and j. Thus i*i and j*j are both equal to
−1.

The permanent variable eps is initially the distance from 1.0 to the next largest
floating-point number that can be stored in the machine you are using. It gives a measure
of the precision that is being used in floating-point computations.

5. Command-line editing
The up-arrow key enables you to display previous command lines on the current line.

This is very useful if you need to correct a typographical error and re-execute a command,
or if you need to execute a command that is very similar to one executed earlier. To edit
a command line, use the left-arrow and right-arrow keys to move back and forth through
a line, use the delete and/or backspace keys to delete text, and type at the cursor to
insert text.

If you enter some characters on the current command line, and if you then press the
up-arrow key, Matlab will display the most recent line that begins with those characters.
If there is no such line, the preceding line is displayed.

Suppose that a command is too long to fit on one line. Finish the current line with
an ellipsis consisting of at least three periods (...), press the return key, and continue on
the following line.

Several short commands can be placed on one line. In this case, if you want the output
of a command to be printed, end it with a comma; if you want to suppress printing of a
command, end it with a semicolon.

An alternative to command-line editing is to write Matlab statements into a file and
then execute the file. This will be discussed later. A variation on this method is applicable
if you are working in a window system. Have one window open to the file and another
window open to Matlab, and use the mouse to copy-and-paste from the file window into
the Matlab window.

The command clc clears the Matlab command window and moves the cursor to the
top of that window.

2

6. Listing your variables
The command who produces a list of all of the variables that are currently defined

during the Matlab session. The command whos is similar to who, but it also gives the
dimensions of each variable (when regarded as a matrix) and total memory used.

The command clear clears all variables, and the command clear x clears the
variable x.

7. Executing operating system commands while in Matlab
It is possible to execute operating system commands while you are working in Matlab.

At the Matlab prompt, type ! and follow it with the command that you want to execute.
For example, if you are using a machine that runs the Unix operating system, and if you
want to execute the Unix command ps -aux , you can type !ps -aux at the Matlab
prompt >> . (If you are intending to execute some Matlab commands that will consume
a lot of computing time, it would be a good idea to execute ps -aux first in order to see
how busy the machine is.)

If you are working with the Unix operating system, some other commands you might
want to use are the following: pwd (print your current working directory), ls (list the
contents of that directory), and cd directoryname (change directory to directoryname).
These commands are built into Matlab; typing pwd at the Matlab prompt is equivalent
to !pwd, and ls is equivalent to !ls. However, !cd directoryname does not have any
effect, whereas cd directoryname works as expected.

The Matlab command dir is equivalent to ls, the Matlab command delete file-
name is equivalent to !rm filename on a Unix system, and the Matlab command type
filename is equivalent to !cat filename on a Unix system.

8. Directories and search path
Occasionally you may need to execute Matlab programs that are contained in files

external to Matlab. The programs should be located in files that either are in your current
working directory or are in a directory contained in Matlab’s “search path”. The latter is
a list of directories that Matlab will search when it is asked to read the contents of a file.
To see your current search path, type path at the Matlab prompt. Most of the directories
listed may be directories that contain the Matlab system, but there may be at least one
directory listed which is accessible to the user. You could use this directory to store your
files related to Matlab.

9. Printing
One way to obtain printed output from a Matlab session is to use the diary command

to record a portion of the session, and then print the file that contains the record.
The diary facility is invoked by typing diary filename at the Matlab prompt >> .

All subsequent activity at the screen is copied into a file named filename; this file will
be located in your current working directory, except if filename is a path to a file in a
different directory. If a file name is not specified, the output is written to a file named
diary, which will be located in your current working directory. The command diary
off suspends the diary; diary on turns it back on; the command diary by itself toggles
the diary on and off.

3

One use of this command is the following. Do whatever work you are going to do
with Matlab, and obtain your final results. Then turn on the diary, list all of the relevant
variables, and then turn the diary off. The listing will include the names of variables, so
you will be able to tell which numbers are which. Then print the file. Save paper; do not
print a diary of your entire session.

10. Saving your variables
Before you end a Matlab session, you can save the values of the variables that were

defined during that session. The variables will be stored in a file on the disk, and they can
be loaded back into Matlab during a later session. You can also save data for the sake of
feeding them into another software package.

If, in the following commands, fname is a simple file name, then the indicated data is
stored in a file in your current working directory. It is also possible to specify a path name
to a different directory.

save fname Save all variables in binary form in a file named
fname.mat .

save fname x Save the variable x in a file named fname.mat .

save fname x y z Save the variables x, y, and z in a file named
fname.mat .

save Save all variables in a file matlab.mat in your
working directory.

save fname x -ascii Save the variable x in a file named fname . Use
8-digit ASCII form. If -double is added to this
command, 16-digit ASCII form is used.

If ASCII form is used, the numbers are saved in a form that you can read yourself and
that can generally be read by other software packages. The names of the variables do not
appear in the file. Otherwise, the values and names of the variables are saved in Matlab’s
internal binary format.

If the save command writes to a file that already exists, its contents are over-written.

11. Loading numbers from external files
If you have saved some variables, they can be read back into Matlab by using the load

command, which is more or less the inverse of the save command. You can also use the
load command to load numbers that were generated outside Matlab. For example, you
could use a Fortran program to generate some numbers and then load them into Matlab
in order to produce graphics.

Suppose that some variables have been saved in a file named fname.mat using the
internal Matlab format. (This means that you used the save command without the -
ascii option.) Type load fname at the Matlab prompt; when you state the file name,

4

do not include the suffix .mat . The variable names and their values will then be read into
your Matlab session.

Suppose that you saved some variables in ASCII form in a file named fname, without
any filename extension. If you type load fname -ascii at the Matlab prompt, the
contents of the file will be loaded into Matlab and placed in an array named fname. If the
file name has an extension, the situation is slightly different, see help load .

More generally, any file of numbers in ASCII form can be read into Matlab, provided
that the numbers are given in fixed-length rows that are ended with carriage returns, and
the numbers in each row are separated by spaces. The file need not have been created by
Matlab.

5

Vectors and matrices

1. Entering vectors and matrices
2. Array operations
3. Functions for constructing matrices
4. Extracting parts of a matrix
5. Diagonal and triangular parts of matrices
6. Building larger matrices
7. Some matrix functions

1. Entering vectors and matrices
A basic data structure in Matlab is the array. An array with one row or one column

will be regarded as a vector, and others will be regarded as matrices.
A simple way to enter a (small) vector or matrix is to give an explicit list. Some

examples:
(1) The command A = [1 2 3; 4 5 6; 7 8 9] creates a 3× 3 matrix whose rows

are 1 2 3 , 4 5 6 , and 7 8 9 , respectively. An equivalent command is A = [1,
2, 3; 4, 5, 6; 7, 8, 9] . In general, the entries within a row should be separated by
spaces or by commas, and the end of a row is marked with a semicolon.

(2) The command x = [1 2 3] creates a row vector. An equivalent command is x
= [1, 2, 3] .

(3) The command y = [1; 2; 3] creates a column vector. Another command that
gives the same result is y = [1 2 3]’ . The prime ’ denotes transposition. For vectors
or matrices having complex entries, the prime ’ denotes the conjugate transpose.

Matlab provides a convenient notation for generating vectors having equally-spaced
entries. The command x = 0:5 generates the row vector [0 1 2 3 4 5]. The com-
mand x = 1 : 0.01 : 3 generates the row vector [1.00 1.01 1.02 ... 2.99 3.00].
In general, when colon notation is used, the first number indicates the starting value, the
last number indicates the ending value, and the middle number (if present) indicates the
increment. Negative increments are possible; for example, the command x = 5 : -1 : 1
generates the vector [5 4 3 2 1]. If an increment is not stated explicitly, it is assumed
to be 1.

Addition, subtraction, and multiplication of matrices are indicated by + , - , and
* , respectively. For example, if x and y are 3× 1 column vectors, then y’*x is 1× 1 and
x*y’ is 3× 3. Entry (m,n) of a matrix A can be referenced as A(m,n) .

2. Array operations
In Matlab, the term “array operation” is used to refer to an element-by-element op-

eration, as opposed to the usual matrix operations. For example, suppose that A and B
are square matrices having the same dimensions. The usual matrix product is denoted
by A*B. On the other hand, the product C = A.*B is the matrix whose elements are the
products of corresponding entries of A and B. That is, C(i, j) = A(i, j)∗B(i, j) for all (i, j).

6

Similarly, the expression A./B produces an element-by-element division of entries of A by
entries of B.

If B is a square matrix, then B^2 is the square of B, computed using the usual matrix
multiplication. However, B.^2 is obtained by squaring the individual entries of B. If x is
a row or column vector having more than one element, then x^2 is undefined, but x.^2 is
the vector obtained by squaring each of the elements of x.

