

NI-DAQ™mx Base 3.x C Function Reference Help
June 2008 Edition, Part Number 371164F-01

Thank you for using NI-DAQmx Base 3.x. The NI-DAQmx Base 3.x software contains a C Application Programming Interface
(API), which allows you to create applications for your device.

For more information about this help file, refer to the following topics:

Conventions—formatting and typographical conventions in this help file

Related Documentation

Glossary

Important Information

Technical Support and Professional Services

To comment on National Instruments documentation, refer to the National Instruments Web site.

©2004–2008 National Instruments Corporation. All rights reserved.

Conventions
This help file uses the following formatting and typographical conventions: edit this list according to the specific conventions
used in your help file.

Related Documentation
The following documents contain information that you might find helpful as you use this help file:

NI-DAQmx Base Readme

NI-DAQmx Base 3.x Getting Started Guide

NI-DAQmx Base VI Reference Help

E Series User Manual

M Series User Manual

< > Angle brackets that contain numbers separated by an ellipsis represent a range of values associated with a bit or
signal name—for example, AO <0..3>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options to a final action. The sequence
File»Page Setup»Options directs you to pull down the File menu, select the Page Setup item, and select
Options from the last dialog box.

The symbol indicates that the following text applies only to a specific product, a specific operating system, or a
specific software version.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system
crash.

When symbol is marked on a product, it denotes a warning advising you to take precautions to avoid electrical
shock. Only use in conventions, not in text.

When symbol is marked on a product, it denotes a component that may be hot. Touching this component may
result in bodily injury. Only use in conventions, not in text.

bold Bold text denotes items that you must select or click in the software, such as menu items and dialog box options.
Bold text also denotes parameter names.

green Underlined text in this color denotes a link to a help topic, help file, or Web address.

italic Italic text denotes variables, emphasis, cross-references, or an introduction to a key concept. Italic text also
denotes text that is a placeholder for a word or value that you must supply.

Page 1 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

PCI-DIO-96/PXI-6508/PCI-6503 User Manual

NI CF-6004 User Guide and Specifications

NI USB-6008/6009 User Guide and Specifications

NI USB-6501 User Guide and Specifications

NI USB-621x User Manual

NI USB-621x Specifications

NI USB-9211/9211A User Guide and Specifications

NI USB-9215 Series User Guide and Specifications

NI USB-9233 Series User Guide and Specifications

NI USB-9234 Series User Guide and Specifications

Documentation for your Windows Mobile device

Getting Started with the LabVIEW Windows Mobile Module

LabVIEW Help

LabVIEW Fundamentals

NI-DAQmx Help

Clocks
Periodic digital edges measure time and are called clocks. Clocks such as a sample timebase clock and the 20 MHz timebase
clock mark the passing of time or are used to align other signals in time. Clocks usually do not cause actions in the sense
that triggers do. The names of clocks usually do not refer to actions. The sample clock is a notable exception.

Clocks in NI-DAQmx
AI Convert Clock—The E Series clock that directly causes ADC conversions.

AI Convert Clock Timebase—The clock that is divided down to produce the AI convert clock.

AI Sample Clock—The clock that controls the time interval between samples. Each time the sample clock ticks
(produces a pulse) one sample per channel is acquired.

AI Sample Clock Timebase—The clock used as the onboard clock source of the sample clock. When the source of the
sample clock is set to the onboard clock, the Sample Clock Timebase is divided down to produce the sample clock. When
the source of the Sample Clock Timebase is also the onboard clock, the master timebase is divided down to produce the
Sample Clock Timebase.

AO Sample Clock—The clock that controls the time interval between samples. Each time the sample clock ticks (and
produces a pulse), one sample per channel is generated.

AO Sample Clock Timebase—The onboard clock used as the source of the AO sample clock. The AO Sample Clock
Timebase is divided down to produce the AO sample clock.

Counter Timebase—The clock connected to the Source terminal of a counter (Ctr0Source, for example).

Master Timebase—An onboard clock used by other counters on the device. The master timebase is divided down to
produce a slower clock or to measure elapsed time. This timebase is the onboard clock used as the source of the AI
Sample Clock timebase, the AO Sample Clock timebase, and the counter timebases, for example.

20 MHz Timebase—The onboard clock source for the master timebase from which other timebases are derived.

100 kHz Timebase—The clock produced by dividing the 20 MHz Timebase by 200.

Trigger and Clock Confusion

The distinction between triggers and clocks is blurred when the digital edges used as a trigger are periodic. In such a case,
a clock causes the device to perform an action. The sample clock is the primary example. The stimulus for the action of
producing a sample is so often a clock that NI-DAQmx Base configures the sample clock instead of the sample trigger. The
distinction is made clear when you consider the sample clock is in fact just one way of providing the source of a sample
trigger.

Terminal Names
Onboard Clock An alias for the terminal within a device where the default source for a clock can be found. If

your application does not set the source of a clock (or uses an empty string as the source),
the clock's particular onboard clock is used. For example, the onboard clock for the ai sample
clock is the ai Sample Clock Timebase.

PFIn Programmable Function Interface—general-purpose input terminals, fixed-purpose output
terminals. The name of the fixed output signal is often placed on the I/O connector next to
the terminal as a hint.

PXITrign PXI Trigger bus—general-purpose input/output lines.

Page 2 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

DAQmxBaseClearTask
int32 DAQmxBaseClearTask (TaskHandle taskHandle);

Purpose

RTSIn Real Time System Integration bus—general-purpose input/output lines. RTSI7 is the
exception. It is the only line to use for the 20 MHz Timebase signal.

ai/SampleClock A terminal within a device where the analog input sample clock can be found.

ai/StartTrigger A terminal within a device where the analog input Start Trigger can be found.

ai/ReferenceTrigger A terminal within a device where the analog input Reference Trigger can be found.

ao/SampleClock A terminal within a device where the analog output sample clock can be found.

ao/StartTrigger A terminal within a device where the analog output Start Trigger can be found.

20MHzTimebase A terminal within a device where the onboard clock source for the master timebase can be
found.

MasterTimebase A terminal within a device where the master timebase signal can be found. This signal
originates either from the 20MHzTimebase terminal or the RTSI7 terminal. This signal is the
onboard source for the Sample Clock Timebases and is one of the possible sources for the AI
convert clock timebase.

100kHzTimebase A terminal within a device where the 100 kHz Timebase signal can be found. This signal is
created by dividing the signal at the 20MHzTimebase terminal by 200 and is one of the
possible sources for the Sample Clock Timebases.

ai/ConvertClock A terminal within a device where the AI Convert Clock can be found.

ai/ConvertClockTimebase A terminal within a device where the AI Convert Clock Timebase can be found. This is the
onboard clock source for the AI convert clock.

ai/HoldCompleteEvent A terminal within a device where the AI Hold Complete Event signal can be found.

AI Hold Complete The terminal at the I/O connector (external to the device) where the AI Hold Complete Event
signal can be emitted.

ai/PauseTrigger A terminal within a device where the analog input pause trigger can be found.

ai/SampleClockTimebase A terminal within a device where the AI Sample Clock Timebase can be found. This is the
onboard clock source for the AI sample clock.

AnalogComparisonEvent A terminal within a device where the output of the analog comparison circuit, the Analog
Comparison Event signal, can be found. This circuit is active whenever an analog edge or
window trigger is configured.

ao/PauseTrigger A terminal within a device where the analog output pause trigger can be found.

ao/SampleClockTimebase A terminal within a device where the AO Sample Clock Timebase can be found. This is the
onboard clock source for the AO sample clock.

Ctr0Out, Ctr1Out Terminals at the I/O connector where the output of counter 0 or counter 1 can be emitted.
You also can use Ctr0Out also as an input terminal for driving an external signal onto the
RTSI bus.

Ctr0Gate, Ctr1Gate Terminals within a device whose purpose depends on the application.

Ctr0Source, Ctr1Source Terminals within a device whose purpose depends on the application.

Ctr0InternalOutput,
Ctr1InternalOutput

Terminals within a device where you can choose the pulsed or toggled output of the counters.

PairedCtrInternalOutput An alias for one of the counter internal output terminals. For example, if you use counter 1,
PairedCtrInternalOutput refers to Ctr0InternalOutput. If you use counter 0,
PairedCtrInternalOutput refers to Ctr1InternalOutput.

PairedCtrOutputPulse A terminal within a device that chains counters together without using any external
connections. If you configure counter 0, PairedCtrOutputPulse refers to the pulsed output of
counter 1. If you configure counter 1, PairedCtrOutputPulse refers to the pulsed output of
counter 0. When the counter reaches terminal count (zero when counting down, its maximum
count when counting up), the output of the PairedCtrOutputPulse pulses. By using this
terminal, you can chain counters together to create a wider counter, perform buffered event
counting using the other counter as your clock source, perform finite pulse-train generation,
and create other custom applications.

Page 3 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Clears the task. Make sure the task has been stopped by calling DAQmxBaseStop Task before calling this VI. Before
clearing, this VI releases any resources the task reserved. You cannot use a task after you clear it unless you recreate the
task.

If you use the DAQmxBaseCreateTask function or any of the NI-DAQmxBase Create Channel functions within a loop, use this
function within the loop after you finish with the task to avoid allocating unnecessary memory.

Parameters

Return Value

DAQmxBaseCreateTask
int32 DAQmxBaseCreateTask (const char taskName[], TaskHandle *taskHandle);

Purpose

Creates a task. If you use this function to create a task, you must use DAQmxBaseClearTask to destroy it.

