

Systems Alliance

VPP-4.3: The VISA Library

October 16, 2008

Revision 4.2

Systems Alliance

VPP-4.3 Revision History
This section is an overview of the revision history of the VPP-4.3 specification.

Revision 1.0, December 29, 1995

Original VISA document. Changes from VISA Transition Library include locking, asynchronous I/O, 32-bit
register access, block moves, shared memory operations, and serial interface support.

Revision 1.1, January 22, 1997
Added new attributes, error codes, events, and formatted I/O modifiers.

Revision 2.0, December 5, 1997
Added error handling event, more formatted I/O operations, more serial attributes and extended searching
capabilities.

Revision 2.0.1, December 4, 1998
Added new types to visatype.h for instrument drivers. Added new modes to give more robust functionality
to viGpibControlREN. Updated information regarding contacting the Alliance.

Revision 2.2, November 19, 1999
Added new resource classes for GPIB (INTFC and SERVANT), VXI (BACKPLANE and SERVANT), and
TCPIP (INSTR, SOCKET, and SERVANT).

Revision 3.0 Draft, January 28, 2003
Added new resource class for USB (INSTR). Added extended parsing capability.

Revision 3.0, January 15, 2004
Approved at IVI Board of Directors meeting.

Revision 4.0 Draft, May 16, 2006
Added new resource class for PXI (INSTR) to incorporate PXISA extensions. Added 64-bit extensions for
register-based operations. Added support for new WIN64 framework.

Revision 4.0, October 12, 2006
Approved at IVI Board of Directors meeting.

Revision 4.1, February 14, 2008
Updated the introduction to reflect the IVI Foundation organization changes. Replaced Notice with text used
by IVI Foundation specifications.

Revision 4.1, April 14, 2008
Editorial change to update the IVI Foundation contact information in the Important Information section to
remove obsolete address information and refer only to the IVI Foundation web site.

Revision 4.2, October 16, 2008
Tightened requirements for resource strings returned by viFindRsrc, viParseRsrc, and
viParseRsrcEx to ensure that they return identical strings for use by the new VISA Router component.

NOTICE

VPP-4.3: The VISA Library is authored by the IVI Foundation member companies. For a vendor membership roster
list, please visit the IVI Foundation web site at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation through
the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The IVI
Foundation and its member companies shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

Table of Contents Page v

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table of Contents

Section 1 Introduction to the VXIplug&play Systems Alliance and the IVI Foundation................................. 1-1

Section 2 Overview of VISA Library Specification ... 2-1
2.1 Objectives of this Specification.. 2-1
2.2 Audience for this Specification .. 2-1
2.3 Scope and Organization of this Specification... 2-2
2.4 Application of this Specification .. 2-2
2.5 References .. 2-2
2.6 Definition of Terms and Acronyms.. 2-4
2.7 Conventions.. 2-7

Section 3 VISA Resource Template .. 3-1
3.1 VISA Template Services .. 3-1

3.1.1 Control Services .. 3-1
3.1.2 Communication Services... 3-2

3.2 VISA Template Interface Overview... 3-4
3.2.1 VISA Template Attributes .. 3-4
3.2.2 VISA Template Operations... 3-6

3.3 Lifecycle Services .. 3-8
3.3.1 Lifecycle Operations ... 3-8

3.3.1.1 viClose(vi) ... 3-9
3.4 Characteristic Control Services .. 3-10

3.4.1 Characteristic Control Operations ... 3-10
3.4.1.1 viGetAttribute(vi, attribute, attrState) .. 3-11
3.4.1.2 viSetAttribute(vi, attribute, attrState) .. 3-12
3.4.1.3 viStatusDesc(vi, status, desc) .. 3-14

3.5 Asynchronous Operation Control Services .. 3-15
3.5.1 Asynchronous Operation Control Operations ... 3-15

3.5.1.1 viTerminate(vi, degree, jobId) .. 3-16
3.6 Access Control Services ... 3-17

3.6.1 Session Access Control Service Model... 3-17
3.6.1.1 Locking Mechanism... 3-17
3.6.1.2 Lock Sharing.. 3-19
3.6.1.3 Access Privileges ... 3-19
3.6.1.4 Acquiring Exclusive Lock While Owning Shared Lock ... 3-21
3.6.1.5 Nested Locks.. 3-21
3.6.1.6 Locks on Remote Resources .. 3-22

3.6.2 Access Control Operations.. 3-22
3.6.2.1 viLock(vi, lockType, timeout, requestedKey, accessKey)....... 3-23
3.6.2.2 viUnlock(vi)... 3-28

3.7 Event Services .. 3-30
3.7.1 Event Handling and Processing... 3-30

3.7.1.1 Queuing Mechanism .. 3-31
3.7.1.2 Callback Mechanism.. 3-32

3.7.2 Exceptions ... 3-35
3.7.2.1 Exception Handling Model .. 3-35
3.7.2.2 Generating an Error Condition... 3-36
3.7.2.3 VI_EVENT_EXCEPTION... 3-37

3.7.3 Event Operations... 3-37
3.7.3.1 viEnableEvent(vi, eventType, mechanism, context) 3-38

Page vi Table of Contents

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7.3.2 viDisableEvent(vi, eventType, mechanism) .. 3-41
3.7.3.3 viDiscardEvents(vi, eventType, mechanism)...................................... 3-43
3.7.3.4 viWaitOnEvent(vi, inEventType, timeout, outEventType,
outContext) .. 3-45
3.7.3.5 viInstallHandler(vi, eventType, handler, userHandle)............ 3-48
3.7.3.6 viUninstallHandler(vi, eventType, handler, userHandle)....... 3-50
3.7.3.7 viEventHandler(vi, eventType, context, userHandle) 3-52

Section 4 VISA Resource Management .. 4-1
4.1 Organization of Resources ... 4-1
4.2 VISA Resource Manager Interface Overview.. 4-2

4.2.1 VISA Resource Manager Attributes ... 4-2
4.2.2 VISA Resource Manager Functions.. 4-2
4.2.3 VISA Resource Manager Operations .. 4-2

4.3 Access Services .. 4-3
4.3.1 Address String... 4-3

4.3.1.1 Address String Grammar ... 4-3
4.3.2 System Configuration.. 4-6
4.3.3 Access Functions and Operations ... 4-7

4.3.3.1 viOpenDefaultRM(sesn) ... 4-8
4.3.3.2 viOpen(sesn, rsrcName, accessMode, timeout, vi) 4-10
4.3.3.3 viParseRsrc(sesn, rsrcName, intfType, intfNum) 4-13
4.3.3.4 viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliasIfExists)... 4-15

4.4 Search Services... 4-19
4.4.1 Resource Regular Expression.. 4-19
4.4.2 Search Operations ... 4-21

4.4.2.1 viFindRsrc(sesn, expr, findList, retcnt, instrDesc) 4-22
4.4.2.2 viFindNext(findList, instrDesc).. 4-26

Section 5 VISA Resource Classes .. 5-1
5.1 Instrument Control Resource... 5-2

5.1.1 INSTR Resource Overview... 5-2
5.1.2 INSTR Resource Attributes .. 5-5
5.1.3 INSTR Resource Events.. 5-25
5.1.4 INSTR Resource Operations... 5-31

5.2 Memory Access Resource .. 5-34
5.2.1 MEMACC Resource Overview .. 5-34
5.2.2 MEMACC Resource Attributes .. 5-36
5.2.3 MEMACC Resource Events ... 5-41
5.2.4 MEMACC Resource Operations... 5-42

5.3 GPIB Bus Interface Resource... 5-43
5.3.1 INTFC Resource Overview... 5-43
5.3.2 INTFC Resource Attributes .. 5-44
5.3.3 INTFC Resource Events.. 5-48
5.3.4 INTFC Resource Operations... 5-51

5.4 VXI Mainframe Backplane Resource... 5-52
5.4.1 BACKPLANE Resource Overview .. 5-52
5.4.2 BACKPLANE Resource Attributes .. 5-52
5.4.3 BACKPLANE Resource Events ... 5-55
5.4.4 BACKPLANE Resource Operations .. 5-56

5.5 Servant Device-Side Resource ... 5-57
5.5.1 SERVANT Resource Overview.. 5-57

Table of Contents Page vii

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.5.2 SERVANT Resource Attributes.. 5-58
5.5.3 SERVANT Resource Events... 5-62
5.5.4 SERVANT Resource Operations .. 5-66

5.6 TCP/IP Socket Resource .. 5-67
5.6.1 SOCKET Resource Overview... 5-67
5.6.2 SOCKET Resource Attributes .. 5-67
5.6.3 SOCKET Resource Events.. 5-70
5.6.4 SOCKET Resource Operations... 5-71