Example 2.1. The command x = 0 : 0.001 : 1; generates a row vector consisting of
the numbers from 0 through 1 with increments of 0.001. This vector has 1001 components,
so a semicolon is placed at the end in order to suppress printing of the output. The
command y = x.^2 + 1; then produces a vector y which consists of values of the function
x2 + 1 at the points 0, .001, .002, ..., .999, 1. The command z = sin(x); calculates
values of the sine function at those points, and w = exp(-x) .* sin(x); computes the
values of the function e−x sinx at those points. The commands plot(x,y), plot(x,z),
and plot(x,w) could then be used to plot these functions.

3. Functions for constructing matrices
Several functions can be used to construct matrices having special forms. For a more

extensive listing, type help specmat .

eye eye(n) is the identity matrix of dimension n.

ones, zeros The command ones(m,n) yields anm×nmatrix in which all entries
are equal to 1, and the command zeros(m,n) yields an m×n matrix that consists entirely
of zeros. For example, ones(3,3) is a 3× 3 matrix consisting entirely of 1’s, zeros(1,10)
is a row vector consisting of ten zeros, and zeros(4,1) is a column vector consisting of four
zeros. If a single argument is given, the result is a square matrix; for example, ones(3) is
a 3× 3 matrix consisting entirely of 1’s . If a matrix A already exists, then the commands
ones(size(A)) and zeros(size(A)) create matrices having the same dimensions as A.

rand, randn The command rand(m,n) produces an m × n matrix of pseudo-
random numbers. The numbers are uniformly distributed in the interval (0, 1). If a
single argument is given, the result is a square matrix; the command rand, without
any arguments, yields a single random number. If a matrix A is already defined, then
rand(size(A)) produces a result having the same dimensions as A. The function randn
chooses pseudo-random numbers from a normal distribution having mean 0 and variance
1, and it is used in the same manner as the function rand. It is possible to manipulate
the seeds of the random number generators; for more information, type help rand and
help randn .

diag If v is a vector with n components, then diag(v) is an n×n diagonal matrix
whose diagonal entries are the components of v. More generally, the command diag(v,k)
produces a square matrix in which the components of v form the k’th diagonal; k = 0 refers
to the main diagonal, k > 0 refers to a diagonal above the main diagonal, and k < 0 refers
to a diagonal below the main diagonal. The matrix diag(v,k) has dimension n+ |k|.

toeplitz A Toeplitz matrix is a matrix that is constant along each diagonal. If
c and r are vectors, then toeplitz(c) is the symmetric Toeplitz matrix having c as its

7

first column, and toeplitz(c,r) is a nonsymmetric Toeplitz matrix having c as its first
column and r as its first row.

Example 3.1. Suppose that you want to construct a 10 × 10 tridiagonal matrix
having 4’s on the main diagonal, −2’s immediately below the main diagonal, −1’s im-
mediately above the main diagonal, and zeros elsewhere. You can use 4*eye(10) -
2*diag(ones(9,1), -1) - diag(ones(9,1), 1) . An alternative is to use the function
toeplitz as follows.

c = [4, -2, zeros(1,8)];
r = [4, -1, zeros(1,8)];
toeplitz(c,r)

Example 3.2. The command x = randn(1,1000); generates a vector containing
1000 pseudo-random numbers that are approximately normally distributed. The command
hist(x,20) then produces a histogram with 20 bins.

4. Extracting parts of a matrix
Suppose, for example, that A is a 10×10 matrix. Parts of this matrix can be extracted

as follows.
A(:, 5) is the fifth column of A. The colon means that the first index (row index) is

allowed to assume any value, whereas the second index (column index) is fixed equal to 5.
A(1:3, :) is a 3× 10 submatrix consisting of the first 3 rows of A.
A(4:5, 6:10) is a 2× 5 submatrix consisting of those portions of rows 4 and 5 that

lie in columns 6 through 10.
A(:, [1 3 5]) is a 10× 3 matrix whose columns are equal to columns 1, 3, and 5 of

A.
A([2 4 6], [1 3 5]) is a 3 × 3 matrix whose rows are taken from rows 2, 4, and

6 and columns 1, 3, and 5 of A. In general, if v and w are vectors having positive integer
components, then A(v,w) is obtained by taking the elements of A with row indices from v
and column indices from w. The components of v and w do not have to be in any particular
order, and they do not have to be distinct.

A(:, 10:-1:1) is obtained by reversing the order of the columns of A. The matrix
A(10:-1:1, :) is obtained by reversing the order of the rows of A.

The assignment statement A(:, [1 3]) = B(:, [7 3]) replaces columns 1 and 3
of A with columns 7 and 3 of B, respectively, provided that A and B have the same number
of rows.

If the notation A(:) appears on the right side of an equation, then it refers to a (long)
column vector consisting of the first column of A, then the second column of A, and so
forth. In particular, if x is either a row vector or a column vector, then x(:) is a column
vector. This is useful if you are writing a program that uses a vector defined by the user,
and you need to be sure that it is a column vector for the sake of writing your code.
Similarly, x(:)’ is guaranteed to be a row vector; however, recall that a prime ’ denotes
the conjugate transpose for complex vectors, so you might want to use conj(x(:)’) in
that case.

8

5. Diagonal and triangular parts of matrices
If A is a matrix, then diag(A) is a column vector formed from the diagonal elements of

A, and diag(A,k) is a column vector formed from the k’th diagonal of A . Diagonals above
the main diagonal correspond to k > 0, and diagonals below the main diagonal correspond
to k < 0. The diag function was also discussed above. If a vector argument is used, the
result is a square matrix; if a matrix argument is used, the result is a vector.

The command tril(A) gives the lower triangular part of A, and triu(A) gives the
upper triangular part of A . For additional features, consult the help menu.

6. Building larger matrices
A matrix can be defined by an explicit list in which the entries are matrices instead

of scalars. That is, a matrix can be constructed from submatrices.

Example 6.1. Suppose that A is 4 × 2. The command B = [A eye(4); eye(2)
A’] creates a 6×6 matrix having the indicated submatrices. The first “row” of submatrices
is A eye(4), and the second row of submatrices is eye(2) A’. The command C = [A
eye(4); A’ eye(2)] creates another 6× 6 matrix.

7. Some matrix functions
Here is a list of some Matlab functions that give useful information about matrices.

For a more extensive list, type help matfun . For a list of functions related to sparse
matrices, type help sparfun . For more information about individual functions, consult
the help menu, e.g., use help eig or help schur .

eig Eigenvalues and eigenvectors.

schur Schur form. (Similarity transformation to triangular form).

rref Reduced row echelon form.

rank Rank.

inv Inverse.

sqrtm Square root of a matrix.

expm Exponential of a matrix. If A is a square matrix, then expA is
defined to be I +A+A2/2! +

null Orthonormal basis for the null space.

qr QR factorization.

svd Singular value decomposition.

chol Cholesky factorization.

Example 7.1. Generate a 3 × 3 matrix A of pseudo-random numbers, concatenate
the identity matrix on the right to create an augmented matrix, compute the reduced

9

row-echelon form of the augmented matrix, and extract the right half of the result. This
imitates the method for computing the inverse of a matrix that is usually taught in linear
algebra courses. (This is not the way the Matlab function inv computes the inverse.)
The final line verifies that the matrix C really is the inverse of A, at least approximately.

A = rand(3)
aug = [A, eye(3)]
B = rref(aug)
C = B(:, 4:6)
format long, A*C, format

Example 7.2. If a matrix A is 4×2 and a matrix B is 2×4, then the product C = AB
has rank 2 or less. This is tested by the following sequence of commands.

A = rand(4,2)
B = rand(2,4)
C = A*B
rank(C)

Example 7.3. The function schur returns the Schur form of a matrix. If A is a square
real matrix, and if the eigenvalues of A are real, then there exists a real orthogonal matrix
U and an upper triangular matrix T such that U−1AU = T . The eigenvalues of A are
located on the diagonal of T . However, if some of the eigenvalues of A are complex, then
the matrix T cannot be diagonal if U is real. In that case, Matlab produces a “real Schur
form”, in which the matrix T contains 2 × 2 blocks on the diagonal; the eigenvalues of
these 2× 2 blocks are complex eigenvalues of A. A “complex Schur form” is also available
in Matlab; type help schur .

In the first line of the following sequence of commands, the real Schur form of a
random real matrix is produced. The second statement assumes that a 2×2 block is found
in rows 1 and 2 and columns 1 and 2 of the Schur matrix T . The third statement yields a
comparison of the eigenvalues of this block and the eigenvalues of the original matrix A.

A = randn(4); T = schur(A)
B = T(1:2, 1:2)
eig(B), eig(A)

Example 7.4. For any matrix A (not necessarily square), there exists a matrixQ having
orthonormal columns and an upper triangular matrix R such that A = QR. The QR
factorization has numerous applications, including data fitting. In the following sequence,
the first two statements produce the QR factorization of a random 3 × 3 matrix. The
columns of Q then constitute a collection of orthonormal vectors that are “random”, in
some sense. You can think of these vectors as defining a “random” system of orthogonal
coordinates for R3. The last statement verifies that the columns are actually orthonormal;
the columns of Q are orthonormal if and only if QTQ is the identity matrix.