If you use this function within a loop, NI-DAQmxBase creates a new task in each iteration of the loop. Use the
DAQmxBaseClearTask function within the loop after you finish with the task to avoid allocating unnecessary memory.

Parameters

Return Value

DAQmxBaseIsTaskDone
int32 DAQmxBaseIsTaskDone (TaskHandle taskHandle, bool32 *isTaskDone);

Purpose

Queries whether the task completed execution. Use this function to ensure that the specified operation is complete before
you stop the task.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task to clear.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskName const char [] Name assigned to the task.

Output

Name Type Description

taskHandle TaskHandle * A reference to the task created in this function.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

Output

Name Type Description

Page 4 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseLoadTask
int32 DAQmxBaseLoadTask (const char taskName[], TaskHandle *taskHandle);

Purpose

Loads an existing named task created by you with the NI-DAQmx Base Task Configuration Utility. If you use this function to
load a task, you must use DAQmxBaseClearTask to destroy it.

Parameters

Return Value

DAQmxBaseResetDevice
int32 DAQmxBaseResetDevice (const char deviceName[]);

Purpose

Immediately aborts all tasks associated with a device and returns the device to an initialized state. Aborting a task stops
and releases any resources the task reserved.

Parameters

Return Value

DAQmxBaseStartTask
int32 DAQmxBaseStartTask (TaskHandle taskHandle);

Purpose

Transitions the task from the committed state to the running state, which begins measurement or generation. Using this
function is required for all NI-DAQmx Base applications. This function is not required if you are using a DAQmxBase Write
function with autoStart set to TRUE.

Parameters

isTaskDone bool32 * Indicates whether the measurement or generated completed.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskName const char [] A named task in the NI-DAQmx Base Task Configuration Utility.

Output

Name Type Description

taskHandle TaskHandle * A reference to the task returned by this function.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

deviceName const char [] The name of the device to which this operation applies.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 5 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseStopTask
int32 DAQmxBaseStopTask (TaskHandle taskHandle);

Purpose

Stops the task and returns it to the state it was in before you called DAQmxBaseStartTask or called an DAQmxBase Write
function with autoStart set to TRUE. Using this function is required for all NI-DAQmx Base applications.

Parameters

Return Value

DAQmxBaseCreateAIThrmcplChan
int32 DAQmxBaseCreateAIThrmcplChan (TaskHandle taskHandle, const char physicalChannel[], const char
nameToAssignToChannel[], float64 minVal, float64 maxVal, int32 units, int32 thermocoupleType, int32 cjcSource, float64
cjcVal, const char cjcChannel[]);

Purpose

This function is only valid for a NI USB-9211 device. Creates channel(s) that use a thermocouple to measure temperature
and adds the channel(s) to the task you specify with taskHandle.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task to start.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to stop.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

physicalChannel const char [] The names of the physical channels to use to create virtual channels. You can
specify a list or range of physical channels such as the following: Dev1/ai0:3
or Dev1/ai0,Dev1/ai2

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

minVal float64 The minimum value, in volts, that you expect to measure.

maxVal float64 The maximum value, in volts, that you expect to measure.

units int32 The units to use to return the measurement.

Name Description

DAQmx_Val_DegC Degrees Celsius

DAQmx_Val_DegF Degrees Fahrenheit

DAQmx_Val_Kelvins Kelvins

Page 6 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCreateAIVoltageChan
int32 DAQmxBaseCreateAIVoltageChan (TaskHandle taskHandle, const char physicalChannel[], const char
nameToAssignToChannel[], int32 terminalConfig, float64 minVal, float64 maxVal, int32 units, const char customScaleName
[]);

Purpose

Creates channel(s) for voltage measurement and adds the channel(s) to the task you specify with taskHandle.

Parameters

DAQmx_Val_DegR Degrees Rankin

thermocoupleType int32 The type of thermocouple connected to the channel.

Value Description

DAQmx_Val_J_Type_TC J-type thermocouple.

DAQmx_Val_K_Type_TC K-type thermocouple.

DAQmx_Val_N_Type_TC N-type thermocouple.

DAQmx_Val_R_Type_TC R-type thermocouple.

DAQmx_Val_S_Type_TC S-type thermocouple.

DAQmx_Val_T_Type_TC T-type thermocouple.

DAQmx_Val_B_Type_TC B-type thermocouple.

DAQmx_Val_E_Type_TC E-type thermocouple.

cjcSource int32 The source of cold junction compensation.

Value Description

DAQmx_Val_BuiltIn Use a cold-junction compensation channel built
into the terminal block.

DAQmx_Val_ConstVal You must specify the cold-junction temperature.

DAQmx_Val_Chan Use a channel for cold-junction compensation.

cjcVal float64 The temperature of the cold junction of the thermocouple if you set
cjcSource to DAQmx_Val_ConstVal.

cjcChannel const char [] The channel that acquires the temperature of the thermocouple cold-junction
if you set cjcSource to DAQmx_Val_Chan.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

physicalChannel const char [] The names of the physical channels to use to create virtual channels. You can
specify a list or range of physical channels such as the following: Dev1/ai0:3
or Dev1/ai0,Dev1/ai2

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

terminalConfig int32 The input terminal configuration for the channel.

Value Description

DAQmx_Val_Cfg_Default At run time, NI-DAQmx Base chooses the

Page 7 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCreateAOVoltageChan
int32 DAQmxBaseCreateAOVoltageChan (TaskHandle taskHandle, const char physicalChannel[], const char
nameToAssignToChannel[], float64 minVal, float64 maxVal, int32 units, const char customScaleName[]);

Purpose

Creates channel(s) to generate voltage and adds the channel(s) to the task you specify with taskHandle.

Parameters

Return Value

DAQmxBaseCreateDIChan

(-1) default input terminal configuration for the
channel. On E Series devices, if the channel
supports differential mode, NI-DAQmx Base
chooses DAQmx_Val_Diff. Otherwise, NI-
DAQmx Base chooses DAQmx_Val_RSE.

DAQmx_Val_RSE Referenced single-ended mode

DAQmx_Val_NRSE Non-referenced single-ended mode

DAQmx_Val_Diff Differential mode

minVal float64 The minimum value, in volts, that you expect to measure.

maxVal float64 The maximum value, in volts, that you expect to measure.

units int32 Always pass DAQmx_Val_Volts

Name Description

DAQmx_Val_Volts. Volts

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

physicalChannel const char [] The names of the physical channels to use to create virtual channels. You can
specify a list or range of physical channels such as the following: Dev1/ao0:1
or Dev1/ao0,Dev1/ao2

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

minVal float64 The minimum value, in volts, that you expect to generate.

maxVal float64 The maximum value, in volts, that you expect to generate.

units int32 Always pass DAQmx_Val_Volts.

Name Description

DAQmx_Val_Volts Volts

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 8 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

int32 DAQmxBaseCreateDIChan (TaskHandle taskHandle, const char lines[], const char nameToAssignToLines[], int32
lineGrouping);

Purpose

Creates channel(s) to measure digital signals and adds the channel(s) to the task you specify with taskHandle. For some
devices (such as E Series), NI-DAQmx Base supports grouping the digital lines of a port as single channel, not multiple
channels.

Parameters

Return Value

DAQmxBaseCreateDOChan
int32 DAQmxBaseCreateDOChan (TaskHandle taskHandle, const char lines[], const char nameToAssignToLines[], int32
lineGrouping);

Purpose

Creates channel(s) to generate digital signals and adds the channel(s) to the task you specify with taskHandle. For some
devices (such as E Series), NI-DAQmx Base supports grouping the digital lines of a port as a single channel, not multiple
channels.

Parameters

Return Value

DAQmxBaseCreateCIPeriodChan

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

lines const char [] The names of the digital lines used to create a virtual channel. You can specify a
list or range of lines such as the following: Dev1/port0:1 or
Dev1/port0,Dev1/port2 or Dev1/port0/line0:4

nameToAssignToLines const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this parameter.

lineGrouping int32 Always pass DAQmx_Val_ChanForAllLines.

Value Description

DAQmx_Val_ChanForAllLines One channel for all lines

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

lines const char [] The names of the digital lines used to create a virtual channel. You can specify a
list or range of lines such as the following: Dev1/port0:1 or
Dev1/port0,Dev1/port2 or Dev1/port0/line0:4

nameToAssignToLines const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this parameter.

lineGrouping int32 Always pass DAQmx_Val_ChanForAllLines.

Value Description

DAQmx_Val_ChanForAllLines One channel for all lines

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 9 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

int32 DAQmxBaseCreateCIPeriodChan (TaskHandle taskHandle, const char counter[], const char nameToAssignToChannel
[], float64 minVal, float64 maxVal, int32 units, int32 edge, int32 measMethod, float64 measTime, uInt32 divisor, const
char customScaleName[]);

Purpose

Creates a channel to measure the period of a digital signal and adds the channel to the task you specify with taskHandle.
You can create only one counter input channel at a time with this function because a task can include only one counter input
channel. To read from multiple counters simultaneously, use a separate task for each counter. Connect the input signal to
the default input terminal of the counter.

Parameters

Return Value

DAQmxBaseCreateCICountEdgesChan
int32 DAQmxBaseCreateCICountEdgesChan (TaskHandle taskHandle, const char counter[], const char
nameToAssignToChannel[], int32 edge, uInt32 initialCount, int32 countDirection);

Purpose

Creates a channel to count the number of rising or falling edges of a digital signal and adds the channel to the task you

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

minVal float64 The minimum value, in units, that you expect to measure.

maxVal float64 The maximum value, in units, that you expect to measure.

units int32 The units to use to return the measurement.