Section 6 VISA Resource-Specific Operations... 6-1
6.1 Basic I/O Services .. 6-2

6.1.1 viRead(vi, buf, count, retCount) .. 6-2
6.1.2 viReadAsync(vi, buf, count, jobId).. 6-5
6.1.3 viReadToFile(vi, fileName, count, retCount) .. 6-8
6.1.4 viWrite(vi, buf, count, retCount) .. 6-11
6.1.5 viWriteAsync(vi, buf, count, jobId) ... 6-13
6.1.6 viWriteFromFile(vi, fileName, count, retCount) ... 6-16
6.1.7 viAssertTrigger(vi, protocol).. 6-18
6.1.8 viReadSTB(vi, status)... 6-20
6.1.9 viClear(vi) .. 6-22

6.2 Formatted I/O Services... 6-24
6.2.1 viSetBuf(vi, mask, size).. 6-24
6.2.2 viFlush(vi, mask) .. 6-26
6.2.3 viPrintf(vi, writeFmt, arg1, arg2,...) .. 6-28
6.2.4 viVPrintf(vi, writeFmt, params) ... 6-37
6.2.5 viSPrintf(vi, buf, writeFmt, arg1, arg2, ...).. 6-38
6.2.6 viVSPrintf(vi, buf, writeFmt, params)... 6-39
6.2.7 viBufWrite(vi, buf, count, retCount) ... 6-41
6.2.8 viScanf(vi, readFmt, arg1, arg2,...) ... 6-43
6.2.9 viVScanf(vi, readFmt, params).. 6-52
6.2.10 viSScanf(vi, buf, readFmt, arg1, arg2, ...) .. 6-53
6.2.11 viVSScanf(vi, buf, readFmt, params) ... 6-54
6.2.12 viBufRead(vi, buf, count, retCount) ... 6-55
6.2.13 viQueryf(vi, writeFmt, readFmt, arg1, arg2,...)....................................... 6-57
6.2.14 viVQueryf(vi, writeFmt, readFmt, params) ... 6-59

6.3 Memory I/O Services ... 6-61
6.3.1 viIn8(vi, space, offset, val8) ... 6-61
6.3.2 viIn16(vi, space, offset, val16) .. 6-61
6.3.3 viIn32(vi, space, offset, val32) .. 6-61
6.3.4 viIn64(vi, space, offset, val64) .. 6-61
6.3.5 viOut8(vi, space, offset, val8) ... 6-64
6.3.6 viOut16(vi, space, offset, val16) .. 6-64
6.3.7 viOut32(vi, space, offset, val32) .. 6-64
6.3.8 viOut64(vi, space, offset, val64) .. 6-64
6.3.9 viMoveIn8(vi, space, offset, length, buf8)... 6-67
6.3.10 viMoveIn16(vi, space, offset, length, buf16) .. 6-67
6.3.11 viMoveIn32(vi, space, offset, length, buf32) .. 6-67
6.3.12 viMoveIn64(vi, space, offset, length, buf64) .. 6-67
6.3.13 viMoveIn8Ex(vi, space, offset64, length, buf8) ... 6-67
6.3.14 viMoveIn16Ex(vi, space, offset64, length, buf16) 6-67
6.3.15 viMoveIn32Ex(vi, space, offset64, length, buf32) 6-67
6.3.16 viMoveIn64Ex(vi, space, offset64, length, buf64) 6-67

Page viii Table of Contents

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.3.17 viMoveOut8(vi, space, offset, length, buf8) .. 6-71
6.3.18 viMoveOut16(vi, space, offset, length, buf16).. 6-71
6.3.19 viMoveOut32(vi, space, offset, length, buf32).. 6-71
6.3.20 viMoveOut64(vi, space, offset, length, buf64).. 6-71
6.3.21 viMoveOut8Ex(vi, space, offset64, length, buf8)....................................... 6-71
6.3.22 viMoveOut16Ex(vi, space, offset64, length, buf16) 6-71
6.3.23 viMoveOut32Ex(vi, space, offset64, length, buf32) 6-71
6.3.24 viMoveOut64Ex(vi, space, offset64, length, buf64) 6-71
6.3.25 viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length).. 6-75
6.3.26 viMoveEx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, length) .. 6-75
6.3.27 viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace,
destOffset, destWidth, length, jobId)... 6-79
6.3.28 viMoveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, length, jobId).. 6-79
6.3.29 viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address).. 6-83
6.3.30 viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access,
suggested, address) ... 6-83
6.3.31 viUnmapAddress(vi).. 6-86
6.3.32 viPeek8(vi, addr, val8) .. 6-87
6.3.33 viPeek16(vi, addr, val16) ... 6-87
6.3.34 viPeek32(vi, addr, val32) ... 6-87
6.3.35 viPeek64(vi, addr, val64) ... 6-87
6.3.36 viPoke8(vi, addr, val8) .. 6-88
6.3.37 viPoke16(vi, addr, val16) ... 6-88
6.3.38 viPoke32(vi, addr, val32) ... 6-88
6.3.39 viPoke64(vi, addr, val64) ... 6-88

6.4 Shared Memory Services.. 6-89
6.4.1 viMemAlloc(vi, size, offset) .. 6-89
6.4.2 viMemAllocEx(vi, size, offset64) .. 6-89
6.4.3 viMemFree(vi, offset)... 6-91
6.4.4 viMemFreeEx(vi, offset64) ... 6-91

6.5 Interface Specific Services ... 6-92
6.5.1 viGpibControlREN(vi, mode)... 6-92
6.5.2 viGpibControlATN(vi, mode)... 6-94
6.5.3 viGpibSendIFC(vi) .. 6-96
6.5.4 viGpibCommand(vi, buf, count, retCount).. 6-97
6.5.5 viGpibPassControl(vi, primAddr, secAddr) ... 6-99
6.5.6 viVxiCommandQuery(vi, mode, cmd, response)... 6-100
6.5.7 viAssertIntrSignal(vi, mode, statusID) .. 6-102
6.5.8 viAssertUtilSignal(vi, line) .. 6-104
6.5.9 viMapTrigger(vi, trigSrc, trigDest, mode) ... 6-105
6.5.10 viUnmapTrigger(vi, trigSrc, trigDest)... 6-107
6.5.11 viUsbControlOut (vi, bmRequestType, bRequest, wValue, wIndex,
wLength, buf).. 6-109
6.5.12 viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex,
wLength, buf, retCnt)... 6-111

Table of Contents Page ix

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Appendix A Required Attributes ... A-1
A.1 Required Attribute Tables... A-1

Resource Template Attributes .. A-1
INSTR Resource Attributes (Generic) ... A-1
INSTR Resource Attributes (Message Based) ... A-2
INSTR Resource Attributes (GPIB and GPIB-VXI Specific) ... A-2
INSTR Resource Attributes (VXI, GPIB-VXI, and PXI Specific) .. A-3
INSTR Resource Attributes (VXI and GPIB-VXI Specific) ... A-3
INSTR Resource Attributes (GPIB-VXI Specific) .. A-4
INSTR Resource Attributes (ASRL Specific).. A-5
INSTR Resource Attributes (TCPIP Specific) ... A-6
INSTR Resource Attributes (VXI, GPIB-VXI, USB, and PXI Specific) .. A-6
INSTR Resource Attributes (VXI, GPIB-VXI, and USB Specific)... A-6
INSTR Resource Attributes (USB Specific) .. A-6
INSTR Resource Attributes (PXI Specific) ... A-6
MEMACC Resource Attributes (Generic) ... A-7
MEMACC Resource Attributes (VXI, GPIB-VXI, and PXI Specific).. A-8
MEMACC Resource Attributes (VXI and GPIB-VXI Specific) ... A-8
MEMACC Resource Attributes (GPIB-VXI Specific) .. A-9
INTFC Resource Attributes (Generic) ... A-9
INTFC Resource Attributes (GPIB Specific)... A-10
BACKPLANE Resource Attributes (Generic)... A-10
BACKPLANE Resource Attributes (VXI and GPIB-VXI Specific) ... A-11
SERVANT Resource Attributes (Generic) .. A-11
SERVANT Resource Attributes (GPIB Specific).. A-12
SERVANT Resource Attributes (VXI Specific).. A-12
SERVANT Resource Attributes (TCPIP Specific) .. A-12
SOCKET Resource Attributes (Generic) ... A-13
SOCKET Resource Attributes (TCPIP Specific) ... A-13