A = randn(3)
[Q, R] = qr(A)
format long, Q’*Q, format

10

Two-dimensional graphics

1. Help menus
2. The plot command
3. Plotting several curves on the same axes
4. Line types
5. Axis control
6. Labelling plots
7. Screen control
8. Plotting several axes in the same graph window
9. Using several graph windows
10. Setting properties of graphics objects
11. Other types of plots

1. Help menus
The command help graphics returns a list of general-purpose graphics functions;

help plotxy gives a list of Matlab functions for plotting two-dimensional data; help
plotxyz gives a list of functions for plotting three-dimensional data. You can then refer
to the help items for individual commands, e.g., type help plot to learn about the
function plot.

2. The plot command
The basic Matlab command for plotting a curve is plot(x,y) . Here, x is a vector

that contains the horizontal coordinates of some points on the curve, and y is a vector
that contains the corresponding vertical coordinates. The two vectors must have the same
number of components. The vectors do not have to be named x and y.

Example 2.1. The following commands produce a graph of y = x2 for 0 ≤ x ≤ 1.

x = 0 : .01 : 1;
y = x.^2;
plot(x,y)

A Matlab graphics window will appear automatically on the screen, and the graph will
appear in the window. In this example, the vector x consists of the numbers 0, .01,
.02, . . ., .99, 1.00. In general, Matlab draws a piecewise linear function that connects
the data points; the graph will appear smooth if the spacing between the grid points
is sufficiently small. The “array operations” that are built into Matlab are very useful
for generating vectors of vertical coordinates. For example, if x is a vector, then x^2 is
undefined. However, x.^2 denotes the vector that is obtained by squaring the components
of x.

The contents of the graphics window will be sent to the default printer if you type the
command print at the Matlab prompt. It is also possible to use the print command
to save a graph in a file; for more information, type help print .

11

When you use the plot command, y does not have to be a function of x; Matlab
simply takes the components of the vectors x and y in order, and draws a polygonal line
that connects the points in that order.

Example 2.2. Graph the unit circle centered at the origin. Without the command
axis(’square’), the graph would be an ellipse, due to different scaling of the horizontal
and vertical axes. (See Section 5, Axis control.)

theta = 0 : pi/60 : 2*pi;
x = cos(theta);
y = sin(theta);
plot(x,y)
axis(’square’)

Example 2.3. The following commands use complex numbers to produce the same
result as in Example 2.2. In the present case, real(z) is the vector of horizontal coordi-
nates, and imag(z) is the vector of vertical coordinates. The command plot(z) could be
used in place of plot(real(z),imag(z)) .

theta = 0 : pi/60 : 2*pi;
z = exp(i*theta);
plot(real(z), imag(z))
axis(’square’)

3. Plotting several curves on the same axes
Suppose that the vectors x1 and y1 contain horizontal and vertical coordinates for a

curve, and suppose that the vectors x2 and y2 contain the coordinates for another curve.
The command plot(x1,y1,x2,y2) plots both curves on the same graph. The vectors
x1 and x2 could be the same. This procedure can be generalized to any number of curves.

Example 3.1. The following commands produce plots of the curves y = x, y = x2,
y = x3, and y = x4 on the same graph.

x = 0 : .01 : 1;
y1 = x; y2 = x.^2; y3 = x.^3; y4 = x.^4;
plot(x,y1, x,y2, x,y3, x,y4)

If several curves are to be plotted simultaneously, and if they all use the same vector
of horizontal coordinates, then another method can be used to plot the curves.

Example 3.2. The following sequence of commands produces the same result as the
preceding example.

x = 0 : .01 : 1;
Y = [x; x.^2; x.^3; x.^4];
plot(x,Y)

In general, suppose that x is a row or column vector having n components, and suppose
that Y is a matrix that has either n rows or n columns. The command plot(x,Y) graphs
the rows or columns of Y versus x, depending on which dimensions match.

12

4. Line types
When you plot a curve, it is possible to specify any of several different line types.

Suppose that the horizontal and vertical coordinates are contained in vectors x and y,
respectively. Some commands:

plot(x,y,’-’) Plot a solid curve.
plot(x,y,’--’) Plot a dashed curve.
plot(x,y,’:’) Plot a dotted curve.
plot(x,y,’-.’) Plot a dash-dot curve.

An alternative is to produce point plots, in which the data points are plotted but
are not connected by curves. To mark the points with small circles, use ’o’ as the third
argument in the plot command; for asterisks, use ’*’; for x’s, use ’x’; for plusses, use
’+’; for dots, use ’.’ .

If you are working on a machine that has a color monitor, it is also possible to specify
the colors of curves and data points. For more information, type help plot .

The above facilities can be used when plotting several curves on the same axes. For
example, a command of the form plot(x1,y1,’--’,x2,y2,’:’) produces a dashed
curve and a dotted curve.

5. Axis control
The axis command can be used to control the ranges of x- and y-coordinates that

are plotted. (Unless you say otherwise, Matlab will choose the ranges automatically.) For
example, the command axis([0 10 -1 1]) specifies that the graph window will show
the region 0 ≤ x ≤ 10, −1 ≤ y ≤ 1. The same effect is obtained by the sequence of
commands v = [0 10 -1 1]; axis(v) .

The axis command should be invoked after the graph is plotted. In general, it is
possible to plot a graph once and then execute the axis command several times to alter
the appearance of the plot.

Example 5.1. Generate the monic polynomial whose roots are 0.9, 1.0, 1.1, and 10.0.
Then plot the polynomial over the range −5 ≤ x ≤ 15, together with the zero function.
When the plot command is executed, Matlab chooses the vertical scaling, and the resulting
plot suggests that there is a root near x = 1 and a root near x = 10. However, the
subsequent axis command has the effect of zooming in to the range 0.5 ≤ x ≤ 1.5,
−0.1 ≤ y ≤ 0.1, and it is then apparent that there are three roots near x = 1. This
example illustrates how computer graphics could be misleading due to scaling effects.

v = poly([0.9 1.0 1.1 10.0]);
x = -5 : .01 : 15;
y = polyval(v,x); z = zeros(length(x),1);
plot(x,y,x,z)
axis([0.5 1.5 -0.1 0.1])

Under the default configuration, the horizontal and vertical axes will generally have
different length scales. The command axis(’equal’) forces equal increments on the x-
and y-axes to have the same length on the plot.

13

Example 5.2. The following statements produce graphs of y = x and y = x2 for
0 ≤ x ≤ 2. In this plot, the line y = x intersects the horizontal axis at angle 45◦. The
angle would be different if the command axis(’equal’) were not executed. The command
axis(’square’) forces the graph box to be square, which otherwise would not be the case.

x = 0 : .1 : 2;
plot(x, x, x, x.^2)
axis(’equal’)
axis(’square’)

The axis command has several additional features; for more information, type help
axis .

6. Labelling plots
Suppose that a plot is currently residing in the graphics window. Some commands:

xlabel(’info’) Place the character string info immediately below
the x-axis.

ylabel(’info’) Place the character string info next to the y-axis.

title(’info’) Place the character string info above the graph.

The function text can be used to place a character string at an arbitrary position
on the plot. If x and y are scalars, the command text(x,y,’info’) places the lower left
corner of the character string info at position (x,y) in the graphics screen, where x and
y are measured in the units of the current plot. For more information about text, type
help text .

The function gtext is similar to text, except that the text is placed graphically.
Execute the command gtext(’info’), use the mouse to move the pointer to the desired
location in the graph window, and then press any mouse button or any key. The lower left
corner of the character string info is then placed at that position.

7. Screen control
A Matlab graphics window can be resized and/or moved by using the same techniques

that you would use for any other window in the window system that you are using. To
clear the contents of the graphics window, type clf or clg .

The command hold on holds the current graph on the screen. Subsequent graphing
commands will add to the current plot; everything that is already in the graphics window
will be retained, and the axes will not change. The command hold off turns off this
mode.

The command ginput can be used to read coordinates of points on the screen. Execute
the command, use the mouse to move cross-hairs to the desired point, and click any button.
For details, type help ginput .

14

8. Plotting several axes in the same graph window
It is possible to divide the graph window into several subwindows and then place a

plot in each subwindow. The command subplot(m,n,p) divides the graph window into
an m×n array of subwindows and then selects the p’th subwindow for the next plot. The
subwindows are numbered row-wise. If the p’th subwindow already contains a plot, then
subplot(m,n,p) causes that window to become the current window.