Value Description

DAQmx_Val_Seconds Seconds

DAQmx_Val_Ticks Timebase ticks

edge int32 Specifies between which edges to measure the frequency or period of the
signal.

Value Description

DAQmx_Val_Rising Rising edge(s)

DAQmx_Val_Falling Falling edge(s)

measMethod int32 Always pass DAQmx_Val_LowFreq1Ctr.

Value Description

DAQmx_Val_LowFreq1Ctr Use one counter that uses a constant
timebase to measure the input signal.

measTime float64 Always pass 0 for this parameter.

Warning If you measure a high-frequency signal for too long a
time, the count register could roll over, resulting in an incorrect
measurement.

divisor uInt32 Always pass 1 for this parameter.

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 10 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

specify with taskHandle. You can create only one counter input channel at a time with this function because a task can
include only one counter input channel. To read from multiple counters simultaneously, use a separate task for each
counter. Connect the input signal to the default input terminal of the counter.

Parameters

Return Value

DAQmxBaseCreateCIPulseWidthChan
int32 DAQmxBaseCreateCIPulseWidthChan (TaskHandle taskHandle, const char counter[], const char
nameToAssignToChannel[], float64 minVal, float64 maxVal, int32 units, int32 startingEdge, const char customScaleName
[]);

Purpose

Creates a channel to measure the width of a digital pulse and adds the channel to the task you specify with taskHandle.
startingEdge determines whether to measure a high pulse or low pulse. You can create only one counter input channel at a
time with this function because a task can include only one counter input channel. To read from multiple counters
simultaneously, use a separate task for each counter. Connect the input signal to the default input terminal of the counter.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

edge int32 Specifies on which edges of the input signal to increment or decrement the
count.

Value Description

DAQmx_Val_Rising Rising edge(s).

DAQmx_Val_Falling Falling edge(s).

initialCount uInt32 The value from which to start counting.

countDirection int32 Specifies whether to increment or decrement the counter on each edge.

Value Description

DAQmx_Val_CountUp Increment the count register on each
edge.

DAQmx_Val_CountDown Decrement the count register on each
edge.

DAQmx_Val_ExtControlled The state of a digital line controls the
count direction. Each counter has a
default count direction terminal. The
default for Counter 0 is PFI 10. The
default for Counter 1 is PFI 11.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

Page 11 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCreateCILinEncoderChan
int32 DAQmxBaseCreateCILinEncoderChan (TaskHandle taskHandle, const char counter[], const char
nameToAssignToChannel[], int32 decodingType, bool32 ZidxEnable, float64 ZidxVal, int32 ZidxPhase, int32 units, float64
distPerPulse, float64 initialPos, const char customScaleName[]);

Purpose

Creates a channel that uses a linear encoder to measure linear position. You can create only one counter input channel at a
time with this function because a task can include only one counter input channel. To read from multiple counters
simultaneously, use a separate task for each counter. Connect the input signals to the default input terminals of the counter
unless you select different input terminals.

Parameters

minVal float64 The minimum value, in units, that you expect to measure.

maxVal float64 The maximum value, in units, that you expect to measure.

units int32 The units to use to return the measurement.

Value Description

DAQmx_Val_Seconds Seconds

DAQmx_Val_Ticks Timebase ticks

startingEdge int32 Specifies on which edge to begin measuring pulse width.

Value Description

DAQmx_Val_Rising Rising edge(s)

DAQmx_Val_Falling Falling edge(s)

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] The name to assign to the created virtual channel. If you specify your own
names for nameToAssignToChannel, you must use the names when you
refer to these channels in other NI-DAQmxBase functions.

If you create multiple virtual channels with one call to this function, you can
specify a list of names separated by commas. If you provide fewer names
than the number of virtual channels you create, NI-DAQmxBase automatically
assigns names to the virtual channels.

decodingType int32 Specifies how to count and interpret the pulses that the encoder generates on
signal A and signal B. DAQmx_Val_X1, DAQmx_Val_X2, and DAQmx_Val_X4 are
valid for quadrature encoders only. DAQmx_Val_TwoPulseCounting is valid
only for two-pulse encoders.

DAQmx_Val_X2 and DAQmx_Val_X4 decoding are more sensitive to smaller
changes in position than DAQmx_Val_X1 encoding, with DAQmx_Val_X4 being
the most sensitive. However, more sensitive decoding is more likely to
produce erroneous measurements if there is vibration in the encoder or other
noise in the signals.

Value Description

DAQmx_Val_X1 If signal A leads signal B, count the
rising edges of signal A. If signal B

Page 12 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCreateCIAngEncoderChan
int32 DAQmxBaseCreateCIAngEncoderChan (TaskHandle taskHandle, const char counter[], const char
nameToAssignToChannel[], int32 decodingType, bool32 ZidxEnable, float64 ZidxVal, int32 ZidxPhase, int32 units, uInt32
pulsesPerRev, float64 initialAngle, const char customScaleName[]);

leads signal A, count the falling edges
of signal A.

DAQmx_Val_X2 Count the rising and falling edges of
signal A.

DAQmx_Val_X4 Count the rising and falling edges of
both signal A and signal B.

DAQmx_Val_TwoPulseCounting Increment the count on rising edges of
signal A. Decrement the count on
rising pulses of signal B.

ZidxEnable const char [] Specifies whether to enable z indexing for the measurement.

ZidxVal float64 The value, in units, to which to reset the measurement when signal Z is high
and signal A and signal B are at the states you specify with ZidxPhase.

ZidxPhase int32 The states at which signal A and signal B must be while signal Z is high for
NI-DAQmxBase to reset the measurement. If signal Z is never high while the
signal A and signal B are high, for example, you must choose a phase other
than DAQmx_Val_AHighBHigh.

When signal Z goes high and how long it stays high varies from encoder to
encoder. Refer to the documentation for the encoder to determine the timing
of signal Z with respect to signal A and signal B.

Value Description

DAQmx_Val_AHighBHigh Reset the measurement when both signal A
and signal B are at high logic.

DAQmx_Val_AHighBLow Reset the measurement when signal A is at
high logic and signal B is at low logic.

DAQmx_Val_ALowBHigh Reset the measurement when signal A is at
low logic and signal B is at high logic.

DAQmx_Val_ALowBLow Reset the measurement when both signal A
and signal B are at low logic.

units int32 The units to use to return linear position measurements from the channel.

Name Description

DAQmx_Val_Meters Meters.

DAQmx_Val_Inches Inches.

DAQmx_Val_Ticks Timebase Ticks.

DAQmx_Val_FromCustomScale Units a custom scale specifies. Use
customScaleName to specify a
custom scale.

distPerPulse float64 The distance measured for each pulse the encoder generates. Specify this
value in units.

initialPos float64 The position of the encoder when the measurement begins. This value is in
units.

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 13 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Purpose

Creates a channel that uses an angular encoder to measure angular position. You can create only one counter input channel
at a time with this function because a task can include only one counter input channel. To read from multiple counters
simultaneously, use a separate task for each counter. Connect the input signals to the default input terminals of the counter
unless you select different input terminals.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] The name to assign to the created virtual channel. If you specify your own
names for nameToAssignToChannel, you must use the names when you
refer to these channels in other NI-DAQmxBase functions.

If you create multiple virtual channels with one call to this function, you can
specify a list of names separated by commas. If you provide fewer names
than the number of virtual channels you create, NI-DAQmxBase automatically
assigns names to the virtual channels.

decodingType int32 Specifies how to count and interpret the pulses that the encoder generates on
signal A and signal B. DAQmx_Val_X1, DAQmx_Val_X2, and DAQmx_Val_X4 are
valid for quadrature encoders only. DAQmx_Val_TwoPulseCounting is valid
only for two-pulse encoders.

DAQmx_Val_X2 and DAQmx_Val_X4 decoding are more sensitive to smaller
changes in position than DAQmx_Val_X1 encoding, with DAQmx_Val_X4 being
the most sensitive. However, more sensitive decoding is more likely to
produce erroneous measurements if there is vibration in the encoder or other
noise in the signals.

Value Description

DAQmx_Val_X1 If signal A leads signal B, count the
rising edges of signal A. If signal B
leads signal A, count the falling edges
of signal A.

DAQmx_Val_X2 Count the rising and falling edges of
signal A.

DAQmx_Val_X4 Count the rising and falling edges of
both signal A and signal B.

DAQmx_Val_TwoPulseCounting Increment the count on rising edges of
signal A. Decrement the count on
rising pulses of signal B.

ZidxEnable bool32 Specifies whether to enable z indexing for the measurement.

ZidxVal float64 The value, in units, to which to reset the measurement when signal Z is high
and signal A and signal B are at the states you specify with ZidxPhase.

ZidxPhase int32 The states at which signal A and signal B must be while signal Z is high for
NI-DAQmxBase to reset the measurement. If signal Z is never high while the
signal A and signal B are high, for example, you must choose a phase other
than DAQmx_Val_AHighBHigh.

When signal Z goes high and how long it stays high varies from encoder to
encoder. Refer to the documentation for the encoder to determine the timing
of signal Z with respect to signal A and signal B.

Value Description

DAQmx_Val_AHighBHigh Reset the measurement when both signal A
and signal B are at high logic.

DAQmx_Val_AHighBLow Reset the measurement when signal A is at
high logic and signal B is at low logic.