Appendix B Resource Summary Information ...B-1
B.1 Summary of Attributes...B-1
B.2 Summary of Events..B-3
B.3 Summary of Operations ...B-4

Figures

Figure 3.7.1 State Diagram for the Queuing Mechanism.. 3-31
Figure 3.7.2 State Diagram for the Callback Mechanism ... 3-34

Tables
Table 3.2.1 VISA Template Required Attributes... 3-4
Table 3.2.2 ViVersion Description for VI_ATTR_RSRC_IMPL_VERSION and

VI_ATTR_RSRC_SPEC_VERSION ... 3-5
Table 3.6.1 Types of Locks Acquired When Requesting Session Has No Lock... 3-18
Table 3.6.2 Types of Locks Acquired When Requesting Session Has Exclusive Lock Only (Nesting) 3-18
Table 3.6.3 Types of Locks Acquired When Requesting Session Has Shared Lock (Nesting)..................... 3-18
Table 3.6.4 Types of Locks Acquired When Requesting Session Has Shared and Exclusive Locks

(Nesting) ... 3-18
Table 3.6.5 Current Session Has No Lock... 3-20
Table 3.6.6 Current Session Has Exclusive Lock .. 3-20
Table 3.6.7 Current Session Has Shared Lock... 3-20
Table 3.7.1 State Transitions for the Queuing Mechanism.. 3-32

Page x Table of Contents

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 3.7.2 State Transition Table for the Callback Mechanism... 3-35
Table 3.7.3 Special Values for eventType Parameter ... 3-39
Table 3.7.4 Special Values for mechanism Parameter ... 3-39
Table 3.7.5 Special Values for eventType Parameter ... 3-41
Table 3.7.6 Special Values for mechanism Parameter ... 3-42
Table 3.7.7 Special Values for eventType Parameter ... 3-44
Table 3.7.8 Special Values for mechanism Parameter ... 3-44
Table 3.7.9 Special Values for outEventType Parameter .. 3-46
Table 3.7.10 Special Values for outContext Parameter ... 3-46
Table 3.7.11 Special Values for handler Parameter .. 3-51
Table 4.3.1 Explanation of Address String Grammar.. 4-3
Table 4.3.2 Examples of Address Strings .. 4-5
Table 4.3.3 Special Values for rsrcClass Parameter ... 4-16
Table 4.3.4 Special Values for unaliasedExpandedRsrcName Parameter ... 4-16
Table 4.3.5 Special Values for aliasIfExists Parameter .. 4-17
Table 4.4.1 Special Characters... 4-19
Table 4.4.2 Literals .. 4-19
Table 4.4.3 Regular Expression Characters and Operators.. 4-20
Table 4.4.4 Examples... 4-20
Table 4.4.5 Special Values for findList Parameter.. 4-23
Table 4.4.6 Special Values for retcnt Parameter... 4-23
Table 4.4.7 Special Characters and their Meaning .. 4-23
Table 4.4.8 Examples... 4-24
Table 6.1.1 Special Values for retCount Parameter.. 6-3
Table 6.1.2 Special Values for jobId Parameter ... 6-6
Table 6.1.3 Special Values for retCount Parameter.. 6-9
Table 6.1.4 Special Values for retCount Parameter.. 6-12
Table 6.1.5 Special Values for jobId Parameter ... 6-14
Table 6.1.6 Special Values for retCount Parameter.. 6-17
Table 6.2.1 Special Values for retCount Parameter.. 6-42
Table 6.2.2 Special Values for retCount Parameter.. 6-56
Table 6.3.1 Special Values for jobId Parameter ... 6-81
Table 6.5.1 Special Values for mode Parameter ... 6-93
Table 6.5.2 Special Values for mode Parameter ... 6-95
Table 6.5.3 Special Values for retCount Parameter.. 6-98
Table 6.5.4 Special Values for mode Parameter ... 6-101
Table 6.5.5 Special Values for mode Parameter ... 6-103
Table 6.5.6 Special Values for trigSrc and trigDest Parameters.. 6-106
Table 6.5.7 Special Values for trigSrc Parameters... 6-108
Table 6.5.8 Special Values for trigDest Parameters .. 6-108
Table 6.5.9 Special Values for retCnt Parameter... 6-112

Section 1: Introduction to the VXIplug&play Systems Alliance and the IVI Foundation Page 1-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 1 Introduction to the VXIplug&play Systems
Alliance and the IVI Foundation

The VXIplug&play Systems Alliance was founded by members who shared a common
commitment to end-user success with open, multivendor VXI systems. The alliance
accomplished major improvements in ease of use by endorsing and implementing common
standards and practices in both hardware and software, beyond the scope of the VXIbus
specifications. The alliance used both formal and de facto standards to define complete system
frameworks. These standard frameworks gave end-users "plug & play" interoperability at both
the hardware and system software level.

The IVI Foundation is an organization whose members share a common commitment to test
system developer success through open, powerful, instrument control technology. The IVI
Foundation’s primary purpose is to develop and promote specifications for programming test
instruments that simplify interchangeability, provide better performance, and reduce the cost of
program development and maintenance.

In 2002, the VXIplug&play Systems Alliance voted to become part of the IVI Foundation. In
2003, the VXIplug&play Systems Alliance formally merged into the IVI Foundation. The IVI
Foundation has assumed control of the VXIplug&play specifications, and all ongoing work will
be accomplished as part of the IVI Foundation.

All references to VXIplug&play Systems Alliance within this document, except contact
information, were maintained to preserve the context of the original document.

Section 2: Overview of VISA Library Specification Page 2-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 2 Overview of VISA Library Specification

This section introduces the VISA specification. The VISA specification is a document authored by the
VXIplug&play Systems Alliance. The technical work embodied in this document and the writing of this
document were performed by the VISA Technical Working Group.

This section provides a complete overview of the VISA specification, and gives readers general
information that may be required to understand how to read, interpret, and implement individual aspects of
this specification. This section is organized as follows:

• Objectives of this specification

• Audience for this specification

• Scope and organization of this specification

• Application of this specification

• References

• Definitions of terms and acronyms

• Conventions

• Communication

2.1 Objectives of this Specification

The VISA specification provides a common standard for the VXIplug&play System Alliance for
developing multi-vendor software programs, including instrument drivers. This specification describes the
VISA software model and the VISA Application Programming Interface (API).

VISA gives VXI and GPIB software developers, particularly instrument driver developers, the
functionality needed by instrument drivers in an interface-independent fashion for MXI, embedded VXI,
GPIB-VXI, GPIB, and asynchronous serial controllers. VXIplug&play drivers written to the VISA
specifications can execute on VXIplug&play system frameworks that have the VISA I/O library.

2.2 Audience for this Specification

There are three audiences for this specification. The first audience is instrument driver developers—
whether an instrument vendor, system integrator, or end user—who wish to implement instrument driver
software that is compliant with the VXIplug&play standards. The second audience is I/O vendors who
wish to implement VISA-compliant I/O software. The third audience is instrumentation end users and
application programmers who wish to implement applications that utilize instrument drivers compliant
with this specification.

Page 2-2 Section 2: Overview of VISA Library Specification

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

2.3 Scope and Organization of this Specification

This specification is organized in sections, with each section discussing a particular aspect of the VISA
model.

Section 1 explains the VXIplug&play Systems Alliance and its relation to the IVI Foundation.

Section 2 provides an overview of this specification, including the objectives, scope and organization,
application, references, definition of terms and acronyms, and conventions.

Section 3 describes the VISA Resource Template.

Section 4 describes the VISA Resource Manager Resource.

Section 5 presents the VISA Instrument Control Resource and other I/O resource classes.

Section 6 presents the operations defined in Section 5 and describes a compliant implementation.

2.4 Application of this Specification

This specification is intended for use by developers of VXIplug&play instrument drivers and by
developers of VISA I/O software. It is also useful as a reference for end users of VXIplug&play instrument
drivers. This specification is intended to be used in conjunction with the VPP-3.x specifications, including
the Instrument Drivers Architecture and Design Specification (VPP-3.1), the Instrument Driver Functional
Body Specification (VPP-3.2), the Instrument Interactive Developer Interface Specification (VPP-3.3), and
the Instrument Driver Programmatic Developer Interface Specification (VPP-3.4). These related
specifications describe the implementation details for specific instrument drivers that are used with specific
system frameworks. VXIplug&play instrument drivers developed in accordance with these specifications
can be used in a wide variety of higher-level software environments, as described in the System
Frameworks Specification (VPP-2).