Example 8.1. Display the graphs of y = x, y = x2, y = x3, and y = x4 in a 2×2 array
of plots.

x = 0 : .01 : 1;
% Divide the graph window into a 2x2 array of windows, and
% and plot y = x in the first window.
subplot(2,2,1)
plot(x, x)
title(’y = x’)

% Place plots in the other windows. Several commands
% can be placed on one line.
subplot(2,2,2), plot(x, x.^2), title(’y = x^2’)
subplot(2,2,3), plot(x, x.^3), title(’y = x^3’)
subplot(2,2,4), plot(x, x.^4), title(’y = x^4’)

% Go back and put y-labels on the first and fourth plots.
subplot(2,2,1), ylabel(’first plot’)
subplot(2,2,4), ylabel(’last plot’)

9. Using several graph windows
The command figure can be used to create new graphics windows. If, for example,

you have just started a Matlab session, then a graphics command would create a graph in
a window labelled Figure No. 1 . Subsequent graphics commands would over-write the
contents of that window. If you wish to retain the contents of that window while creating
new graphs, then execute the command figure to create a new window; if Figure
No. 1 is the only existing graphics window, then the new window is labelled Figure
No. 2 . Subsequent executions of figure create additional windows. At any stage
in a Matlab session, graphics commands will affect the “current” figure. The command
figure(n) makes figure n the current figure, and the command gcf (“get current figure”)
gives you the number of the current figure.

The command print prints the current figure; the commands print -f1 and print
-f2 print figures 1 and 2, respectively. The command clf clears the contents of the cur-
rent figure. The command close closes the current figure window, and close(n) closes
figure n.

Example 9.1. Suppose that the only open graphics window is Figure No. 1 . The
following commands plot the graph of y = x in Figure No. 1 , y = x2 in Figure No. 2 ,
and y = x3 in Figure No. 3 . The third figure is then printed.

15

x = 0 : 0.01 : 1;
y = x;
plot(x,y)
figure
plot(x, x.^2)
figure, plot(x, x.^3), print -f3

10. Setting properties of graphics objects
The function set and related functions make it possible to set a few properties of

graphics objects. Type help set , and also refer to the other functions mentioned there.

Example 10.1. In the following, the second statement places circles at each of the data
points and assigns the “handle” p to the graph. The third statement makes the circles
twice as large as the default size, which is “6”. To see a listing of various characteristics
of the graph, type get(p) .

x = 0 : 0.1 : 1;
p = plot(x, exp(-x), ’o’)
set(p, ’MarkerSize’, 12)

11. Other types of plots
Parametric plots can be produced by using the plot command.

Example 11.1. Graph the spiral curve x = t cos t, y = t sin t for 0 ≤ t ≤ 2π. The
command axis(’equal’) eliminates the distortion that would have occurred due to differ-
ent horizontal and vertical scales, and the command axis([-7 7 -7 7]) causes the point
(0, 0) to be in the center of the graph window.

t = 0 : .01 : 2*pi;
x = t.*cos(t); y = t.*sin(t);
plot(x,y)
axis(’equal’), axis([-7 7 -7 7]), axis(’square’)

Logarithmic plots are also possible. The following commands are used in the same
manner as plot, and they yield the indicated results.

loglog x- and y-axes are logarithmic.
semilogx x-axis is logarithmic, y-axis is linear.
semilogy y-axis is logarithmic, x-axis is linear.

The polar command is used to produce polar plots. In the argument list, list the
angle (in radians) and then the radius. The polar command will not accept multiple
plots, so it will be necessary to use the hold command if you want more than one curve
in the same plot.

Example 11.2. Graph the curves ρ = cos 2θ and ρ = cos 4θ for 0 ≤ θ ≤ 2π. The
second curve is plotted as a dotted curve.

16

theta = 0 : .01 : 2*pi;
rho2 = cos(2*theta); rho4 = cos(4*theta);
polar(theta, rho2)
hold on, polar(theta,rho4,’:’), hold off
title(’polar plot’)

The function fplot can be used to plot functions that are defined symbolically; Matlab
will choose the sample points for you. However, the function needs to be defined in an
M-file.

Example 11.3. Suppose that a file named fsqr.m is located in a directory in Matlab’s
search path, and suppose that this file consists of the following statements.

function y = fsqr(x)
y = x.^2;

If you then execute the command fplot(’fsqr’, [0 10]) in your Matlab session, the
result is a graph of y = x2 for 0 ≤ x ≤ 10. Various options are available; type help
fplot .

17

Three-dimensional graphics

1. Defining arrays of independent and dependent variables
2. Contour plots
3. Plotting implicit functions
4. Surface plots
5. Parametric plots

1. Defining arrays of independent and dependent variables
Matlab contains commands for producing contour plots and surface plots. In each

case, Matlab plots the data contained in a rectangular matrix. The entries in such a
matrix are regarded as z-coordinates, and the row and column indices correspond to the
independent variables. (For parametric plots, the situation is a little more complicated;
see Section 5.) The purpose of this section is to show how to generate arrays that can be
plotted.

If the z-coordinates are to be calculated from an explicit formula involving independent
variables x and y , it is very useful to generate matrices containing values of these variables.

Example 1.1. Suppose that you want to plot a function of (x, y) for 0 ≤ x ≤ 1.5
and 0 ≤ y ≤ 1 , with increment 0.5 in each variable. (In practice, the increment should
generally be much smaller than this.) Arrays containing values of these variables are
generated by the following commands.

x = 0 : 0.5 : 1.5;
y = 0 : 0.5 : 1;
[X,Y] = meshgrid(x,y);

Recall that Matlab is case-sensitive, so that X is not the same as x. The output from
the meshgrid command is as follows.

X =
0 0.5 1.0 1.5
0 0.5 1.0 1.5
0 0.5 1.0 1.5

Y =
0 0 0 0

0.5 0.5 0.5 0.5
1.0 1.0 1.0 1.0

The matrix X thus contains values of x-coordinates, and matrix Y contains values of y-
coordinates. In the matrix Y, the row index increases with increasing values of y. Don’t
worry about the values of y being upside down; this is taken care of automatically by the
contour plot and surface plot routines.

If you want to plot the function z = x2 + e−y sinx, the array of z-values is then
computed by using the Matlab statement Z = X.^2 + exp(-Y).*sin(X); . Similarly,
values of the function z = xy are obtained by the command Z = X.*Y; .

2. Contour plots
The Matlab function contour produces contour plots of functions of two real vari-

ables; the Matlab function contour3 produces three-dimensional contour plots, in which

18

contours are placed on a three-dimensional surface. Information about these and other
facilities can be obtained via the help menu; for example, try help plotxyz and help
graphics .

Example 2.1. Here, we produce a contour plot of the surface z = e−y sinx for 0 ≤ x ≤
π and 0 ≤ y ≤ 1.

x = 0 : pi/30 : pi;
y = 0 : .1 : 1;
[X,Y] = meshgrid(x,y);
Z = exp(-Y) .* sin(X);
contour(Z)

The first four statements produce values of z on a rectangular grid. On this grid,
x varies from 0 to π in increments of π/30, and y varies from 0 to 1 in increments of
0.1 . The last statement produces a contour plot. In this plot, the contour curves are not
labelled, and the coordinate axes are labelled by matrix indices, not by values of the actual
coordinates x and y. Matlab chooses the values of z for which contours are plotted.

Example 2.2. In the preceding example, replace the statement contour(Z) with con-
tour(x,y,Z). In the resulting plot, the horizontal coordinate is labelled as varying from
0 to π, and the vertical coordinate is labelled as varying from 0 to 1. The contour curves
are not labelled, and the contour interval is chosen by Matlab.

Example 2.3. In this example, the contour levels are specified explicitly, and each
contour is labelled with the corresponding value of z.

x = 0 : pi/30 : pi;
y = 0 : .1 : 1;
[X,Y] = meshgrid(x,y);
Z = exp(-Y) .* sin(X);
v = .2 : .2 : 1;
cdata = contour(x,y,Z,v);
clabel(cdata)

The vector v contains the values of z for which contours are to be drawn. In general,
these values do not need to be evenly spaced, nor do they need to be given in any particular
order.

The statement cdata = contour(x,y,Z,v); produces the plot and stores data
about the plot in an array named cdata . (It is not necessary to use the name cdata for
this array.) The semicolon at the end of this statement is used to suppress printing of the
array. For information about what is stored in the array, type help contourc at the
Matlab prompt.

The final statement clabel(cdata) produces labels of the contour curves. Matlab
chooses the positions to place the labels, and each curve is labelled at least once. If you wish
to choose the positions yourself, use the statement clabel(cdata,’manual’) instead of
clabel(cdata). Use the mouse to point to positions on the contour curves where labels
are to be placed. Clicking the mouse places a label. To quit this mode, press the return
key.

19

Example 2.4. In the preceding example, replace the last two lines by contour3(x,y,Z,
v) . The result is a three-dimensional graph in which contour curves lie on the surface
which is the graph of z = e−y sinx. The position from which the surface is viewed can be
adjusted by using the function view, as described in Section 4, Surface plots.

The commands title, xlabel and ylabel can be used with the contour and con-
tour3 commands in the same manner as they are used with the plot command. A com-
mand zlabel can be used with contour3. Also, the functions text and gtext can be used
with contour, and the three-dimensional version of text can be used with contour3.

3. Plotting implicit functions
One application of contour plotting is to plot curves that are defined implicitly. If you

want to plot a curve of the form f(x, y) = 0, make a contour plot of f with one contour
level z = 0.