Page 14 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCreateCOPulseChanFreq
int32 DAQmxBaseCreateCOPulseChanFreq (TaskHandle taskHandle, const char counter[], const char
nameToAssignToChannel[], int32 units, int32 idleState, float64 initialDelay, float64 freq, float64 dutyCycle);

Purpose

Creates a channel to generate digital pulses defined by freq and dutyCycle and adds the channel to the task you specify
with taskHandle. The pulses appear on the default output terminal of the counter.

You can create only one counter output channel at a time with this function because a task can include only one counter
output channel. To use multiple counters simultaneously, use a separate task for each counter.

Parameters

DAQmx_Val_ALowBHigh Reset the measurement when signal A is at
low logic and signal B is at high logic.

DAQmx_Val_ALowBLow Reset the measurement when both signal A
and signal B are at low logic.

units int32 The units to use to return angular position measurements from the channel.

Value Description

DAQmx_Val_Degrees Degrees

DAQmx_Val_Radians Radians

DAQmx_Val_Ticks Timebase ticks

DAQmx_Val_FromCustomScale Units a custom scale specifies. Use
customScaleName to specify a
custom scale.

pulsesPerRev uInt32 The number of pulses the encoder generates per revolution. This value is the
number of pulses on one of either A signal or B signal, not the total number of
pulses on both signal A and signal B.

initialAngle float64 The starting angle of the encoder when the measurement begins. Specify this
value in units.

customScaleName const char [] Pass NULL for this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to which to add the channels that this function creates.

counter const char [] The name of the counter to use to create virtual channels such as Dev1/ctr0.

nameToAssignToChannel const char [] Pass NULL for this parameter. NI-DAQmx Base currently ignores this
parameter.

units int32 The units in which to specify freq.

Name Description

DAQmx_Val_Hz Hertz

idleState int32 The resting state of the output terminal.

Value Description

DAQmx_Val_High High state. M Series only.

DAQmx_Val_Low Low state

Page 15 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCfgSampClkTiming
int32 DAQmxBaseCfgSampClkTiming (TaskHandle taskHandle, const char source[], float64 rate, int32 activeEdge, int32
sampleMode, uInt64 sampsPerChanToAcquire);

Purpose

Sets the source of the Sample Clock, the rate of the Sample Clock, and the number of samples to acquire or generate.

Parameters

Return Value

DAQmxBaseCfgImplicitTiming
int32 DAQmxBaseCfgImplicitTiming (TaskHandle taskHandle, int32 sampleMode, uInt64 sampsPerChanToAcquire);

Purpose

Sets only the number of samples to acquire or generate without specifying timing. Typically, you should use this function
when the task does not require sample timing, such as tasks that use counters for buffered frequency measurement,

initialDelay float64 The amount of time in seconds to wait before generating the first pulse.

freq float64 The frequency of the pulses to generate.

dutyCycle float64 The width of the pulse divided by the pulse period. NI-DAQmx Base uses this
ratio, combined with frequency, to determine both pulse width and pulse
delay.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

source const char [] The source terminal of the Sample Clock.

rate float64 The sampling rate in samples per second. If you use an external source for
the Sample Clock, set this value to the maximum expected rate of that clock.

activeEdge int32 Specifies on which edge of the clock to acquire samples.

Value Description

DAQmx_Val_Rising Acquire samples on the rising edges of the
Sample Clock.

DAQmx_Val_Falling Acquire samples on the falling edges of the
Sample Clock.

sampleMode int32 Specifies whether the task acquires or generates samples continuously or for
a finite number of samples.

Name Description

DAQmx_Val_FiniteSamps Acquire a finite number of samples.

DAQmx_Val_ContSamps Acquire samples until you call the
DAQmxBaseStopTask function.

sampsPerChanToAcquire uInt64 The number of samples to acquire for each channel in the task if
sampleMode is DAQmx_Val_FiniteSamps. NI-DAQmx Base currently supports
the lower 32-bits of this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 16 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

buffered period measurement, or pulse train generation.

Parameters

Return Value

DAQmxBaseDisableStartTrig
int32 DAQmxBaseDisableStartTrig (TaskHandle taskHandle);

Purpose

Configures the task to start acquiring or generating samples immediately upon starting the task.

Parameters

Return Value

DAQmxBaseCfgDigEdgeStartTrig
int32 DAQmxBaseCfgDigEdgeStartTrig (TaskHandle taskHandle, const char triggerSource[], int32 triggerEdge);

Purpose

Configures the task to start acquiring or generating samples on a rising or falling edge of a digital signal.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

sampleMode int32 Specifies whether the task acquires or generates samples continuously or for a
finite number of samples.

Name Description

DAQmx_Val_FiniteSamps Acquire a finite number of samples.

DAQmx_Val_ContSamps Acquire samples until you call the
DAQmxBaseStopTask function.

sampsPerChanToAcquire uInt64 The number of samples to acquire for each channel in the task if sampleMode
is DAQmx_Val_FiniteSamps. NI-DAQmx Base currently supports the lower 32-
bits of this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

triggerSource const char [] The name of a terminal where there is a digital signal to use as the source of the trigger
such as the following: /Dev1/PFI0.

triggerEdge int32 Specifies on which edge of a digital signal to start acquiring or generating samples.

Value Description

Page 17 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCfgAnlgEdgeStartTrig
int32 DAQmxBaseCfgAnlgEdgeStartTrig (TaskHandle taskHandle, const char triggerSource[], int32 triggerSlope, float64
triggerLevel);

Purpose

Configures the task to start acquiring samples when an analog signal crosses the level you specify.

Parameters

Return Value

DAQmxBaseCfgAnlgEdgeRefTrig
int32 DAQmxBaseCfgAnlgEdgeRefTrig (TaskHandle taskHandle, const char triggerSource[], int32 triggerSlope, float64
triggerLevel, uInt32 pretriggerSamples);

Purpose

Configures the task to stop the acquisition when the device acquires all pretrigger samples, an analog signal reaches the
level you specify, and the device acquires all post-trigger samples.

Parameters

DAQmx_Val_Rising Rising edge(s)

DAQmx_Val_Falling Falling edge(s)

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

triggerSource const char [] The name of a terminal where there is an analog signal to use as the source of the trigger
such as the following: /Dev1/PFI0. The only terminal you can use for E Series devices is
PFI0.

triggerSlope int32 Specifies on which slope of the signal to start acquiring samples when the signal crosses
triggerLevel.

Value Description

DAQmx_Val_RisingSlope Trigger on the rising slope of the signal.

DAQmx_Val_FallingSlope Trigger on the falling slope of the signal.

triggerLevel float64 The threshold at which to start acquiring samples. Specify this value in the units of the
measurement. Use triggerSlope to specify on which slope to trigger at this threshold.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

triggerSource const char [] The name of a terminal where there is an analog signal to use as the source of the
trigger, such as the following: /Dev1/PFI0. The only terminal you can use for E Series
devices is PFI0.

triggerSlope int32 Specifies on which slope of the signal the Reference Trigger occurs.

Page 18 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCfgDigEdgeRefTrig
int32 DAQmxBaseCfgDigEdgeRefTrig (TaskHandle taskHandle, const char triggerSource[], int32 triggerEdge, uInt32
pretriggerSamples);

Purpose

Configures the task to stop the acquisition when the device acquires all pretrigger samples, detects a rising or falling edge
of a digital signal, and acquires all posttrigger samples.

Parameters

Return Value

DAQmxBaseDisableRefTrig
int32 DAQmxBaseDisableRefTrig (TaskHandle taskHandle);

Purpose

Disables reference triggering for the measurement or generation.

Parameters

Value Description

DAQmx_Val_RisingSlope Trigger on the rising slope of the signal.

DAQmx_Val_FallingSlope Trigger on the falling slope of the signal.

triggerLevel float64 Specifies at what threshold to trigger. Specify this value in the units of the
measurement. Use triggerSlope to specify on which slope to trigger at this
threshold.

pretriggerSamples uInt32 The minimum number of samples per channel to acquire before recognizing the
Reference Trigger. The number of post-trigger samples per channel is equal to
number of samples per channel in the NI-DAQmx Base Timing functions minus
pretriggerSamples.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

triggerSource const char [] The name of a terminal where there is an analog signal to use as the source of the
trigger such as the following: /Dev1/PFI0. The only terminal you can use for E Series
devices is PFI0.

triggerEdge int32 Specifies on which edge of the digital signal the Reference Trigger occurs.

Value Description

DAQmx_Val_Rising Rising edge(s)

DAQmx_Val_Falling Falling edge(s)

pretriggerSamples uInt32 The minimum number of samples per channel to acquire before recognizing the
Reference Trigger. The number of post-trigger samples per channel is equal to
number of samples per channel in the NI-DAQmx Base Timing functions minus
pretriggerSamples.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 19 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseReadAnalogF64
int32 DAQmxBaseReadAnalogF64 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, bool32 fillMode,
float64 readArray[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple floating-point samples from a task that contains one or more analog input channels.

Parameters

Return Value

DAQmxBaseReadBinaryI16
int32 DAQmxBaseReadBinaryI16 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, bool32 fillMode, int16
readArray[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple unscaled, signed 16-bit integer samples from a task that contains one or more analog input channels.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read samples from.

numSampsPerChan int32 The number of samples, per channel, to read. If the task acquires a finite number of
samples and you set this parameter to -1, the function waits for the task to acquire
all requested samples, and then reads those samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

fillMode bool32 Specifies whether or not the samples are interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by scan number (interleaved)

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray float64 [] The array to read data into, organized according to fillMode.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Page 20 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseReadCounterF64
int32 DAQmxBaseReadCounterF64 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, float64 readArray
[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple floating-point samples from a counter task. Use this function when counter samples are scaled to a floating-
point value, such as for frequency and period measurements.