2.5 References

The following documents contain information that you may find helpful as you read this document:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable

Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common

Commands

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile Backplane Bus: VMEbus

• ANSI/IEEE Standard 1174-2000, Standard Serial Interface for Programmable Instrumentation

• VPP-1, VXIplug&play Charter Document

Section 2: Overview of VISA Library Specification Page 2-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design Specification

• VPP-3.2, Instrument Functional Body Specification

• VPP-3.3, Instrument Driver Interactive Developer Interface Specification

• VPP-3.4, Instrument Driver Programmatic Developer Interface Specification

• VPP-4.3.2, VISA Implementation Specification for Textual Languages

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-9, Instrument Vendor Abbreviations

• VXI-1, VXIbus System Specification, Revision 1.4, VXIbus Consortium

• VXI-11, TCP/IP Instrument Protocol, VXIbus Consortium

Page 2-4 Section 2: Overview of VISA Library Specification

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

2.6 Definition of Terms and Acronyms

The following are some commonly used terms within this document

Address A string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an ASCII-based grammar that associates strings with
particular physical devices or interfaces and VISA resources.

ADE Application Development Environment

API Application Programmers Interface. The direct interface that an end user sees
when creating an application. The VISA API consists of the sum of all of the
operations, attributes, and events of each of the VISA Resource Classes.

Attribute A value within a resource that reflects a characteristic of the operational state of a
resource.

Bus Error An error that signals failed access to an address. Bus errors occur with low-level
accesses to memory and usually involve hardware with bus mapping capabilities.
For example, non-existent memory, a non-existent register, or an incorrect device
access can cause a bus error.

Commander A device that has the ability to control another device. This term can also denote
the unique device that has sole control over another device (as with the VXI
Commander/Servant hierarchy).

Communication
Channel

The same as Session. A communication path between a software element and a
resource. Every communication channel in VISA is unique.

Controller A device that can control another device(s) or is in the process of performing an
operation on another device.

Device An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a peripheral (such as a
plotter or printer). In VISA, the concept of a device is generally the logical
association of several VISA resources.

Instrument A device that accepts some form of stimulus to perform a designated task, test, or
measurement function. Two common forms of stimuli are message passing and
register reads and writes. Other forms include triggering or varying forms of
asynchronous control.

Interface A generic term that applies to the connection between devices and controllers. It
includes the communication media and the device/controller hardware necessary
for cross-communication.

Instrument Driver Library of functions for controlling a specific instrument

Mapping An operation that returns a reference to a specified section of an address space
and makes the specified range of addresses accessible to the requester. This
function is independent of memory allocation.

Section 2: Overview of VISA Library Specification Page 2-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Operation An action defined by a resource that can be performed on a resource.

Process An operating system component that shares a system’s resources. A multi-
process system is a computer system that allows multiple programs to execute
simultaneously, each in a separate process environment. A single-process system
is a computer system that allows only a single program to execute at a given
point in time.

Register An address location that either contains a value that is a function of the state of
hardware or can be written into to cause hardware to perform a particular action
or to enter a particular state. In other words, an address location that controls
and/or monitors hardware.

Resource Class The definition for how to create a particular resource. In general, this is
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control Resource Classes, this refers to the
definition for how to create a resource that controls a particular capability of a
device.

Resource or
Resource Instance

In general, this term is synonymous with the connotation of the word object in
object-oriented architectures. For VISA, resource more specifically refers to a
particular implementation (or instance in object-oriented terms) of a Resource
Class. In VISA, every defined software module is a resource.

Session The same as Communication Channel. A communication path between a
software element and a resource. Every communication channel in VISA is
unique.

SRQ IEEE 488 Service Request. This is an asynchronous request from a remote GPIB
device that requires service. A service request is essentially an interrupt from a
remote device. For GPIB, this amounts to asserting the SRQ line on the GPIB.
For VXI, this amounts to sending the Request for Service True event (REQT).

Status Byte A byte of information returned from a remote device that shows the current state
and status of the device. If the device follows IEEE 488 conventions, bit 6 of the
status byte indicates if the device is currently requesting service.

Template Function Instrument driver subsystem function common to the majority of VXIplug&play
instrument drivers

Top-level Example A high-level test-oriented instrument driver function. It is typically developed
from the instrument driver subsystem functions.

Virtual Instrument A name given to the grouping of software modules (in this case, VISA resources
with any associated or required hardware) to give the functionality of a traditional
stand-alone instrument. Within VISA, a virtual instrument is the logical grouping
of any of the VISA resources. The VISA Instrument Control Resources
Organizer serves as a means to group any number of any type of VISA
Instrument Control Resources within a VISA system.

Page 2-6 Section 2: Overview of VISA Library Specification

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VISA Virtual Instrument Software Architecture. This is the general name given to this
document and its associated architecture. The architecture consists of two main
VISA components: the VISA Resource Manager and the VISA Instrument
Control Resources.

VISA Instrument
Control Resources

This is the name given to the part of VISA that defines all of the device-specific
resource classes. VISA Instrument Control Resources encompass all defined
device and interface capabilities for direct, low-level instrument control.

VISA Resource
Manager

This is the name given to the part of VISA that manages resources. This
management includes support for opening, closing, and finding resources; setting
attributes, retrieving attributes, and generating events on resources; and so on.

VISA Resource
Template

This is the name given to the part of VISA defines the basic constraints and
interface definition for the creation and use of a VISA resource. All VISA
resources must derive their interface from the definition of the VISA Resource
Template.

Section 2: Overview of VISA Library Specification Page 2-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

2.7 Conventions

Throughout this specification you will see the following headings on certain paragraphs. These headings
instill special meaning on these paragraphs.

Rules must be followed to ensure compatibility with the System Framework. A rule is characterized by the
use of the words SHALL and SHALL NOT in bold upper case characters. These words are not used in
this manner for any other purpose other than stating rules.

Recommendations consist of advice to implementors that will affect the usability of the final device. They
are included in this standard to draw attention to particular characteristics that the authors believe to be
important to end user success.

Permissions are included to authorize specific implementations or uses of system components. A
permission is characterized by the use of the word MAY in bold upper case characters. These permissions
are granted to ensure specific System Framework components are well defined and can be tested for
compatibility and interoperability.

Observations spell out implications of rules and bring attention to things that might otherwise be
overlooked. They also give the rationale behind certain rules, so that the reader understands why the rule
must be followed.

A note on the text of the specification: Any text that appears without heading should be considered as
description of the standard and how the architecture was intended to operate. The purpose of this text is to
give the reader a deeper understanding of the intentions of the specification including the underlying model
and specific required features. As such, the implementor of this standard should take great care to ensure
that a particular implementation does not conflict with the text of the standard.

Section 3: VISA Resource Template Page 3-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 3 VISA Resource Template

VISA defines an architecture consisting of many resources that encapsulate device functionality. Each
resource can give specialized services to applications or to other resources. Achieving this capability
requires a high level of consistency in the operation of VISA resources. This level of consistency is
achieved through a precisely defined, extensible interface, which provides a well-defined set of services.
Each VISA resource derives its interface from a template that provides standard services for the resource.
This increases the ability to reuse, test, and maintain the resource. These basic services from the template
include the following:

• Creating and deleting sessions (Life Cycle Control)

• Modifying and retrieving individual resource characteristics called Attributes (Characteristic Control)

• Terminating queued operations (Asynchronous Operation Control)

• Restricting resource access (Access Control)

• Performing basic communication services (Operation Invocation and Event Reporting)

3.1 VISA Template Services

3.1.1 Control Services

The VISA template provides all the basic resource control services to applications. These basic services
include controlling the life cycle of sessions to resources/devices and manipulating resource characteristics.
A summary of these services for VISA is presented below:

• Life Cycle Control
 VISA controls the life cycle of sessions, find lists, and events. Once an application has finished using

any of them, it can use viClose() to free up all the system resources associated with it. The VISA
system is also responsible for freeing up all associated system resources whenever an application
becomes dysfunctional.

• Characteristic Control

Resources can have attributes associated with them. Some attributes depict the instantaneous state of
the resource and some define alterable parameters to modify the behavior of the resources. VISA
defines attribute manipulation operations to set and retrieve the status of resources. These attributes are
defined by individual resources. The operation for modifying attributes is viSetAttribute() and
the operation that retrieves the attributes is viGetAttribute().

• Asynchronous Operation Control

Resources can have asynchronous operations associated with them. These operations are invoked in
the same way that all other operations are invoked. Instead of waiting for the actual job to be done,
they register the job to be done and return immediately. When the I/O is complete, an event is
generated to indicate the completion status of the associated operation. An application wanting to abort
such an asynchronous operation can use viTerminate() with the unique job identifier returned from
the operation to be aborted.