Example 3.1. Plot the curve(s) defined by exy = (1 + x+ y).

x = -5 : .1 : 5;
y = -5 : .1 : 5;
[X,Y] = meshgrid(x,y);
Z = exp(X.*Y) - (1 + X + Y);
v = [0 0];
contour(x,y,Z,v)

The vector v = [0 0] is an improvisation. If the vector v = 0 or v = [0] were used,
Matlab would produce no contour curves; the command contour(x,y,Z,n) produces n
contour levels if n is an integer. (See help contour .)

4. Surface plots
Matlab has several commands for plotting surfaces in three dimensions. Some exam-

ples are the following.

mesh Represent the surface as a wire-frame mesh.

meshc Represent the surface as a wire-frame mesh, and also display a
contour plot in the (x, y) plane.

surf Same as mesh, except that the “panes” between the mesh curves
are colored (or shaded).

surfc Same as surf, except that a contour plot is also shown in the
(x, y) plane.

For more information on these and other facilities, consult the help menu, e.g., type
help plotxyz and help graphics . The functions xlabel, ylabel, zlabel, title, and
text can be used to label surface plots. Some aspects of the mesh and meshc functions are
illustrated in the following examples. The surf and surfc functions are used in the same
manner.

20

Example 4.1. Here, we produce a mesh plot of the surface z = e−y sinx for 0 ≤ x ≤ π
and 0 ≤ y ≤ 1.

x = 0 : pi/30 : pi;
y = 0 : .1 : 1;
[X,Y] = meshgrid(x,y);
Z = exp(-Y).*sin(X);
mesh(Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)

In this plot, the origin is closest to the observer, the x-axis points to the right and into
the background, the y-axis points backward and to the left, and the z-axis points upward.
The x- and y-axes are labelled by matrix indices, not by the actual coordinate values.

The function u(x, y) = e−y sinx is a solution of the Laplace equation uxx + uyy = 0.
This plot illustrates the strong maximum and minimum principles for that equation. If
a nonconstant function satisfies the Laplace equation on a connected open set, then the
function can have no interior local maxima and no interior local minima. (Loosely speaking,
the equation uxx = −uyy implies that the concavities in the x- and y-directions must have
opposite signs.) Thus the maximum and minimum values must be found on the boundary.

Example 4.2. In the preceding example, replace the last line with

mesh(x,y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)

In this case, the horizontal axes are labelled according to the true coordinate values.
However, the x-axis might be longer than the interval [0, π]. If you want to make sure that
the x-axis extends only over the interval [0, π], type axis([0 pi 0 1 0 1]) after the
graph has been plotted.

Example 4.3. The function view can be used to change the point from which the
surface is viewed. Suppose x, y, and Z are as defined in Example 4.1.

mesh(x,y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)
axis([0 pi 0 1 0 1])
view(120,30)

In this example, the x-axis points forward and to the left, the y-axis points to the right,
and the z-axis points upward.

In general, the first argument in function view is an angle of rotation (in degrees)
about the z-axis, and the second argument is an angle of elevation above or below the
(x, y) plane. If the first argument is zero, then the x-axis points to the right, and the
y-axis points into the background. Positive values of the first argument indicate counter-
clockwise rotation of the observer, as viewed from the positive z-axis. The default value
of the first argument is -37.5. The default angle of elevation is 30; positive values mean
that the observer is above the (x, y) plane.

Example 4.4. Suppose x, y, and Z are as defined in Example 4.1.

meshc(x,y,Z), xlabel(’x’), ylabel(’y’), zlabel(’z’)
axis([0 pi 0 1 0 1])

21

The function meshc produces a mesh plot, just like the function mesh, and it also creates
a contour plot in the (x, y) plane. In this example, the default viewpoint is used, but the
viewpoint can be changed by using the view function.

5. Parametric plots
The functions plot3 and comet3 can be used to plot parametric curves in three

dimensions; consult the help items for these functions. The function comet is a two-
dimensional analogue of comet3 .

The mesh and surf functions can be used to plot surfaces for which z is not a
function of x and y. Instead, write x, y, and z as functions of two independent variables,
and plot a “parametric” surface.

Example 5.1. If the axis of a torus is the z-axis, then the torus can be parameterized
in the form x = (a + b cosψ) cos θ, y = (a + b cosψ) sin θ, z = b sinψ, for 0 ≤ θ ≤ 2π,
0 ≤ ψ ≤ 2π. Here, a is the distance from the z-axis to the center of a cross-section, b is
the radius of a cross-section, θ is an angle of rotation about the z-axis, and ψ is an angle
of rotation within a cross-section. Here, we plot a torus for which a = 2 and b = 1.

theta = 0 : pi/16 : 2*pi;
psi = 0 : pi/16 : 2*pi;
[T, P] = meshgrid(theta, psi);
a = 2; b = 1;
X = (a + b*cos(P)) .* cos(T);
Y = (a + b*cos(P)) .* sin(T);
Z = b*sin(P);
mesh(X,Y,Z)
axis([-3, 3, -3, 3, -3, 3])
axis(’square’)

If the axis commands were not executed, then the default scaling of axes would be
used, and the cross-sections of the torus would appear to be ellipses. With the given
sequence of commands, the cross-sections are approximately circular.

22

Linear systems and data fitting

1. The operator \
2. Comparison with inv(A)
3. Condition number
4. Solving several systems with the same coefficient matrix
5. Overdetermined systems and data fitting
6. Other functions for data fitting
7. Sparse matrices

1. The operator \
Suppose that A is an n×n matrix and b is an n×1 column vector. The linear system

Ax = b can be solved by executing the command x = A\b . The operation \ represents
“left division”, and it can be thought of as dividing A into b. When this operation is
invoked, Matlab checks several possibilities.

(1) First, Matlab checks whether A is triangular or can be obtained from a triangular
matrix by permuting some rows. If so, Matlab solves the system via a (permuted) back-
substitution.

(2) If the test in (1) fails, then Matlab checks whether the matrix is real symmetric
(or Hermitian) and has positive diagonal elements. If so, Matlab attempts to compute
a Cholesky factorization A = LL

∗
, where L is lower triangular, and L

∗
is the conjugate

transpose of L. Such a factorization exists if and only ifA is Hermitian and positive definite,
and a necessary condition for positive definiteness is that the matrix have positive diagonal
elements. If the factorization succeeds, then the system is equivalent to L(L

∗
x) = b, which

is then solved by solving the two triangular systems Ly = b, L
∗
x = y. If successful, this

method requires less than half the time required by general Gaussian elimination, which
is described next.

(3) If the tests in (1) and (2) fail, then Matlab uses Gaussian elimination with partial
pivoting to compute a factorization A = LU , where U is upper triangular and L is either
lower triangular or is obtained from a lower triangular matrix by permuting some rows.
The system is then equivalent to L(Ux) = b, which is solved by solving the two triangular
systems Ly = b and Ux = y. In a sense, the matrix L records the row operations that
are performed when A is reduced to upper triangular form, and U is the upper triangular
form itself. Solving Ly = b has the same net effect as performing on b the same row
operations that are performed on A, and solving Ux = y is the back-substitution. The
Matlab function lu can be used to obtain the factors L and U explicitly; a situation where
this is useful is described in Section 4.

2. Comparison with inv(A)
The command x = inv(A)*b could also be used to solve the system Ax = b. Here,

inv(A) is the inverse of A. This is obtained by computing the factorization A = LU
described in Section 1, inverting the factors L and U , and then using A−1 = U−1L−1.

23

In general, the command x = inv(A)*b is less efficient than x = A\b . The inverse
of A is a square matrix X such that AX = I. In effect, when the inverse of A is computed,
one has solved the n linear systems Axj = ej for 1 ≤ j ≤ n, where xj is the j’th column of
X, and ej is the j’th column of I. But the ultimate goal was to solve one linear system.

Example 2.1. Compare the speed and accuracy of x = A\b and x = inv(A)*b .
Generate a 100 × 100 matrix of random numbers, choose an “exact” solution vector of
random numbers, compute a right-hand side, solve the system, compute execution times,
and compute norms of the differences between the “exact” solution and the computed
solution. In repeated tests, the command A\b has been about twice as fast as inv(A)*b .
The errors are comparable, with A\b generally giving slightly smaller errors. In Matlab,
text that follows a percent sign (%) is a comment and is not executed.

% Pick an exact solution, and compute a right side.
A = rand(100);
exact = rand(100,1);
b = A*exact;

% Use A\b.
start = cputime; x = A\b; t = cputime-start
err = norm(x - exact)

% Use inv(A).
start = cputime; xinv = inv(A)*b; tinv = cputime-start
errinv = norm(xinv - exact)

The function cputime returns the CPU (central processing unit) time in seconds that
has been used by Matlab since the current session was started. The CPU time used by a set
of commands can then be determined by executing cputime immediately before and after
those commands are executed and then comparing the results. Other Matlab functions
related to timing are clock, etime, tic, and toc.