Parameters

Name Type Description

taskHandle TaskHandle The task to read samples from.

numSampsPerChan int32 The number of samples, per channel, to read. The default value of -1
(DAQmx_Val_Auto) reads all available data. If readArray does not contain enough
space, this function returns as much data as fits in readArray.

NI-DAQmx Base determines how many samples to read based on whether the task
acquires samples continuously or acquires a finite number of samples.

If the task acquires samples continuously and you set this parameter to -1, this
function reads all the samples currently available in the buffer.

If the task acquires a finite number of samples and you set this parameter to -1, the
function waits for the task to acquire all requested samples, and then reads those
samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

fillMode bool32 Specifies whether or not the samples are interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by scan number (interleaved)

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray int16 [] The array to read data into, organized according to fillMode.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read samples from.

numSampsPerChan int32 The number of samples, per channel, to read. The default value of -1
(DAQmx_Val_Auto) reads all available data. If readArray does not contain enough
space, this function returns as much data as fits in readArray.

NI-DAQmx Base determines how many samples to read based on whether the task
acquires samples continuously or acquires a finite number of samples.

If the task acquires samples continuously and you set this parameter to -1, this
function reads all the samples currently available in the buffer.

If the task acquires a finite number of samples and you set this parameter to -1, the
function waits for the task to acquire all requested samples, and then reads those

Page 21 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseReadCounterScalarF64
int32 DAQmxBaseReadCounterScalarF64 (TaskHandle taskHandle, float64 timeout, float64 *value, bool32 *reserved);

Purpose

Reads a single floating-point sample from a counter task. Use this function when the counter sample is scaled to a floating-
point value, such as for frequency and period measurement.

Parameters

Return Value

DAQmxBaseReadCounterScalarU32
int32 DAQmxBaseReadCounterScalarU32 (TaskHandle taskHandle, float64 timeout, uInt32 *value, bool32 *reserved);

Purpose

Reads a 32-bit integer sample from a counter task. Use this function when the counter sample is returned unscaled, such as
for edge counting.

Parameters

samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray float64 [] The array to read data into.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read the sample from.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This function
returns an error if the timeout elapses.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

value float64 * The sample read from the task.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read the sample from.

Page 22 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseReadCounterU32
int32 DAQmxBaseReadCounterU32 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, uInt32 readArray
[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple 32-bit integer samples from a counter task. Use this function when counter samples are returned unscaled,
such as for edge counting.

Parameters

Return Value

DAQmxBaseReadDigitalScalarU32
int32 DAQmxBaseReadDigitalScalarU32 (TaskHandle taskHandle, float64 timeout, uInt32 *value, bool32 *reserved);

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This function
returns an error if the timeout elapses.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

value uInt32 * The sample read from the task.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read samples from.

numSampsPerChan int32 The number of samples, per channel, to read. The default value of -1
(DAQmx_Val_Auto) reads all available data. If readArray does not contain enough
space, this function returns as much data as fits in readArray.

NI-DAQmx Base determines how many samples to read based on whether the task
acquires samples continuously or acquires a finite number of samples.

If the task acquires samples continuously and you set this parameter to -1, this
function reads all the samples currently available in the buffer.

If the task acquires a finite number of samples and you set this parameter to -1, the
function waits for the task to acquire all requested samples, and then reads those
samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray uInt32 [] The array to read data into.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Page 23 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Purpose

Reads a single 32-bit integer sample from a task that contains a single digital input channel. Use this return type for devices
with up to 32 lines per port. The data is returned in unsigned integer format.

Parameters

Return Value

DAQmxBaseReadDigitalU32
int32 DAQmxBaseReadDigitalU32 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, bool32 fillMode,
uInt32 readArray[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple 32-bit integer samples from a task that contains one or more digital input channels. Use this return type for
devices with up to 32 lines per port. The data is returned in unsigned integer format.

Parameters

Input

Name Type Description

taskHandle TaskHandle The task to read the sample from.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This function
returns an error if the timeout elapses.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

value uInt32 * The sample read from the task.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to read samples from.

numSampsPerChan int32 The number of samples, per channel, to read. The default value of -1
(DAQmx_Val_Auto) reads all available data. If readArray does not contain enough
space, this function returns as much data as fits in readArray.

NI-DAQmx Base determines how many samples to read based on whether the task
acquires samples continuously or acquires a finite number of samples.

If the task acquires samples continuously and you set this parameter to -1, this
function reads all the samples currently available in the buffer.

If the task acquires a finite number of samples and you set this parameter to -1, the
function waits for the task to acquire all requested samples, and then reads those
samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

fillMode bool32 Specifies whether or not the samples are interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by scan number (interleaved)

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

Page 24 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseReadDigitalU8
int32 DAQmxBaseReadDigitalU8 (TaskHandle taskHandle, int32 numSampsPerChan, float64 timeout, bool32 fillMode, uInt8
readArray[], uInt32 arraySizeInSamps, int32 *sampsPerChanRead, bool32 *reserved);

Purpose

Reads multiple 8-bit integer samples from a task that one or more multiple digital input channels. Use this function for
devices with up to 8 lines per port. The data is returned in unsigned byte format.

Parameters

Return Value

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray uInt32 [] The array to read data into, organized according to fillMode.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to write samples to.

numSampsPerChan int32 The number of samples, per channel, to read. The default value of -1
(DAQmx_Val_Auto) reads all available data. If readArray does not contain enough
space, this function returns as much data as fits in readArray.

NI-DAQmx Base determines how many samples to read based on whether the task
acquires samples continuously or acquires a finite number of samples.

If the task acquires samples continuously and you set this parameter to -1, this
function reads all the samples currently available in the buffer.

If the task acquires a finite number of samples and you set this parameter to -1, the
function waits for the task to acquire all requested samples, and then reads those
samples.

timeout float64 The amount of time, in seconds, to wait for the function to read the sample(s). This
function returns an error if the timeout elapses.

fillMode bool32 Specifies whether or not the samples are interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by scan number (interleaved)

arraySizeInSamps uInt32 The size of the array, in samples, into which data is read.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

readArray uInt8 [] The array into which data is read, organized according to fillMode.

sampsPerChanRead int32 * The actual number of samples read from each channel.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.

Page 25 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

DAQmxBaseWriteAnalogF64
int32 DAQmxBaseWriteAnalogF64 (TaskHandle taskHandle, int32 numSampsPerChan, bool32 autoStart, float64 timeout,
bool32 dataLayout, float64 writeArray[], int32 *sampsPerChanWritten, bool32 *reserved);

Purpose

Writes multiple floating-point samples to a task that contains one or more analog output channels.

Parameters

Return Value

DAQmxBaseWriteDigitalU8
int32 DAQmxBaseWriteDigitalU8 (TaskHandle taskHandle, int32 numSampsPerChan, bool32 autoStart, float64 timeout,
bool32 dataLayout, uInt8 writeArray[], int32 *sampsPerChanWritten, bool32 *reserved);

Purpose

Writes multiple eight-bit unsigned integer samples to a task that contains one or more digital output channels. Use this
format for devices with up to 8 lines per port.

Parameters

A positive value indicates a warning. A negative value indicates an error.

Note Buffered writes require a minimum buffer size of two samples.

Input

Name Type Description

taskHandle TaskHandle The task to write samples to.

numSampsPerChan int32 The number of samples, per channel, to write. You must pass in a value of 0 or
more in order for the sample to write. If you pass a negative number, this function
returns an error.

autoStart bool32 Always set to FALSE.

timeout float64 The amount of time, in seconds, to wait for this function to write all the samples.
This function returns an error if the timeout elapses.

dataLayout bool32 Specifies how the samples are arranged, either interleaved or non-interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by sample (interleaved)

writeArray float64[] The array of 64-bit samples to write to the task.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

sampsPerChanWritten int32 * The actual number of samples per channel successfully written to the buffer.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Note Buffered writes require a minimum buffer size of two samples.

Input

Name Type Description

Page 26 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseWriteDigitalU32
int32 DAQmxBaseWriteDigitalU32 (TaskHandle taskHandle, int32 numSampsPerChan, bool32 autoStart, float64 timeout,
bool32 dataLayout, uInt32 writeArray[], int32 *sampsPerChanWritten, bool32 *reserved);

Purpose

Writes multiple 32-bit unsigned integer samples to a task that contains one or more digital output channels. Use this format
for devices with up to 32 lines per port.

Parameters

taskHandle TaskHandle The task to write samples to.

numSampsPerChan int32 The number of samples, per channel, to write. You must pass in a value of 0 or
more in order for the sample to write. If you pass a negative number, this function
returns an error.

autoStart bool32 Specifies whether or not this function automatically starts the task if you do not
start it. This function is used only for static digital tasks; otherwise set autoStart to
FALSE.

timeout float64 The amount of time, in seconds, to wait for this function to write all the samples.
This function returns an error if the timeout elapses.

dataLayout bool32 Specifies how the samples are arranged, either interleaved or non-interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by sample (interleaved)

writeArray uInt8 [] The array of 8-bit integer samples to write to the task.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

sampsPerChanWritten int32 * The actual number of samples per channel successfully written to the buffer.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Note Buffered writes require a minimum buffer size of 2 samples.