Page 3-2 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

• Access Control
Applications can open multiple sessions to a VISA resource simultaneously. Applications can access
the VISA resource through the different sessions concurrently. However, in certain cases, an
application accessing a VISA resource might want to restrict other applications or sessions from
accessing that resource. VISA defines a locking mechanism to restrict accesses to resources for such
special circumstances. The operation used to acquire a lock on a resource is viLock(), and the
operation to relinquish the lock is viUnlock().

3.1.2 Communication Services

Applications using VISA access resources by opening sessions to them. The primary method of
communication to resources is by invoking operations. A VISA system also allows information exchange
through events.

• Operation Invocation

After establishing a session, an application can communicate with it by invoking operations associated
with the resources. In VISA, every resource supports the operations described in the template. In
addition to the specific error codes listed for each operation, the following generic error codes can be
returned by any operation:

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given session does not support this operation.

VI_ERROR_NIMPL_OPER The given operation is not implemented.

VI_ERROR_SYSTEM_ERROR Unknown system error (miscellaneous error).

VI_ERROR_INV_PARAMETER The value of some parameter—which parameter is
not known—is invalid.

VI_ERROR_USER_BUF A specified user buffer is not valid or cannot be
accessed for the required size.

OBSERVATION 3.1.1
 It is possible that in the future, any operation may return success or error codes not listed in this

specification. Therefore, it is important that applications check for general success or failure before
comparing a return value to known return codes.

OBSERVATION 3.1.2
 It is the intention of this specification to have success and warning codes be greater than or equal to zero

and error codes less than zero. The specific status values are specified in the corresponding framework
documents. Only unique identifiers are specified in this document.

• Event Reporting

VISA provides callback, queuing, and waiting services that can inform sessions about resource-
defined events.

Section 3: VISA Resource Template Page 3-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RECOMMENDATION 3.1.1
 If an operation defines an error code for a given parameter, a VISA implementation should normally use

that error code.

PERMISSION 3.1.1
 If a VISA implementation cannot determine which parameter caused an error, such as when using a lower-

level driver, then it MAY return VI_ERROR_INV_PARAMETER.

Page 3-4 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.2 VISA Template Interface Overview

This section summarizes the interface that each VISA implementation must incorporate. The different
attributes and operations are described in detail in subsequent sections.

3.2.1 VISA Template Attributes

RULE 3.2.1
 Every VISA system SHALL implement the attributes and operations described in the VISA Resource

Template.

RULE 3.2.2
 Every VISA system SHALL implement the following attributes: VI_ATTR_RSRC_NAME,

VI_ATTR_RSRC_SPEC_VERSION, VI_ATTR_RSRC_IMPL_VERSION, VI_ATTR_RSRC_MANF_ID,
VI_ATTR_RSRC_MANF_NAME, VI_ATTR_RM_SESSION, VI_ATTR_USER_DATA,
VI_ATTR_MAX_QUEUE_LENGTH, VI_ATTR_RSRC_CLASS, and VI_ATTR_RSRC_LOCK_STATE.

RULE 3.2.3
 The value of the attribute VI_ATTR_RSRC_SPEC_VERSION SHALL be the value 00400000h.

OBSERVATION 3.2.1
 The value of the attribute VI_ATTR_RSRC_SPEC_VERSION is a fixed value that reflects the version of the

VISA specification to which the implementation is compliant. This value will change with subsequent
versions of the specification.

Table 3.2.1 VISA Template Required Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_RSRC_IMPL_VERSION RO Global ViVersion 0h to FFFFFFFFh

VI_ATTR_RSRC_LOCK_STATE RO Global ViAccessMode VI_NO_LOCK

VI_EXCLUSIVE_LOCK

VI_SHARED_LOCK

VI_ATTR_RSRC_MANF_ID RO Global ViUInt16 0h to 3FFFh

VI_ATTR_RSRC_MANF_NAME RO Global ViString N/A

VI_ATTR_RSRC_NAME RO Global ViRsrc N/A

VI_ATTR_RSRC_SPEC_VERSION RO Global ViVersion 00400000h

VI_ATTR_RM_SESSION RO Local ViSession N/A

VI_ATTR_MAX_QUEUE_LENGTH R/W* Local ViUInt32 1h to FFFFFFFFh

VI_ATTR_RSRC_CLASS RO Global ViString N/A

VI_ATTR_USER_DATA R/W Local ViAddr **

VI_ATTR_USER_DATA_32 R/W Local ViUInt32 0h to FFFFFFFFh

VI_ATTR_USER_DATA_64*** R/W Local ViUInt64 0h to
FFFFFFFFFFFFFFFFh

* This attribute becomes RO once viEnableEvent() has been called for the first time.
** Specified in the relevant VPP-4.3.x framework document.
*** Defined only for frameworks that are 64-bit native.

Section 3: VISA Resource Template Page 3-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Attribute Descriptions

VI_ATTR_RSRC_IMPL_VERSION Resource version that uniquely identifies each of the different
revisions or implementations of a resource.

VI_ATTR_RSRC_LOCK_STATE The current locking state of the resource. The resource can be

unlocked, locked with an exclusive lock, or locked with a
shared lock.

VI_ATTR_RSRC_MANF_ID A value that corresponds to the VXI manufacturer ID of the

manufacturer that created the implementation.

VI_ATTR_RSRC_MANF_NAME A string that corresponds to the VXI manufacturer name of

the manufacturer that created the implementation.

VI_ATTR_RSRC_NAME The unique identifier for a resource compliant with the
address structure presented in Section 4.3.1, Address String.

VI_ATTR_RSRC_SPEC_VERSION Resource version that uniquely identifies the version of the

VISA specification to which the implementation is compliant.

VI_ATTR_RM_SESSION Specifies the session of the Resource Manager that was used

to open this session.

VI_ATTR_MAX_QUEUE_LENGTH Specifies the maximum number of events that can be queued

at any time on the given session.

VI_ATTR_RSRC_CLASS Specifies the resource class (for example, “INSTR”) as

defined in Section 5.

VI_ATTR_USER_DATA Data used privately by the application for a particular session.
VI_ATTR_USER_DATA_32 This data is not used by VISA for any purposes and is
VI_ATTR_USER_DATA_64 provided to the application for its own use.

Table 3.2.2 ViVersion Description for VI_ATTR_RSRC_IMPL_VERSION and
VI_ATTR_RSRC_SPEC_VERSION

Bits 31 to 20 Bits 19 to 8 Bits 0 to 7

Major Number Minor Number Sub-Minor Number

RULE 3.2.4

The value of the attribute VI_ATTR_RSRC_IMPL_VERSION SHALL increment with each new revision
provided by a manufacturer.

OBSERVATION 3.2.2
The value of the attribute VI_ATTR_RSRC_IMPL_VERSION is a value that is defined by the individual
manufacturer with the only constraint of incrementing the total version value on subsequent revisions.

RECOMMENDATION 3.2.1

It is recommended that the value of sub-minor versions be non-zero only for pre-release versions (beta).
All officially released products should have a sub-minor value of zero.

Page 3-6 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 3.2.5
The attribute VI_ATTR_MAX_QUEUE_LENGTH SHALL be R/W (readable and writeable) until
viEnableEvent() is called for the first time on a session.

RULE 3.2.6
The attribute VI_ATTR_MAX_QUEUE_LENGTH SHALL be RO (read only and not writeable) after
viEnableEvent() is called for the first time on a session.

OBSERVATION 3.2.3

The previous two rules allow for a non-dynamically resizable implementation of queue lengths for VISA
implementations. Queue lengths can be changed immediately after creation of a session but not after
general operation has begun (that is, after viEnableEvent() has been called).

RULE 3.2.7

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_USER_DATA and
VI_ATTR_USER_DATA_32 SHALL be identical.

RULE 3.2.8

IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_USER_DATA and
VI_ATTR_USER_DATA_64 SHALL be identical.

RULE 3.2.9

IF a framework is 32-bit, THEN the attribute VI_ATTR_USER_DATA_64 SHALL NOT be defined.

OBSERVATION 3.2.4

A user on a 32-bit framework can store 64-bit data via a private structure referenced by a 32-bit pointer.

RULE 3.2.10

IF a framework is 64-bit, THEN a VISA implementation SHALL provide only one user data value per
session. IF a user calls viSetAttribute with the attribute VI_ATTR_USER_DATA_32 followed by a call
to viGetAttribute with the attribute VI_ATTR_USER_DATA_64, THEN a VISA implementation
SHALL return the 32-bit value that was previously set on that session.