3. Condition number
The command cond(A) gives the condition number ‖A‖2‖A−1‖2, where ‖ · ‖2 is the

operator matrix norm corresponding to the Euclidean vector norm. That is, if ‖x‖2
2 =∑n

i=1 |xi|2 for all vectors x ∈ Cn, then ‖A‖2 is defined by ‖A‖2 = maxx6=0

(
‖Ax‖2/‖x‖2

)
for any n × n matrix A. In the case where A is real and symmetric (or complex and
Hermitian), the condition number with respect to this norm is equal to the ratio of the
largest and smallest absolute values of the eigenvalues of A. The quantity log10 cond(A)
gives a rough estimate of the number of decimal digits of accuracy that can be lost during
the process of solving a linear system in finite-precision arithmetic. A problem is said to
be “ill-conditioned” if the solution is highly sensitive to the effects of perturbations such as
roundoff errors, and the condition number gives a quantitative measure of this property.

Example 3.1. The n×n Hilbert matrix is defined by aij = 1/(i+j−1). The following
statements generate the 10× 10 Hilbert matrix, an “exact” solution x = (1, . . . , 1)

T

, and a

24

right-hand side b = Ax. The operator \ is then used to compute a solution to the linear
system. On a workstation using double-precision arithmetic with about 16 decimal digits,
the computed solution agrees with the vector (1, . . . , 1)

T

to about three decimal places,
and the condition number is about 1013.

A = hilb(10);
x = ones(10,1);
b = A*x;
format long, A\b
cond(A)

Example 3.2. Another way to view the situation described in the preceding example
is as follows. Suppose that Ax = b, and for the sake of simplicity suppose that the
perturbations in the data are confined to the right side. Let r denote the perturbation
in the right side, and let e denote the corresponding perturbation in the solution. Thus
A(x + e) = b + r; since Ax = b, we then have Ae = r, or e = A−1r. If A is the 10 × 10
Hilbert matrix, then the command inv(A) yields a result whose largest entries have a
magnitude between 1012 and 1013. The components of e thus can be far larger than the
components of r.

Example 3.3. One can also use eigenvalues to describe the behavior observed in
Example 3.1. As in Example 3.2, let r denote the perturbation in the right side, and let
e denote the corresponding perturbation in the solution, so that Ae = r. Let λ1, . . ., λn

denote the eigenvalues of A, and let x1, . . ., xn denote corresponding eigenvectors with
‖xj‖2 = 1 for all j. The eigenvectors can be assumed orthogonal, since A is symmetric.
Because the eigenvectors are linearly independent, there exist constants α1, . . ., αn so that
r = α1x1 + . . . + αnxn. The eigenvalue-eigenvector relationship Axj = λjxj then implies
that the perturbation e in the solution is given by e = (α1/λ1)x1 + . . .+ (αn/λn)xn.

If A is the 10 × 10 Hilbert matrix, then the commands format short e, eig(A)
show that the smallest eigenvalue of A is approximately 1.1 × 10−13, and the largest is
approximately equal to 1.75. The expression e = (α1/λ1)x1 + . . .+(αn/λn)xn then reveals
that e could be quite large relative to r.

4. Solving several systems with the same coefficient matrix
Suppose that you need to solve several linear systems that have the same coefficient

matrix but different right sides. This problem can be formulated as a matrix equation
AX = B, where the columns of B are the various right sides, and the columns of X are
the corresponding solutions. The system AX = B can be solved by the command X =
A\B . The matrix B need not be square. The algorithm used in this case is the same as
described in Section 1, The operator \ .

An alternative is to use the lu function to compute the factorization A = LU , where
L and U are described in Section 1. The system can then be solved by the command x
= u\(l\b) . This method is useful if you will encounter different right sides at different
times, but want to process the coefficient matrix once and for all. For large problems, this
approach is far more efficient than executing A\b repeatedly.

25

5. Overdetermined systems and data fitting
Consider the linear system Ax = b, where A is m × n with m > n, and x and b are

column vectors having n and m components, respectively. Because m > n, this system
may not have any solutions. In this case, Matlab computes the “least squares” solution
of the system, which is a vector x that minimizes the Euclidean norm ‖Ax − b‖2 of the
residual vector Ax− b. The command syntax is the same as before; use x = A\b .

It can be shown that the minimizing x satisfies the square system ATAx = A
T

b, which
is known as the system of “normal equations”. This system is equivalent to AT (Ax−b) = 0;
the residual vector Ax− b is thus orthogonal to the column space of A, so that the vector
Ax is the orthogonal projection of b onto the column space. Matlab’s algorithm is based
on factoring the matrix A into the product of a matrix Q with orthonormal columns
and a square matrix R that is upper triangular. (This is the “QR factorization”.) The
normal equations are then equivalent to R

T

Q
T

QRx = R
T

Q
T

b. If A has full rank, then
R is nonsingular. The system is then equivalent to Rx = Q

T

b, which can be solved by
back-substitution. The QR factorization has the effect of using an orthogonal coordinate
system for the column space of A when computing the orthogonal projection of b onto that
space. This method is used for reasons of numerical accuracy; see Example 5.2. Extensive
information on least-squares problems can be found in the book Matrix Computations by
G. Golub and C. Van Loan.

Example 5.1. Find the line of best fit to a set of data points. Denote the data points
by (xi, yi) for 1 ≤ i ≤ m, and let p(x) = c1x + c2 denote the line of best fit. Ideally, you
would like to have p(xi) = yi for all i. In other words, you want c1xi + c2 = yi for all
i. This can be expressed as an overdetermined system having unknowns c1 and c2. The
first column of the coefficient matrix consists of x1, . . ., xm, and the second consists of
ones. One criterion for determining a line of “best fit” is to find coefficients c1 and c2
which minimize the quantity

∑m
i=1(p(xi)−yi)2 =

∑m
i=1(c1xi +c2−yi)2. This is equivalent

to solving the overdetermined system in the least-squares sense. This problem can also
be solved by using the Matlab function polyfit; see Section 6, Other functions for data
fitting.

In the following statements, the data points are obtained by introducing random
perturbations to the line y = x. The quantities x(:) and y(:) are column vectors, and
the matrix A has dimension 11× 2.

x = 0 : .1 : 1;
y = x + 0.05*randn(1,11);
A = [x(:), ones(11,1)];
b = y(:);
coeffs = A\b
line = coeffs(1)*x + coeffs(2);
plot(x,y,’o’,x,line)

Numerical accuracy can be a source of difficulty in data fitting problems. For ex-
ample, if you fit data with a polynomial, and if you represent the polynomial as a linear
combination of 1, x, x2, . . ., then the columns of the coefficient matrix could be almost
linearly dependent, in a sense. The normal equations then constitute an ill-conditioned

26

system. (The Hilbert matrix can be obtained from a continuous analogue of this situa-
tion.) Dealing with this possibility is a motivation for solving least-squares problems via
QR factorization instead of by a direct solution of the normal equations.

Example 5.2. The following “M-file” pfit.m solves an overdetermined system by
using Matlab’s built-in least-squares algorithm, which is based on a QR factorization
of the coefficient matrix. It then solves the normal equations directly. For the sake of
comparison, the quantity ‖Ax− b‖2 is computed in each case. The method based on QR
factorization generally gives much better results; for example, try n=15 and nints=30.

If a file having a name of the form fname.m is located in a directory in Matlab’s search
path, then the contents of that file can be executed by typing fname at the Matlab prompt.

% PFIT.M
% Generate a random perturbation of the line y = x for
% 0 <= x <= 1 and then compute a polynomial that gives
% a best fit to the data points in the least-squares sense.
% USAGE: At the console, define the following:
% n = degree of polynomial used in the fit.
% nints = number of subintervals of [0, 1].

x = 0 : 1/nints : 1;
y = x + 0.05*randn(1,nints+1);

% Set up the coefficient matrix and right-hand side.
A = ones(nints+1,1);
for k = 1:n,

A = [x(:).^k A];
end
b = y(:);

% Use Matlab’s built-in least-squares algorithm.
% Also compute a norm of the residual.
c = A\b;
r = norm(A*c - b)

% Solve the normal equations directly and
% compute a norm of the residual.
A1 = A’*A; b1 = A’*b; c1 = A1\b1;
r1 = norm(A*c1 - b)

% Plot.
xplot = 0 : .001 : 1;
yplot = polyval(c, xplot);
yplot1 = polyval(c1, xplot);
plot(x, y, ’o’, xplot, yplot, ’-’, xplot, yplot1, ’:’)
axis([0 1 -0.5 1.5])

27

6. Other functions for data fitting
The Matlab function polyfit computes the coefficients of the polynomial of specified

degree which gives the best least-squares fit to a given set of data points. If vectors x and
y contain the horizontal and vertical coordinates of the data points, and if you want the
polynomial of degree n or less that fits the data best, use the command polyfit(x,y,n) .
The output is a vector of coefficients of the polynomial, arranged in order of decreasing
powers. Given a vector of horizontal coordinates, the corresponding values of the polyno-
mial can then be computed with the function polyval, as illustrated in Example 5.2. If
the number of data points is n+ 1, then the graph of the polynomial passes through all of
the points, i.e., the polynomial interpolates the data set.