Input

Name Type Description

taskHandle TaskHandle The task to write samples to.

numSampsPerChan int32 The number of samples, per channel, to write. You must pass in a value of 0 or
more in order for the sample to write. If you pass a negative number, this function
returns an error.

autoStart bool32 Specifies whether or not this function automatically starts the task if you do not
start it. This is used only for static digital tasks, otherwise set autoStart to False.

timeout float64 The amount of time, in seconds, to wait for this function to write all the samples.
This function returns an error if the timeout elapses.

dataLayout bool32 Specifies how the samples are arranged, either interleaved or non-interleaved.

Value Description

DAQmx_Val_GroupByChannel Group by channel (non-interleaved)

DAQmx_Val_GroupByScanNumber Group by sample (interleaved)

Page 27 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseWriteDigitalScalarU32
int32 DAQmxBaseWriteDigitalScalarU32 (TaskHandle taskHandle, bool32 autoStart, float64 timeout, uInt32 value, bool32
*reserved);

Purpose

Writes a single 32-bit unsigned integer sample to a task that contains a single digital output channel. Use this format for
devices with up to 32 lines per port. Useful for static digital tasks only.

Parameters

Return Value

DAQmxBaseExportSignal
int32 DAQmxBaseExportSignal (TaskHandle taskHandle, int32 signalID, const char outputTerminal[]);

Purpose

Routes a control signal to the specified terminal. The output terminal can reside on the device that generates the control
signal or on a different device. Use this function to share clocks and triggers between multiple tasks and devices. The routes
created by this function are task-based routes.

Parameters

writeArray uInt32 [] The array of 32-bit integer samples to write to the task.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Output

Name Type Description

sampsPerChanWritten int32 * The actual number of samples per channel successfully written to the buffer.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task to write the sample to.

autoStart bool32 Specifies whether or not this function automatically starts the task if you do not start it. This is
used only for static digital tasks; otherwise set autoStart to FALSE.

timeout float64 The amount of time, in seconds, to wait for this function to write the value. This function
returns an error if the timeout elapses.

value uInt32 A 32-bit integer sample to write to the task.

reserved bool32 * Reserved for future use. Pass NULL to this parameter.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

signalID int32 The name of the trigger, clock, or event to export.

Value Description

DAQmx_Val_AIConvertClock Clock that causes an analog-to-digital

Page 28 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseCfgInputBuffer
int32 DAQmxBaseCfgInputBuffer (TaskHandle taskHandle, uInt32 numSampsPerChan);

Purpose

Overrides the automatic input buffer allocation that NI-DAQmx Base performs.

Parameters

conversion on an E Series device. One
conversion corresponds to a single sample
from one channel.

DAQmx_Val_20MHzTimebaseClock Output of an oscillator that is the onboard
source of the Master Timebase. Other
timebases are derived from this clock.

DAQmx_Val_SampleClock Clock the device uses to time each sample.

DAQmx_Val_AdvanceTrigger Trigger that moves a switch to the next
entry in a scan list.

DAQmx_Val_ReferenceTrigger Trigger that establishes the reference point
between pretrigger and posttrigger samples.

DAQmx_Val_StartTrigger Trigger that begins a measurement or
generation.

DAQmx_Val_AdvCmpltEvent Signal that a switch product generates after
it both executes the command(s) in a scan
list entry and waits for the settling time to
elapse.

DAQmx_Val_AIHoldCmpltEvent Signal that an E Series device generates
when the device latches analog input data
(the ADC enters "hold" mode) and it is safe
for any external switching hardware to
remove the signal and replace it with the
next signal. This event does not indicate the
completion of the actual analog-to-digital
conversion.

DAQmx_Val_CounterOutputEvent Signal that a counter generates. Each time
the counter reaches terminal count, this
signal toggles or pulses.

DAQmx_Val_ChangeDetectionEvent Signal that a static DIO device generates
when the device detects a rising or falling
edge on any of the lins or ports you selected
when you configured change detection
timing.

DAQmx_Val_WDTExpiredEvent Signal that a static DIO device generates
when the watchdog timer expires.

outputTerminal const char [] The destination terminal of the exported signal.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

taskHandle TaskHandle The task used in this function.

numSampsPerChan uInt32 The number of samples the buffer can hold for each channel in the task. Zero
indicates no buffer should be allocated. Use a buffer size of 0 to perform a hardware-
timed operation without using a buffer.

Page 29 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Return Value

DAQmxBaseGetExtendedErrorInfo
int32 DAQmxBaseGetExtendedErrorInfo (char errorString[], uInt32 bufferSize);

Purpose

Returns dynamic, specific error information. This function is valid only for the last function that failed; additional NI-
DAQmxBase calls may invalidate this information.

If you pass valid values for errorString and bufferSize, this function returns as much of the available data as possible.

If you pass NULL for errorString or 0 for bufferSize, this function returns the number of bytes you need to allocate.

Parameters

Return Value

Glossary

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A positive value indicates a warning. A negative value indicates an error.

Input

Name Type Description

bufferSize uInt32 The size, in bytes, of errorString. If you pass 0, this function returns the number of bytes you
need to allocate.

Output

Name Type Description

errorString char [] Dynamic error information. If you pass NULL, this function returns the number of bytes you need to
allocate.

Name Type Description

status int32 The error code returned by the function in the event of an error or warning. A value of 0 indicates success.
A negative value indicates an error.

If you pass in a valid value for errorString and its bufferSize, this function returns as much of the
available data as possible.

If you pass NULL for errorString or 0 for bufferSize, this function returns the number of bytes you need
to allocate.

Prefixes Numbers/Symbols A B C D E F G H I L M N O P R S T U V W

Prefix Meaning Value

n- nano- 10^-9

µ- micro- 10^-6

m- milli- 10^-3

k- kilo- 10^3

M- mega- 10^6

Symbols Meaning

% percent

+ positive of, or plus

– negative of, or minus

Ω ohm

º degree

Page 30 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

A

accelerometer A sensor that represents acceleration as a voltage.

ADC Analog-to-digital converter—an electronic device, often an integrated circuit, that converts an
analog signal to a digital value.

ADE Application development environment—some examples include LabVIEW and LabWindows/CVI.

AI Analog input—acquisition of data.

amplification A type of signal conditioning that improves accuracy in the resulting digitized signal by increasing
signal amplitude relative to noise.

analog Data represented by continuously variable physical quantities.

AO Analog output—generation of data.

API Application programming interface—A library of functions, classes or VIs, attributes, and
properties for creating applications for your device.

asynchronous 1. Hardware—a signal that occurs or is acted upon at an arbitrary time, without
synchronization to another signal, such as a reference clock.

2. Software—a VI or function that begins an operation and returns prior to the completion or
termination of the operation.

attenuation The reduction of a voltage or acoustical pressure. Measured referenced to the original voltage.

B

bandwidth The range of frequencies present in a signal, or the range of frequencies to which a measuring
device can respond.

bipolar A signal range that includes both positive and negative values (for example, ס V to +5 V).

bit The smallest unit of data used in a digital operation. Bits are binary, so they can be either a 1 or
a 0.

buffer In software, temporary storage for acquired or to-be-generated samples.

C

CH Channel.

channel 1. Physical—a terminal or pin at which you can measure or generate an analog or digital signal.
A single physical channel can include more than one terminal, as in the case of a differential
analog input channel or a digital port of eight lines. The name used for a counter physical
channel is an exception because that physical channel name is not the name of the terminal
where the counter measures or generates the digital signal.

2. Virtual—a collection of property settings that can include a name, a physical channel, input
terminal connections, the type of measurement or generation, and scaling information. You
can define NI-DAQmx virtual channels outside a task (global) or inside a task (local).
Configuring virtual channels is optional in Traditional NI-DAQ and earlier versions, but is
integral to every measurement you take in NI-DAQmx. In Traditional NI-DAQ, you configure
virtual channels in MAX. In NI-DAQmx, you can configure virtual channels either in MAX or
in a program, and you can configure channels as part of a task or separately.

3. Switch—a switch channel represents any connection point on a switch. It may be made up of
one or more signal wires (commonly one, two, or four), depending on the switch topology. A
virtual channel cannot be created with a switch channel. Switch channels may be used only
in the NI-DAQmx Switch functions and VIs.

clock A periodic digital signal.

CMRR Common-mode rejection ratio—a measure of the ability of an instrument to reject interference
from a common-mode signal, usually expressed in decibels. (dB)

code width The smallest detectable change in an input voltage of a DAQ device.

cold-junction
compensation

A method of compensating for inaccuracies in thermocouple circuits.

counter/timer A circuit that counts digital edges. Counters and timers usually have from 16 bits to 48 bits
(sometimes more) counting capability. The total number of counts possible equals 2N, where N is

Page 31 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

the number of bits in the counter. When the edges counted are produced by a clock, elapsed
time can be computed from the number of edges counted if the clock frequency is known.

custom scale A method of instructing NI-DAQmx to apply additional scaling to your data. Refer to the Create
Scale function/VI in your reference help.

D

DAC Digital-to-analog converter—an electronic device, often an integrated circuit, that converts a
digital number into a corresponding analog voltage or current.

DAQ Refer to data acquisition.

DAQ Assistant A graphical interface for configuring measurement tasks, channels, and scales.

DAQ device A device that acquires or generates data and can contain multiple channels and conversion
devices. DAQ devices include plug-in devices, PCMCIA cards, and DAQPad devices, which connect
to a computer USB or 1394 (FireWire) port. SCXI modules are considered DAQ devices.

data Samples.

data acquisition 1. Acquiring and measuring analog or digital electrical signals from sensors, acquisition
transducers, and test probes or fixtures.