NOTE: The definition of the WIN64 framework is currently in progress. Version 4.0 of the VISA family of
specifications (VPP 4.3) refer to the WIN64 framework being defined in VPP 2 (Frameworks) and VPP 6
(Installation). When the definition of the WIN64 framework in VPP 2 and VPP 6 is complete, it will apply to the
VISA 4.0 specifications and these “in progress” notes will be removed as an editorial change.

3.2.2 VISA Template Operations

viClose(vi)
viGetAttribute(vi, attribute, attrState)
viSetAttribute(vi, attribute, attrState)
viStatusDesc(vi, status, desc)
viTerminate(vi, degree, jobId)
viLock(vi, lockType, timeout, requestedKey, accessKey)
viUnlock(vi)
viEnableEvent(vi, eventType, mechanism, context)
viDisableEvent(vi, eventType, mechanism)
viDiscardEvents(vi, eventType, mechanism)
viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext)
viInstallHandler(vi, eventType, handler, userHandle)
viUninstallHandler(vi, eventType, handler, userHandle)

Section 3: VISA Resource Template Page 3-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 3.2.11
Every VISA system SHALL implement the following operations: viClose(), viGetAttribute(),
viSetAttribute(), viStatusDesc(), viTerminate(), viLock(), viUnlock(),
viEnableEvent(), viDisableEvent(), viDiscardEvents(), viWaitOnEvent(),
viInstallHandler(), and viUninstallHandler().

Page 3-8 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.3 Lifecycle Services

Once an application has opened a session to a VISA resource using some of the services in the VISA
Resource Manager, it can use viClose() to close that session. The viClose() operation is also used to
free find lists returned from the viFindRsrc() operation as well as events returned from the
viWaitOnEvent() operation.

3.3.1 Lifecycle Operations

 viClose(vi)

Section 3: VISA Resource Template Page 3-9

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.3.1.1 viClose(vi)

Purpose
 Close the specified session, event, or find list.

Parameter

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session, event, or find list closed successfully.

VI_WARN_NULL_OBJECT The specified object reference is uninitialized.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data
structures corresponding to this session or object
reference.

Description
 This operation closes a session, event, or a find list. In this process all the data structures that had been

allocated for the specified vi are freed.

Related Items
 See also viOpen().

Implementation Requirements

RULE 3.3.1
 In a VISA system, a vi that receives the viClose() operation SHALL attempt to close the given vi and

free all related data structures.

RULE 3.3.2

IF the value VI_NULL is passed to the viClose() operation, THEN a VISA system SHALL return the
completion code VI_WARN_NULL_OBJECT.

Page 3-10 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.4 Characteristic Control Services

Resources have attributes associated with them. Some attributes depict the instantaneous state of the
resource and some define alterable parameters to modify behavior of the resources operations. VISA
defines attribute manipulation operations to set and retrieve the status of resources. These attributes are
defined by individual resources. This section describes the operations used to set and retrieve the value of
individual attributes.

This section also includes an operation that can be used to retrieve a human-readable description for a
given error code from a given session.

3.4.1 Characteristic Control Operations

 viGetAttribute(vi, attribute, attrState)
 viSetAttribute(vi, attribute, attrState)
 viStatusDesc(vi, status, desc)

Section 3: VISA Resource Template Page 3-11

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.4.1.1 viGetAttribute(vi, attribute, attrState)

Purpose
 Retrieve the state of an attribute.

Parameters

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

attribute IN ViAttr Session, event, or find list attribute for which
the state query is made.

attrState OUT ViAttrState The state of the queried attribute for a
specified resource. The interpretation of the
returned value is defined by the individual
resource.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session, event, or find list attribute retrieved
successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
session, event, or find list.

Description
 The viGetAttribute() operation is used to retrieve the state of an attribute for the specified session,

event, or find list.

Related Items
 See viSetAttribute().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 3-12 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.4.1.2 viSetAttribute(vi, attribute, attrState)

Purpose
 Set the state of an attribute.

Parameters

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

attribute IN ViAttr Session, event, or find list attribute for which
the state is modified.

attrState IN ViAttrState The state of the attribute to be set for the
specified resource. The interpretation of the
individual attribute value is defined by the
resource.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE Although the specified attribute state is valid, it is not
supported by this implementation.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
session, event, or find list.

VI_ERROR_NSUP_ATTR_STATE The specified state of the attribute is not valid, or is not
supported as defined by the session, event, or find list.

VI_ERROR_ATTR_READONLY The specified attribute is read-only.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

Description
 The viSetAttribute() operation is used to modify the state of an attribute for the specified session,

event, or find list.

Related Items
 See viGetAttribute().

Section 3: VISA Resource Template Page 3-13

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

RULE 3.4.1
 IF a resource cannot set an optional attribute state, AND the specified attribute state is valid, AND the

attribute description does not specify otherwise, THEN the resource SHALL return the error code
VI_ERROR_NSUP_ATTR_STATE.

OBSERVATION 3.4.1
 Both VI_WARN_NSUP_ATTR_STATE and VI_ERROR_NSUP_ATTR_STATE indicate that the specified

attribute state is not supported. Unless a specific rule states otherwise, a resource normally returns the error
code VI_ERROR_NSUP_ATTR_STATE when it cannot set a specified attribute state. The completion code
VI_WARN_NSUP_ATTR_STATE is intended to alert the application that although the specified optional
attribute state is not supported, the application should not fail. One example is attempting to set an attribute
value that would increase performance speeds. This is different than attempting to set an attribute value
that specifies required but nonexistent hardware (such as specifying a VXI ECL trigger line when no
hardware support exists) or a value that would change assumptions a resource might make about the way
data is stored or formatted (such as byte order). See specific attribute descriptions for text that allows the
completion code VI_WARN_NSUP_ATTR_STATE.

OBSERVATION 3.4.2
 The error code VI_ERROR_RSRC_LOCKED is returned only if the specified attribute is Read/Write and

Global, and the resource is locked by another session.

Page 3-14 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.4.1.3 viStatusDesc(vi, status, desc)

Purpose
 Return a user-readable description of the status code passed to the operation.

Parameters

Name Direction Type Description

vi IN ViSession
ViEvent
ViFindList

Unique logical identifier to a session, event,
or find list.

status IN ViStatus Status code to interpret.

desc OUT ViString The user-readable string interpretation of the
status code passed to the operation.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Description successfully returned.

VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not be
interpreted.

Description
 The viStatusDesc() operation is used to retrieve a user-readable string that describes the status code

presented.

Implementation Requirements

RULE 3.4.2
 IF a status code cannot be interpreted by the session, THEN the resource SHALL return the warning

VI_WARN_UNKNOWN_STATUS.

RULE 3.4.3
 The output string desc SHALL be valid regardless of the status return value.

Section 3: VISA Resource Template Page 3-15

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.5 Asynchronous Operation Control Services

Resources can have asynchronous operations associated with them. These operations are invoked the same
way in which all other operations are invoked. Instead of waiting for the actual job to be done, they register
the job to be done and return immediately. An application that wants to abort such an asynchronous
operation can use viTerminate() with the unique job identifier that is returned from the operation to be
aborted. Examples of asynchronous operations are viReadAsync() and viWriteAsync(). Refer to
Section 6, VISA Resource-Specific Operations, for more information on these and other asynchronous
operations.

3.5.1 Asynchronous Operation Control Operations

 viTerminate(vi, degree, jobId)

Page 3-16 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.5.1.1 viTerminate(vi, degree, jobId)

Purpose
 Request a VISA session to terminate normal execution of an operation.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to an object.

degree IN ViUInt16 VI_NULL

jobId IN ViJobId Specifies an operation identifier.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Request serviced successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_INV_JOB_ID Specified job identifier is invalid.

VI_ERROR_INV_DEGREE Specified degree is invalid.

Description

This operation requests a session to terminate normal execution of an operation, as specified by the jobId
parameter. The jobId parameter is a unique value generated from each call to an asynchronous operation.

If a user passes VI_NULL as the jobId value to viTerminate(), a VISA implementation should abort any
calls in the current process executing on the specified vi. Any call that is terminated this way should
return VI_ERROR_ABORT. Due to the nature of multi-threaded systems, for example where operations in
other threads may complete normally before the operation viTerminate() has any effect, the specified
return value is not guaranteed.

Related Items
viReadAsync(), viWriteAsync(), viMoveAsync().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 3: VISA Resource Template Page 3-17

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.6 Access Control Services

In VISA, applications can open multiple sessions to a VISA resource simultaneously. Applications can
access the VISA resource through the different sessions concurrently. However, in certain cases,
applications accessing a VISA resource might want to restrict other applications from accessing that
resource. For example, suppose an application needs to perform successive write operations on a resource.
The application also requires that during the sequence of writes, no other operation can be invoked through
any other session to that resource. VISA defines a locking mechanism to restrict accesses to resources for
such a special circumstance.