The Matlab function spline computes a cubic spline function that interpolates a
given set of data. A cubic spline function is a piecewise cubic polynomial that has contin-
uous derivatives of orders 2 and less. If you want to interpolate a large number of data
points with a smooth curve that does not wiggle much, splines are probably better than
polynomials.

Example 6.1. Let f(x) = 1/(x2 + 1) for −5 ≤ x ≤ 5. The following commands
plot f together with two different functions that interpolate f at the points x0 = −5,
x1 = −4, . . ., x10 = 5. A dotted curve is used to graph the polynomial of degree 10 that
interpolates f at x0, . . ., x10; and a dashed curve is used to plot the cubic spline function
that interpolates f at those points. The polynomial oscillates greatly near the endpoints
of the interval [−5, 5], but the cubic spline function approximates f closely over the entire
interval. This example was devised by Runge to illustrate the behavior of polynomial
interpolation at evenly spaced points.

x = -5:5;
y = 1 ./ (x.^2 + 1);
xplot = -5 : 0.05 : 5;
yplot = 1 ./ (xplot.^2 + 1);
polycoeffs = polyfit(x,y, length(x)-1);
ypoly = polyval(polycoeffs, xplot);
yspline = spline(x,y,xplot);
plot(xplot,yplot, xplot,ypoly,’:’, xplot,yspline,’--’, x,y,’o’)
axis([-5, 5, -.5, 2])

Matlab also includes several functions for performing fast Fourier transforms and
related operations; type help datafun for a list of function names.

7. Sparse matrices
A matrix is said to be “sparse” if most of its entries are zero. Numerous problems in

scientific computing involve matrices that are extremely large but also extremely sparse. If
computations are performed with such matrices, the execution times and storage require-
ments can be reduced dramatically if the sparsity is exploited. Matlab has facilities for
storing such matrices efficiently, and for matrices stored in this special way Matlab can
solve linear systems by means of the \ operation, compute LU and Cholesky factoriza-
tions, and compute least-squares solutions to overdetermined systems. For details, consult
the Matlab User’s Guide and Matlab Reference Guide. For a list of functions related to
sparse matrices, type help sparfun .

28

Programming

1. M-files
2. Control structures
3. Efficiency

1. M-files
It is possible to write programs in the Matlab language. These should be placed in

“M-files”, which are files consisting of Matlab statements and whose names end with the
suffix .m . When you execute an M-file, Matlab has to be able to find the file, so the file
should be located either in your current working directory or in a directory in Matlab’s
search path.

Two kinds of M-files are possible: script files and function files. A script file is simply
a sequence of Matlab statements, and these are executed when the name of file (without
the .m suffix) is typed at the Matlab prompt. The final results are the same as would be
obtained if each of the Matlab statements were typed at the prompt >> in your Matlab
session. In particular, none of the variables in a script file are “local”. If the first line of
an M-file contains the word function, the file is a function file, and all variables created
within the file are local to that program.

Example 1.1. Suppose that the following Matlab statements are contained in a file
angcol.m which is located in a directory in Matlab’s search path. In this function file,
variables c1, c2, and d are defined, and variables A, m, and n are used. If these variables
had already been defined in your Matlab session, their values would not be changed by the
action of this function. The lines that begin with the character % are comments and are
not executed.

When the following function is invoked by a statement at the Matlab prompt, it is
not necessary to use the same names as those in the M-file. For example, the statement
angcol(eye(5),4,5) produces the angle between the fourth and fifth columns of the
5× 5 identity matrix, and the statement degrees = angcol(hilb(10),9,10) sets the
variable degrees equal to the angle between columns 9 and 10 of the 10 × 10 Hilbert
matrix. The outputs of these commands are 90 and 0.9560, respectively.

function d = angcol(A, m, n)
% angcol(A, m, n) is the angle, in degrees, between
% columns m and n of matrix A.
c1 = A(:,m); c1 = c1 / norm(c1);
c2 = A(:,n); c2 = c2 / norm(c2);
d = acos(c1’*c2)*180/pi;

Example 1.2. A function file can also return multiple arguments. Suppose that the
following function is contained in a file named angcol2.m . If the command [degrees,
radians] = angcol2(hilb(10),9,10) is executed at the Matlab prompt >>, then the
variable degrees is set equal to the degree measure of the angle between columns 9 and 10

29

of the 10× 10 Hilbert matrix, and the variable radians is set equal to the radian measure
of that angle. The command angcol2(hilb(10),9,10) returns only the first argument,
namely, the degree measure.

function [d,r] = angcol2(A, m, n)
% [d,r] = angcol(A, m, n) produces the angle between
% columns m and n of matrix A. The quantity d is the
% angle in degrees; r is the angle in radians.
c1 = A(:,m); c1 = c1 / norm(c1);
c2 = A(:,n); c2 = c2 / norm(c2);
r = acos(c1’*c2);
d = r*180/pi;

An M-file can be accessed by the help command, if it is located in your current
working directory or in Matlab’s search path. If a file named fname.m is a script file,
then the command help fname will produce a listing of all comment lines that appear
before the first executable statement in the M-file. If the file is a function file, then help
fname will produce a listing of all comment lines that appear after the function statement
and before the next executable statement.

2. Control structures
The Matlab language includes for loops, while loops, and an if-then-else control

structure. These are very similar to ones found in traditional programming languages. For
more information, consult the help facility; type help for , help while , and help
if . Because of Matlab’s usage of array operations, a Matlab program typically does not
need as many loops as do programs written in traditional languages. In fact, for reasons of
efficiency, loops should be avoided if possible; see Section 3. However, there are situations
when loops are appropriate.

Example 2.1. Consider an algebraic equation of the form f(x) = 0, where f is a differ-
entiable real-valued function of one real variable. Approximate solutions can be computed
with Newton’s method, which is the iteration xn+1 = xn − f(xn)/f ′(xn).

In order to use Newton’s method to compute a root, it is first necessary to determine
a starting value x0; this can typically be determined from a plot of the function f . For
example, if f(x) = x3− 4x2 +3x+1, then a plot indicates that there are roots near x = 0,
x = 1.5, and x = 3. In the following M-file newton.m, the statement x = [0 1.5 3];
initializes the vector x to contain these starting values. The formula for Newton’s method
that is contained in the for loop is stated in terms of a “vector” division; this means that
the entries in vector x are operated on independently, so that the final value of x is a list
of roots corresponding to the various starting values.

In general, if the starting values are not chosen appropriately, Newton’s method might
not converge. The for loop places an upper bound on the number of iterations that can be
performed. On the other hand, when the iterations are essentially repeating themselves,
it is appropriate to stop; in that event, the if statement causes execution to break out of
the loop.

30

% NEWTON.M
% Use Newton’s method to find the roots of a function f.
% As new iterates are computed, they are added to the
% bottom of the array named iters.
f = ’x.^3 - 4*x.^2 + 3*x + 1’;
fprime = ’3*x.^2 - 8*x + 3’;

x = [0 1.5 3];
iters = x;
for k = 1:20,

xnew = x - eval(f) ./ eval(fprime);
iters = [iters; xnew];
if max(abs((xnew - x)./xnew)) < 10*eps, break, end;
x = xnew;

end

% Switch to long format, display the final answer, and then
% turn off the long format.
format long, iters, format

3. Efficiency
The efficiency of a Matlab program can be greatly enhanced by using array operations

instead of loops as much as possible. For example, to evaluate the function y = x2 + sinx
for all x in a given vector x, do not use a loop over the components of x, but instead use
the command y = x.^2 + sin(x); . A different example involving matrix operations is
the following.

Example 3.1. Create a 10000× 2 matrix of random numbers, and then form the dot
product of the two columns. In the following sequence of commands, the dot product is
computed in a style that is common in programs written in languages such as Fortran 77.
The function cputime is used to determine the execution time. During repeated tests on
a Sun Sparcstation 2, the computation of the inner product required about 2.7 seconds.

n=10000; A = rand(n,2);
start = cputime;
x=0;
for k = 1:n,

x = x + A(k,1)*A(k,2);
end
cputime-start

The following commands use the “vector” capabilities of Matlab. On a Sparcstation 2, the
execution time is between 0.1 and 0.2 seconds.

start = cputime;
c1 = A(:,1); c2 = A(:,2); c2’*c1
cputime-start

31

Eigenvalues

1. The eig function
2. Comparison with roots of the characteristic polynomial
3. Sensitivity of roots of polynomials
4. The QR method

1. The eig function
Suppose that A is a square matrix. The command eig(A) yields the eigenvalues of A.

The command [V,D] = eig(A) yields a diagonal matrix D whose diagonal entries are
the eigenvalues of A and a matrix V whose columns are corresponding eigenvectors. The
columns of V are given in the same order as the diagonal entries of D; thus AV = V D.