2. Generating analog or digital electrical signals.

dB Decibel—the unit for expressing a logarithmic measure of the ratio of two signal levels:
dB=20log10 V1/V2, for signals in volts.

DC Direct current.

delay from sample The amount of time to wait after receiving a sample clock edge before beginning the acquisition
of a sample.

delay from start The amount of time to wait after receiving a start trigger before beginning the operation.

device 1. An instrument or controller you can access as a single entity that controls or monitors real-
world I/O points. A device often is connected to a host computer through some type of
communication network.

2. See also DAQ device and measurement device.

digital A TTL signal. Refer to edge.

DIO digital input/output.

DMA Direct Memory Access—A method of transferring data between a buffer and a device that is used
most often for high-speed operations.

driver Software unique to the device or type of device, and includes the set of commands the device
accepts.

E

E Series A standard architecture for instrumentation-class, multichannel data acquisition devices.

edge A digital edge is a single rising or falling TTL transition. An analog edge is defined by the slope,
level, and hysteresis settings.

event A digital signal produced from a device or circuit.

excitation Supplying a voltage or current source to energize an active sensor or circuit.

F

fall time The time for a signal to transition from 90% to 10% of the maximum signal amplitude.

FIFO A type of memory that implements a First In First Out strategy in which samples are removed in
the order they were written. FIFOs are typically used as intermediate buffers between an ADC or
DAC and the memory buffer.

filtering A type of signal conditioning that you can use to remove unwanted frequency components from
the signal you are measuring.

floating signal sources Signal sources with voltage signals that are not connected to an absolute reference or system
ground.

Page 32 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

G

gain The factor by which a signal is amplified, often expressed in dB. Gain as a function of frequency
is commonly referred to as the magnitude of the frequency response function.

grounded signal
sources

Signal sources with voltage signals that are referenced to a system ground, such as the earth or
a building ground. Grounded signal sources are also called referenced signal sources.

H

hardware triggering A form of triggering in which the source of the trigger is an analog or digital signal. Refer to
Software Trigger.

hysteresis A window around a trigger level that is often used to reduce false triggering due to noise or jitter
in the signal.

Hz Hertz—cycles per second of a periodic signal.

I

instrument driver Refer to driver.

interrupts A method whereby a device notifies the computer of some condition on the device that requires
the computer's attention. When this condition is a request for data or a notification of available
data, interrupts are used as a data transfer mechanism.

I/O Input/output—the transfer of data to/from a computer system involving communications
channels, operator interface devices, and/or data acquisition and control interfaces.

isolation A type of signal conditioning in which you isolate the transducer signals from the computer.
Isolation makes sure the measurements from the measurement device are not affected by
differences in ground potentials.

L

LED Light-emitting diode—a semiconductor light source.

line An individual signal in a digital port. The difference between a bit and a line is that the bit refers
to the actual data transferred, and the line refers to the hardware the bit is transferred on.
However, the terms line and bit are fairly interchangeable. For example, an 8-bit port is the
same as a port with eight lines.

linearization A type of signal conditioning in which software linearizes the voltage levels from transducers, so
the voltages can be scaled to measure physical phenomena.

LSB Least significant bit—often used to refer to the smallest voltage change detectable by an A/D
converter or the smallest voltage change that can be generated by a D/A converter.

LVDT Linear variable differential transformer—a sensor that measures linear displacement.

M

M Series An architecture for instrumentation-class, multichannel data acquisition devices based on the
earlier E Series architecture with added new features.

Measurement &
Automation Explorer
(MAX)

A centralized configuration environment that allows you to configure all of your National
Instruments devices.

measurement device DAQ devices such as the E Series multifunction I/O (MIO) devices, SCXI signal conditioning
modules, and switch modules.

memory buffer Refer to buffer.

memory mapping A technique for reading and writing to a device directly from your program, which avoids the
overhead of delegating the reads and writes to kernel-level software. Delegation to the kernel is
safer, but slower. Memory mapping is less safe because an entire 4 KB page of memory must be
exposed to your program for this to work, but it is faster.

MIO Multifunction I/O—Designates a family of data acquisition devices that have multiple analog input
channels, digital I/O channels, timing, and optionally, analog output channels. An MIO product
can be considered a miniature mixed signal tester, due to its broad range of signal types and

Page 33 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

flexibility. It is also known as multifunction DAQ. An E Series device is an example of an MIO
device.

module A board assembly and its associated mechanical parts, front panel, optional shields, and so on. A
module contains everything required to occupy one or more slots in a mainframe. SCXI and PXI
devices are modules.

multiplexer A switching device with multiple terminals that sequentially connects each of its terminals to a
single terminal, typically at high speeds. Often used to measure several signals with a single
analog input channel.

N

NI-DAQ Driver software included with all NI measurement devices. NI-DAQ is an extensive library of VIs
and functions you can call from an application development environment (ADE), such as
LabVIEW, to program all the features of an NI measurement device, such as configuring,
acquiring and generating data from, and sending data to the device.

NI-DAQmx The latest NI-DAQ driver with new VIs, functions, and development tools for controlling
measurement devices. The advantages of NI-DAQmx over earlier versions of NI-DAQ include the
DAQ Assistant for configuring channels and measurement tasks for your device for use in
LabVIEW, LabWindows/CVI, and Measurement Studio; increased performance such as faster
single-point analog I/O; and a simpler API for creating DAQ applications using fewer functions
and VIs than earlier versions of NI-DAQ.

NI-DAQmx Base NI-DAQmx Base is a NI-DAQ driver with the following features: provides a high-level NI-DAQmx
interface on LabVIEW PDA for Pocket PC 2003, Linux, Mac OS X, and certain USB devices on
Windows; is a subset of the NI-DAQmx API: if you are familiar with NI-DAQmx, you should be
able to comfortably use NI-DAQmx Base; is comprised of LabVIEW VIs, which allows you to
customize the driver, if needed.

nonlinearity A measure in percentage of full-scale range (FSR) of the worst-case deviation from the ideal
transfer function—a straight line.

This specification is included only for DAQ products, such as signal conditioning products, that do
not have an ADC. Because a product with this specification can also be used with a DAQ product
with an ADC, this nonlinearity specification must be added to the relative accuracy specification
of the DAQ product with the ADC.

NRSE Nonreferenced single-ended mode—all measurements are made with respect to a common
(NRSE) measurement system reference, but the voltage at this reference can vary with respect
to the measurement system ground.

O

onboard Provided by the data acquisition device.

onboard channels Channels provided by the plug-in data acquisition device.

onboard clock The default source for a particular clock. Usually, the device has dedicated a circuit for producing
this signal and its only purpose is to act as the source for a certain clock.

onboard memory Memory provided by a device for temporary storage of input or output data. Typically, onboard
memory is a FIFO, which is distinct from computer memory.

P

parallel mode A type of SCXI operating mode in which the module sends each of its input channels directly to a
separate analog input channel of the device connected to the module.

pattern I/O Pattern input and output—a digital I/O operation on which a clock signal initiates a digital
transfer. Because the clock signal is a constant frequency, you can generate and receive patterns
at a constant rate.

PCI Peripheral Component Interconnect—a high-performance expansion bus architecture originally
developed by Intel to replace ISA and EISA. PCI has achieved widespread acceptance as a
standard for PCs and work stations, and it offers a theoretical maximum transfer rate of 132
Mbytes/s.

PFI Programmable Function Interface—general purpose input terminals, fixed purpose output
terminals. The name of the fixed output signal is often placed on the I/O connector next to the
terminal as a hint.

Page 34 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

physical channel Refer to channel.

pin Refer to terminal.

Poisson's Ratio The negative ratio of the strain in the transverse direction (perpendicular to the force) to the
strain in the axial direction (parallel to the force).

port A collection of digital lines. Usually the lines are grouped into either a 8-bit or 32-bit port. Most E
Series devices have one 8-bit port.

port width The number of lines in a port. For example, most E Series devices have one port with eight lines;
therefore, the port width is eight.

posttrigger samples If there is no reference trigger, posttrigger samples are the data acquired after the task is
started. If there is a reference trigger, this is the data acquired after the reference trigger.

pretrigger samples Data acquired before the occurrence of the reference trigger.

pretriggering The technique used on a measurement device to keep a circular buffer filled with samples, so
that when the reference trigger conditions are met, the buffer includes samples leading up to the
trigger condition as well as samples acquired immediately after the trigger.

programmed I/O a data transfer mechanism in which a buffer is not used and instead, the computer reads and
writes directly to the device.

propagation delay The amount of time required for a signal to pass through a circuit.

pulsed output A form of counter signal generation by which a pulse is generated when a counter reaches a
certain value.

PXI PCI eXtensions for Instrumentation—a rugged, open system for modular instrumentation based
on CompactPCI, with special mechanical, electrical, and software features. The PXI standard was
originally developed by National Instruments in 1997 and is now managed by the PXI Systems
Alliance.

PXI trigger bus The timing bus that connects PXI DAQ devices directly, by means of connectors built into the
backplane of the PXI chassis, for precise synchronization of functions. This bus is functionally
equivalent to the RTSI bus for PCI DAQ devices.