RULE 3.6.1
 Every VISA resource on a multitasking or multithreading operating system SHALL safely handle

concurrent operation invocations.

3.6.1 Session Access Control Service Model

3.6.1.1 Locking Mechanism

The VISA locking mechanism enforces arbitration of accesses to VISA resources on a per-session basis. If
a session locks a resource, operations invoked on the resource through other sessions are serviced, or
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full privilege to invoke any
operation and update any global attributes. Sessions are not required to have locks to invoke operations or
update global attributes. However, if some other session has already locked the resource, attempts to
update global attributes or execute certain operations will fail. Refer to descriptions of the individual
operations to determine which would fail when a resource is locked. Locking a resource restricts access
from other sessions, and in the case where an exclusive lock is acquired, guarantees that operations do not
fail because other sessions have acquired a lock on that resource. Locking a resource prevents other
sessions from acquiring an exclusive lock.

VISA defines two different types, or modes, of locks: exclusive and shared locks, which are denoted by
VI_EXCLUSIVE_LOCK and VI_SHARED_LOCK, respectively. viLock() is used to acquire a lock on a
resource, and viUnlock() is used to release the lock. This section describes the exclusive lock type.
Section 3.6.1.2 describes shared locks, which are similar to exclusive locks in terms of access privileges,
but which still can be shared between multiple sessions. The VI_ATTR_RSRC_LOCK_STATE attribute
specifies the current locking state of the resource on the given session.

Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_RSRC_LOCK_STATE RO Global ViAccessMode VI_NO_LOCK

VI_EXCLUSIVE_LOCK

VI_SHARED_LOCK

Page 3-18 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 3.6.2
 Every VISA resource SHALL support the VI_ATTR_RSRC_LOCK_STATE attribute.

RULE 3.6.3
 Every VISA resource SHALL support both exclusive and shared locks.

Table 3.6.1 Types of Locks Acquired When Requesting Session Has No Lock

Lock Any Other Session Has

Requested No Locks Exclusive Lock Shared Lock Shared and
Exclusive Locks

Exclusive Yes No No No

Shared Lock Yes No Yes* Yes*

Table 3.6.2 Types of Locks Acquired When Requesting Session Has Exclusive Lock Only (Nesting)

Lock Any Other Session Has

Requested No Locks Exclusive Lock Shared Lock Shared and
Exclusive Locks

Exclusive Yes ** ** **

Shared Lock No ** ** **

Table 3.6.3 Types of Locks Acquired When Requesting Session Has Shared Lock (Nesting)

Lock Any Other Session Has

Requested No Locks Exclusive Lock Shared Lock Shared and
Exclusive Locks

Exclusive Yes ** Yes No

Shared Lock Yes ** Yes Yes

Table 3.6.4 Types of Locks Acquired When Requesting Session Has Shared and Exclusive Locks (Nesting)

Lock Any Other Session Has

Requested No Locks Exclusive Lock Shared Lock Shared and
Exclusive Locks

Exclusive Yes ** Yes **

Shared Lock No ** No **

* Only if the current session is aware of the access key. See Section 3.6.1.2, Lock Sharing, for more

details.
** The locking mechanism will not allow this situation to occur.

Section 3: VISA Resource Template Page 3-19

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.6.1.2 Lock Sharing

Because the locking mechanism in VISA is session based, multiple threads sharing a session that has
locked a VISA resource have the same privileges for accessing the resource. Some applications, though,
might have separate sessions to a resource and might want all the sessions in that application to have the
same privilege as the session that locked the resource. In other cases, there might be a need to share locks
among sessions in different applications. Essentially, sessions that acquired a lock to a resource may share
the lock with other sessions it selects, and exclude access from other sessions.

This section discusses the mechanism that makes it possible to share locks. VISA defines a lock type—
VI_SHARED_LOCK—that gives exclusive access privileges to a session along with the capability to share
these exclusive privileges at the discretion of the original session. A session can lock a VISA resource
using the lock type VI_SHARED_LOCK to get exclusive access privileges to the resource. When sharing the
resource using a shared lock, the viLock() operation returns an accessKey that can be used to share the
lock. The session can then share this lock with any other session by passing around the accessKey.
Before other sessions can access the locked resource, they need to acquire the lock by passing the
accesskey in the requestedKey parameter of the viLock() operation. Invoking viLock() with the
same key will register the new session to have the same access privilege as the original session. The
session that acquired the access privileges through the sharing mechanism can also pass the access key to
other sessions for sharing of resource. All the sessions sharing a resource using the shared lock should
synchronize their accesses to maintain a consistent state of the resource.

VISA provides the flexibility for the applications to specify a key to use as the accessKey, instead of
VISA generating the accessKey. The applications can suggest a key value to use through the
requestedKey parameter of the viLock() operation. If the resource was not locked, the resource will
use this requestedKey as the accessKey. If the resource was locked using a shared lock and the
requestedKey matches the key with which resource was locked, the resource will grant the shared access
to the session. If an application attempts to lock a resource using a shared lock, and passes VI_NULL as the
requestedKey parameter, then VISA will generate an accessKey for the session.

A session seeking to share an exclusive lock with other sessions needs to acquire a VI_SHARED_LOCK lock
for this purpose. If it requests VI_EXCLUSIVE_LOCK, no valid access key will be returned. Consequently,
the session will not be able to share it with any other sessions. This precaution minimizes the possibility of
inadvertent or malicious access to the resource.

3.6.1.3 Access Privileges

If a session has an exclusive lock, other sessions cannot modify global attributes or invoke operations, but
can still get attributes. If the session has a shared lock, other sessions that have shared locks can also
modify global attributes and invoke operations. A session that does not have a shared lock will lack this
capability.

If a session has a shared lock to a VISA resource, it can perform any operation and update any global
attribute in that resource, unless some other session has an exclusive lock. The following tables describe
the access privileges of a session under the various locking conditions.

Page 3-20 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 3.6.5 Current Session Has No Lock

 Access Privilege of Other Sessions

Operations Current
Session Can Perform

All Other
Sessions Have

No Locks

One Session Has
an Exclusive

Lock

At Least One
Session Has a
Shared Lock

Get Attributes Yes Yes Yes

Set Local Attributes Yes Yes Yes

Set Global Attributes Yes No No

Operations Yes No* No*

Table 3.6.6 Current Session Has Exclusive Lock

 Access Privilege of Other Sessions

Operations Current
Session Can Perform

All Other
Sessions Have

No Locks

One Session Has
an Exclusive

Lock**

At Least One
Session Has a
Shared Lock

Get Attributes Yes ** Yes

Set Local Attributes Yes ** Yes

Set Global Attributes Yes ** Yes

Operations Yes ** Yes

Table 3.6.7 Current Session Has Shared Lock

 Access Privilege of Other Sessions

Operations Current
Session Can Perform

All Other
Sessions Have

No Locks

One Session Has
an Exclusive

Lock***

At Least One
Session Has a
Shared Lock

Get Attributes Yes Yes*** Yes

Set Local Attributes Yes Yes*** Yes

Set Global Attributes Yes No*** Yes

Operations Yes No*, *** Yes

* Some operations may be allowed. Refer to individual resources for more information.
** These cases will not arise because the locking mechanism does not permit such locks to be granted to

different sessions.
*** These cases arise when a session holding a shared lock also acquires an exclusive lock.

Section 3: VISA Resource Template Page 3-21

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

OBSERVATION 3.6.1
Tables 3.6.4, 3.6.5, and 3.6.6 list the general rules for what is permitted under various locking conditions.
This information applies unless explicitly stated differently in specific descriptions of attributes or
operations. However, there can be exceptions to the rule. For example, some operations may be permitted
even when there is an exclusive lock on the resource, or some global attributes may not be read when there
is any kind of lock on the resource. These exceptions, when applicable, are mentioned in the description of
the individual operations and attributes.

In a VISA 2.2 system, only the I/O operations listed in Sections 5 and 6 are restricted by the locking
scheme. Also, not all the operations are restricted by locking. Refer to descriptions of the individual
operations to determine which are applicable for locking.

RULE 3.6.4
 For VISA 2.2, any operation that respects locks SHALL immediately return VI_ERROR_RSRC_LOCKED if

the resource is locked and the current session does not have the lock.

OBSERVATION 3.6.2
Although VISA 2.2 operations will return VI_ERROR_RSRC_LOCKED immediately when the session does
not have access privileges, future versions of a VISA system may have a mechanism to allow operations to
wait for a specified period of time before returning this error code.