Example 1.1. Generate a matrix of normally distributed pseudo-random real num-
bers, compute the eigenvalues, and then plot the eigenvalues as points in the complex
plane. Complex eigenvalues of a real matrix occur in complex conjugate pairs, and this is
illustrated by the symmetry of the graph about the horizontal axis.

n = 20;
A = randn(n);
v = eig(A);
plot(real(v), imag(v), ’o’), axis(’equal’)

Example 1.2. Now suppose that the pseudo-random numbers are approximately uni-
formly distributed in the interval [0, 1]; in the above code, the command A = randn(n); is
replaced by A = rand(n); . The distribution of eigenvalues is very different. Try this for
larger values of n, e.g., n = 50, n = 80, n = 100, and see the pattern that develops. A
heuristic for understanding the pattern is the following. For uniformly distributed numbers
in the interval [0, 1], the expected value is 0.5. If each entry of an n × n matrix is 0.5,
then n/2 is an eigenvalue with multiplicity one, and zero is an eigenvalue with multiplicity
n− 1.

2. Comparison with roots of the characteristic polynomial
The eig function uses the QR method to compute eigenvalues and eigenvectors. (See

Section 4.) In principle, the eigenvalues could also be found by computing the roots of the
characteristic polynomial det(A− λI). However, the latter approach is not very useful for
numerical computations. This is illustrated by the following example.

Example 2.1. Compute the eigenvalues of the n × n tridiagonal matrix A which has
2’s on the main diagonal, −1’s immediately above and below the main diagonal, and zeros
elsewhere. The exact eigenvalues are known to have the form λk = 2 + 2 cos(kπ/(n + 1))
for 1 ≤ k ≤ n.

In the following M-file evmethods.m, the command p = poly(A) produces a vector
containing the coefficients of the characteristic polynomial of A. The coefficients are listed
in order of decreasing powers. The command roots(p) then yields the roots of that

32

polynomial. The algorithm used by the function roots is actually based on eigenvalues.
For any polynomial, there is a “companion matrix” whose eigenvalues are the roots of
that polynomial. The function roots sets up the companion matrix of the polynomial,
and then uses the eig function to compute eigenvalues. In effect, the present example
compares the following two methods: (1) apply the eig function to A; (2) apply the eig
function to the companion matrix of the characteristic polynomial of A.

If n ≥ 22, the computed roots of the characteristic polynomial are complex, when
computed on a Sun workstation in double precision arithmetic. However, the matrix
A is real and symmetric, so its eigenvalues must be real. For smaller values of n, the
computed roots of the characteristic polynomial are real, but the larger eigenvalues contain
substantial errors. For large values of n (e.g., n = 40 or n = 50), the computed roots of
the characteristic polynomial display an interesting pattern in the complex plane.

% EVMETHODS.M
% Compare two methods for computing eigenvalues of a matrix.
% (1) Use Matlab’s eig function.
% (2) Compute roots of the characteristic polynomial.
% USAGE: At the console, define
% n = dimension of the test matrix

% Define the test matrix.
B = diag(ones(n-1,1), 1);
A = 2*eye(n) - B - B’ ;

% Compute exact eigenvalues and sort in increasing order.
z = pi/(n+1) : pi/(n+1) : pi*n/(n+1) ;
exact = sort(2 + 2*cos(z)); exact = exact(:);

% Compute eigenvalues using Matlab’s eig function,
% and sort in increasing order.
xeig = sort(eig(A)); xeig = xeig(:);

% Compute roots of the characteristic polynomial.
p = poly(A);
xpoly = sort(roots(p)); xpoly = xpoly(:);

% Display results.
label = ’Eigenvalues from eig, error, e-values from poly, error’
[xeig, abs(xeig-exact), xpoly, abs(xpoly-exact)]

% Plot the computed eigenvalues in the complex plane.
plot(real(xeig), imag(xeig), ’o’, real(xpoly), imag(xpoly), ’x’)
axis(’equal’)

33

3. Sensitivity of roots of polynomials
In Example 2.1, the basic difficulty is that the roots of a high-degree polynomial can

be very sensitive to perturbations in the coefficients of the polynomial. In other words, the
root-finding problem is “ill-conditioned”. Perturbations can always be expected in finite-
precision computations, so the characteristic polynomial is generally not used to compute
eigenvalues of matrices.

Example 3.1. The ill-conditioning of roots of polynomials can be illustrated with the
polynomial pn(x) = (x− 1)(x− 2) · . . . · (x− n). In a Matlab session, define a value of n,
and then execute the commands

v = poly(1:n); roots(v)

The first command generates the coefficients of pn, when it is expressed in the form
pn(x) = xn + an−1x

n−1 + . . .+ a1x+ a0. The second command computes the roots of the
polynomial. To see all of the digits computed by the machine, type format long at the
Matlab prompt.

One would expect that command roots(v) should return the integers 1, 2, . . ., n.
However, this is not exactly the case unless n is quite small. On a Sun workstation using
double precision arithmetic with about 16 decimal digits, the output of roots(v) is not
exactly 1, 2, . . ., n if n ≥ 4. If n = 10, about five digits are lost in some of the roots; if
n = 20, some of the roots have only about four good digits remaining; if n = 21, two of
the computed roots are complex; if n = 22, ten of the computed roots are complex.

In Example 3.1, the unexpected behavior is due to the effects of roundoff errors that
are generated during the course of the computation. One can think of these roundoff errors
as generating small perturbations in the problem that is being solved; in some cases, these
small perturbations have an enormous impact upon the final solution that is computed.
This phenomenon can be visualized geometrically, as described in the following example.

Example 3.2. Consider a polynomial of the form p(x) = xn+an−1x
n−1+. . .+a1x+a0,

and suppose that the coefficient an−1 is perturbed by a small amount ε. The perturbed
polynomial is then p̂(x) = xn + (an−1 + ε)xn−1 + . . . + a1x + a0 = p(x) + εxn−1. The
perturbed polynomial p̂ is obtained from p by moving the graph of p up or down by an
amount εxn−1. The quantity ε may be small, but the quantity εxn−1 could be huge,
depending on the values of x and n. The roots of p(x) = 0 could be changed a great deal,
and some could become complex.

These ideas can be illustrated by executing the following M-file, pert.m . For example,
if n = 7 and ε = −.001, then two of the roots are complex. If n = 20 and ε = 10−9, then
six of the roots are complex. The case n = 20 was analyzed by J. H. Wilkinson.

% PERT.M
% Demonstrate some effects of perturbing the coefficient
% of x^(n-1) in a polynomial of degree n.
% USAGE: At the console, define the following:
% n = degree of the polyomial
% epsilon = amount to be added to the coefficient of x^(n-1)

34

v = poly(1:n);
vpert = v; vpert(2) = vpert(2) + epsilon;
r = roots(v);
rpert = roots(vpert);
[r(:) rpert(:)]

% Graph the unperturbed polynomial, the perturbed polynomial,
% and the amount of perturbation in the function values.
% The amount of perturbation is epsilon * x^(n-1).

x = 0 : .05 : n+1;
y = polyval(v,x);
ypert = polyval(vpert,x);
perturbation = epsilon * x.^(n-1);

% Determine a vertical scale for the graph, and then plot.
maxy = max(abs(y(21:1+20*n)));
maxypert = max(abs(ypert(21:1+20*n)));
maxperturb = max(abs(perturbation(21:1+20*n)));
maxy = 1.1* max([maxy, maxypert, maxperturb]);
plot(x, y, x, ypert, ’--’, x, perturbation, ’:’, ...

x, zeros(size(x)),’-’, 1:n, zeros(1,n), ’o’)
axis([0 n+1 -maxy maxy])
title(’Perturbations of roots of f(x) = (x-1)(x-2)...(x-n)’)

4. The QR method
Extensive information about the QR method can be found in the book Matrix Com-

putations by G. Golub and C. Van Loan and in various works referenced therein.
For a square matrix A, the basic QR method is defined as follows. Factor A into the

product of an orthogonal matrix Q and an upper triangular (“right triangular”) matrix R,
and then reverse the order of the factors. Repeat this procedure over and over. In Mat-
lab, the QR method can be implemented manually by repeating the statements [Q,R] =
qr(A); A = R*Q . This algorithm generates a sequence of similar matrices that converges
to a limiting matrix whose eigenvalues can be found easily. Because all of the matrices are
similar, the eigenvalues do not change. If A is real and symmetric, the limiting matrix is
diagonal. In general, the limiting matrix is triangular or nearly triangular.

The rate of convergence of the above method can be very slow. In order to improve
the rate of convergence, the “QR method with shifts” is generally used in practice. This
method can be implemented manually in Matlab by repeating the sequence [Q,R] = qr(A
- c*eye(n)); A = R*Q + c*eye(n). Different constants c can be used in different iter-
ations. Golub and Van Loan state that the constants c can be taken to be approximate
eigenvalues of A.

Before the QR iteration is started, the matrix A is usually transformed to Hessenberg
form via an orthogonal similarity transformation. (A Hessenberg matrix is zero below the
first subdiagonal.) If A is real and symmetric, the Hessenberg form is tridiagonal. The
zeros are introduced in order make the QR factorization more efficient.

35