R

range The minimum and maximum analog signal levels that the ADC can digitize.

raw Data that has not been changed in any way. For input, data is returned exactly as received from
the device. For output, data is written as is to the device. Refer to unscaled and scaled.

referenced signal
source

Signal sources with voltage signals that are referenced to a system ground, such as the earth or
a building ground. Also called grounded signal sources.

resolution The smallest amount of input signal change that a device or sensor can detect. The term
discrimination is also used for resolution.

rise time The time for a signal to transition from 10% to 90% of the maximum signal amplitude.

route A connection between a pair of terminals. Any time the source or destination terminal of a signal
is specified, a route is created.

RSE Referenced single-ended mode—all measurements are made with respect to a common reference
measurement system or a ground. Also called a grounded measurement system.

RTD Resistance temperature detector—a metallic probe that measures temperature based on its
coefficient of resistivity.

RTSI bus Real-time system integration bus—the NI timing bus that connects DAQ devices directly, by
means of connectors on top of the devices, for precise synchronization of functions. This bus is
functionally equivalent to the PXI Trigger bus for PXI DAQ devices.

RVDT Rotary variable differential transformer—a sensor whose output signal represents the rotation of
the shaft.

S

s Seconds.

S Samples. Refer to Sample.

S/s Samples per second—used to express the rate at which a measurement device samples an

Page 35 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

analog signal.

sample A sample is a single measurement from a single channel or, for output, a single generation to a
single channel. A device may produce more than one sample per channel upon receiving a single
digital edge of a sample clock. An E Series device, for example, produces one sample from each
analog input channel in its task for every sample clock edge.

sample clock The clock controlling the time interval between samples. Each time the Sample Clock ticks
(produces a pulse) one sample per channel is acquired or generated.

sample clock rate The number of samples per channel per second. For example, a sample clock rate of 10 S/s
means sampling each channel 10 times per second.

scaled Data that has been mathematically transformed into engineering units. Other manipulations also
can be done such as reordering to match the channel order.

scanning Method of sequentially connecting channels.

SCXI Signal Conditioning eXtensions for Instrumentation—the NI product line for conditioning low-level
signals within an external chassis near sensors so that only high-level signals are sent to
measurement devices in the noisy PC environment. SCXI is an open standard available for all
vendors.

sensor A device that responds to a physical stimulus (heat, light, sound, pressure, motion, flow, and so
on) and produces a corresponding electrical signal.

signal A means of conveying information. An analog waveform, a clock, and a single digital (TTL) edge
are all examples of signals.

signal conditioning The manipulation of signals to prepare them for digitizing.

software trigger A VI or function that, when it executes, triggers an action such as starting an acquisition.

source impedance A parameter of signal sources that reflects current-driving ability of voltage sources (lower is
better) and the voltage-driving ability of current sources (higher is better).

STC System timing controller.

synchronous 1. Hardware—a signal that occurs or is acted upon in synchrony with another signal, such as a
reference clock.

2. Software—a VI or function that begins an operation and returns only when the operation is
complete.

T

task A collection of one or more channels, timing, and triggering and other properties that apply to
the task itself. Conceptually, a task represents a measurement or generation you want to
perform.

task buffer Refer to buffer.

terminal A named location on a DAQ device where a signal is either generated (output or produced) or
acquired (input or consumed).

terminal count When counting up, an N bit counter reaches its terminal count at 2N -1. An N bit counter
counting down reaches its terminal count at 0.

thermistor A semiconductor sensor that produces a repeatable change in electrical resistance as a function
of temperature. Most thermistors have a negative temperature coefficient.

thermocouple A temperature sensor created by joining two dissimilar metals. The junction produces a small
voltage as a function of the temperature.

threshold The voltage level a signal must reach for a trigger to occur.

tick A digital edge of a clock.

timebase A clock that is divided down to produce another clock or a clock provided to a counter for
measuring elapsed time.

Traditional NI-DAQ An upgrade to the earlier version of NI-DAQ. Traditional NI-DAQ has the same VIs and functions
and works the same way as NI-DAQ 6.9.x. You can use both Traditional NI-DAQ and NI-DAQmx
on the same computer, which is not possible with NI-DAQ 6.9.x.

transducer Refer to sensor.

transducer excitation A type of signal conditioning that uses external voltages and currents to excite the circuitry of a

Page 36 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Important Information
Warranty

Copyright

Trademarks

Patents

Warning Regarding Use of NI Products

Environmental Management

Warranty
The HARDWARE PRODUCT NAME is warranted against defects in materials and workmanship for a period of one year from
the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or
replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the
package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S
RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE
LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL
DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for
any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover

signal conditioning system into measuring physical phenomena.

trigger Any signal that causes a device to perform an action, such as starting an acquisition.

TTL Transistor-transistor logic—a signal having two discrete levels, a high and a low level.

U

unipolar A signal range that is always positive (for example, 0 to +10 V).

unscaled Samples in the integer form that the hardware produces or requires. Although no mathematical
transformations are applied to unscaled data, other manipulations may be done such as
reordering to match the channel order.

V

V Volts.

VI Virtual instrument. Refer to virtual instrument.

virtual channel Refer to channel.

virtual instrument A program in LabVIEW that models the appearance and function of a physical instrument.

W

waveform data type A LabVIEW data type that bundles timing information along with the data.

WDT Refer to waveform data type.

Page 37 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation,
operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and
power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is
protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other
materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance
with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of
Use section on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Computer, Inc.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix® and Tek are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the
patents.txt file on your media, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY
LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY
TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES,
OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED "SYSTEM FAILURES"). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE
A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE
RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE,
INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT
AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH
END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A
USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER
PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION
DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS
PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION,
INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR
APPLICATION.

Environmental Management
National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI
recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but
also to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page
contains the environmental regulations and directives with which NI complies, as well as other environmental information
not included in this document.

Page 38 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

Technical Support and Professional Services
Visit the following sections of the award-winning National Instruments Web site at ni.com for technical support and
professional services:

Support—Technical support resources at ni.com/support include the following:

Self-Help Resources—For answers and solutions, visit ni.com/support for software drivers and updates, a searchable
KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials,
application notes, instrument drivers, and so on. Registered users also receive access to the NI Discussion Forums at
ni.com/forums. NI Applications Engineers make sure every question submitted online receives an answer.

Standard Service Program Membership—This program entitles members to direct access to NI Applications
Engineers via phone and email for one-to-one technical support, as well as exclusive access to on demand training
modules via the Services Resource Center. NI offers complementary membership for a full year after purchase, after
which you may renew to continue your benefits.

For information about other technical support options in your area, visit ni.com/services or contact your local office at
ni.com/contact.

Training and Certification—Visit ni.com/training for self-paced training, eLearning virtual classrooms, interactive CDs, and
Certification program information. You also can register for instructor-led, hands-on courses at locations around the
world.

System Integration—If you have time constraints, limited in-house technical resources, or other project challenges,
National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council of the European Communities using
the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility
(EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.

Calibration Certificate—If your product supports calibration, you can obtain the calibration certificate for your product at
ni.com/calibration.

If you searched ni.com and could not find the answers you need, contact your local office or NI corporate headquarters. You
also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-
date contact information, support phone numbers, email addresses, and current events.

Page 39 of 39NI-DAQmx Base 3.x C Reference Help

5/7/2009file://C:\Documents and Settings\grussd\Local Settings\Temp\~hh365A.htm

	Conventions
	Related Documentation
	Key Concepts

	Terminal Names
	Clocks

	Task Configuration/Control

	DAQmxBaseClearTask
	DAQmxBaseCreateTask
	DAQmxBaseIsTaskDone
	DAQmxBaseLoadTask
	DAQmxBaseResetDevice
	DAQmxBaseStartTask
	DAQmxBaseStopTask

	Channel Configuration/Creation
	DAQmxBaseCreateAIThrmcplChan
	DAQmxBaseCreateAIVoltageChan
	DAQmxBaseCreateAOVoltageChan
	DAQmxBaseCreateDIChan
	DAQmxBaseCreateDOChan
	DAQmxBaseCreateCIPeriodChan
	DAQmxBaseCreateCICountEdgesChan
	DAQmxBaseCreateCIPulseWidthChan
	DAQmxBaseCreateCILinEncoderChan
	DAQmxBaseCreateCIAngEncoderChan
	DAQmxBaseCreateCOPulseChanFreq

	Timing
	DAQmxBaseCfgSampClkTiming
	DAQmxBaseCfgImplicitTiming

	Triggering
	DAQmxBaseDisableStartTrig
	DAQmxBaseCfgDigEdgeStartTrig
	DAQmxBaseCfgAnlgEdgeStartTrig
	DAQmxBaseCfgAnlgEdgeRefTrig
	DAQmxBaseCfgDigEdgeRefTrig
	DAQmxBaseDisableRefTrig

	Read Functions
	DAQmxBaseReadAnalogF64
	DAQmxBaseReadBinaryI16
	DAQmxBaseReadCounterF64
	DAQmxBaseReadCounterScalarF64
	DAQmxBaseReadCounterScalarU32
	DAQmxBaseReadCounterU32
	DAQmxBaseReadDigitalScalarU32
	DAQmxBaseReadDigitalU32
	DAQmxBaseReadDigitalU8

	Write Functions
	DAQmxBaseWriteAnalogF64
	DAQmxBaseWriteDigitalU8
	DAQmxBaseWriteDigitalU32
	DAQmxBaseWriteDigitalScalarU32

	Export HW Signals
	DAQmxBaseExportSignal

	Internal Buffer Configuration
	DAQmxBaseCfgInputBuffer

	Error Handling
	DAQmxBaseGetExtendedErrorInfo

	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
	Environmental Management

	Technical Support and Professional Services