3.6.1.4 Acquiring Exclusive Lock While Owning Shared Lock

When multiple sessions have acquired a shared lock, VISA allows one of the sessions to acquire an
exclusive lock along with the shared lock it is holding. That is, a session holding a shared lock could also
acquire an exclusive lock using the viLock() operation. The session holding both the exclusive and
shared lock will have the same access privileges that it had when it was holding the shared lock only.
However, this would preclude other sessions holding the shared lock from accessing the locked resource.
When the session holding the exclusive lock unlocks the resource using the viUnlock() operation, all the
sessions (including the one that had acquired the exclusive lock) will again have all the access privileges
associated with the shared lock. This is useful when multiple sessions holding a shared lock must
synchronize. This can also be used when one of the sessions must execute in a critical section. In the
reverse case, in which a session is holding an exclusive lock only (no shared locks), VISA does not allow it
to change to VI_SHARED_LOCK.

3.6.1.5 Nested Locks

VISA supports nested locking. That is, a session can lock the same VISA resource multiple times (for the
same lock type). Unlocking the resource requires an equal number of invocations of the viUnlock()
operation. Each session maintains a separate lock count for each type of locks. Repeated invocations of the
viLock() operation for the same session will increase the appropriate lock count, depending on the type
of lock requested. In the case of a shared lock, nesting viLock() calls will return with the same
accessKey every time. In case of an exclusive lock, viLock() will not return any accessKey,
regardless of whether it is nested or not. When a session locks the resource a multiple number of times, an
equal number of invocations of the viUnlock() operation is required to actually unlock the resource. In
other words, for each invocation of viLock(), a lock count will be incremented and for each invocation of
viUnlock(), the lock count will be decremented. A resource can be actually unlocked only when the lock
count is 0.

Page 3-22 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

For nesting shared locks, VISA does not require an access key be passed in to invoke the viLock()
operation. That is, a session does not need to pass in the access key obtained from the previous invocation
of viLock() to gain a nested lock on the resource. However, if an application does pass in an access key
when nesting on shared locks, it must be the correct one for that session. Refer to the description of the
viLock() operation for further description of the accessKey parameter.

3.6.1.6 Locks on Remote Resources

The locking mechanism described in this section is guaranteed to work for all processes and resources
existing on the same computer. When using remote resources, however, the networking protocol may not
provide the ability to pass lock requests to the remote device or resource. In this case, locks should still
behave as expected from multiple sessions on the same computer. For example, when using the VXI-11
protocol, exclusive lock requests can be sent to a device, but shared locks can only be handled locally. A
less secure example is that multiple controllers in a VXI system may each have their own view of the
system and may have duplicate locks without knowledge of each other.

RULE 3.6.5
 A VISA implementation SHALL enforce locking as described in this specification for all sessions,

processes, and resources on the same computer.

RECOMMENDATION 3.6.1
Multiple VISA entities on separate computers with access to the same resource should share lock
information if possible.

3.6.2 Access Control Operations

 viLock(vi, lockType, timeout, requestedKey, accessKey)
 viUnlock(vi)

Section 3: VISA Resource Template Page 3-23

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.6.2.1 viLock(vi, lockType, timeout, requestedKey, accessKey)

Purpose
 Establish an access mode to the specified resource.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

lockType IN ViAccessMode Specifies the type of lock requested, which
can be either VI_EXCLUSIVE_LOCK or
VI_SHARED_LOCK.

timeout IN ViUInt32 Absolute time period (in milliseconds) that
a resource waits to get unlocked by the
locking session before returning this
operation with an error.

requestedKey IN ViKeyId This parameter is not used and should be
set to VI_NULL when lockType is
VI_EXCLUSIVE_LOCK (exclusive locks).
When trying to lock the resource as
VI_SHARED_LOCK (shared), a session can
either set it to VI_NULL, so that VISA
generates an accessKey for the session, or
the session can suggest an accessKey to
use for the shared lock. Refer to the
description section below for more details.

accessKey OUT ViKeyId This parameter should be set to VI_NULL
when lockType is VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the
resource as VI_SHARED_LOCK (shared), the
resource returns a unique access key for the
lock if the operation succeeds. This
accessKey can then be passed to other
sessions to share the lock.

Return Values

Type ViStatus This is the operational return status. It returns either
a completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Specified access mode is successfully acquired.

VI_SUCCESS_NESTED_EXCLUSIVE Specified access mode is successfully acquired,
and this session has nested exclusive locks.

VI_SUCCESS_NESTED_SHARED Specified access mode is successfully acquired,
and this session has nested shared locks.

Page 3-24 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because
the resource is already locked with a lock type
incompatible with the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by this
resource.

VI_ERROR_INV_ACCESS_KEY The requestedKey value passed in is not a valid
access key to the specified resource.

VI_ERROR_TMO Specified type of lock could not be obtained
within the specified timeout period.

Description
 This operation is used to obtain a lock on the specified resource. The caller can specify the type of lock

requested—exclusive or shared lock—and the length of time the operation will suspend while waiting to
acquire the lock before timing out. This operation can also be used for sharing and nesting locks.

 The requestedKey and the accessKey parameters apply only to shared locks. These parameters are not
applicable when using the lock type VI_EXCLUSIVE_LOCK; in this case, requestedKey and accessKey
should be set to VI_NULL. VISA allows user applications to specify a key to be used for lock sharing,
through the use of the requestedKey parameter. Alternatively, a user application can pass VI_NULL for
the requestedKey parameter when obtaining a shared lock, in which case VISA will generate a unique
access key and return it through the accessKey parameter. If a user application does specify a
requestedKey value, VISA will try to use this value for the accessKey. As long as the resource is not
locked, VISA will use the requestedKey as the access key and grant the lock. When the operation
succeeds, the requestedKey will be copied into the user buffer referred to by the accessKey parameter.

 The session that gained a shared lock can pass the accessKey to other sessions for the purpose of the

sharing the lock. The session wanting to join the group of sessions sharing the lock can use the key as an
input value to the requestedKey parameter. VISA will add the session to the list of sessions sharing the
lock, as long as the requestedKey value matches the accessKey value for the particular resource. The
session obtaining a shared lock in this manner will then have the same access privileges as the original
session that obtained the lock.

 It is also possible to obtain nested locks through this operation. To acquire nested locks, invoke the

viLock() operation with the same lock type as the previous invocation of this operation. For each session,
viLock() and viUnlock() share a lock count, which is initialized to 0. Each invocation of viLock()
for the same session (and for the same lockType) increases the lock count. In the case of a shared lock, it
returns with the same accessKey every time. When a session locks the resource a multiple number of
times, it is necessary to invoke the viUnlock() operation an equal number of times in order to unlock the
resource. That is, the lock count increments for each invocation of viLock(), and decrements for each
invocation of viUnlock(). A resource is actually unlocked only when the lock count is 0.

Related Items
 See viUnlock().

Section 3: VISA Resource Template Page 3-25

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

OBSERVATION 3.6.3

It is the intention of this specification that ViKeyId be implemented as a string type. Since VI_NULL may
not be compatible with a string type in every language, a zero-length string can be substituted wherever
VI_NULL is used in a reference to a parameter of type ViKeyId.

RULE 3.6.6
 A resource SHALL maintain an exclusive lock count and a shared lock count for each session that holds a

lock on the resource.

RULE 3.6.7
 IF a viLock() operation requests and acquires an exclusive lock successfully, THEN the exclusive lock

count associated with that session SHALL be incremented by 1.

RULE 3.6.8
 IF a viLock() operation requests and acquires an shared lock successfully, THEN the shared lock count

associated with that session SHALL be incremented by 1.

RULE 3.6.9
 IF a viLock() operation requesting a shared lock is invoked from a session whose associated exclusive

lock count is non-zero (meaning the session has an exclusive lock) THEN the viLock() operation
SHALL return the error VI_ERROR_RSRC_LOCKED.

RULE 3.6.10
 IF the lockType parameter is VI_EXCLUSIVE_LOCK, THEN the viLock() operation SHALL ignore the

value of the requestedKey parameter.

RULE 3.6.11
 IF the lockType parameter is VI_EXCLUSIVE_LOCK, AND the accessKey parameter points to a valid

user buffer, THEN the viLock() operation SHALL set the value of accessKey to be a zero-length
string.

RULE 3.6.12
 IF an application makes a request for a shared lock on a resource AND the requestedKey value is set to

VI_NULL, AND the resource is not locked, THEN VISA SHALL generate the accessKey to allow
sharing of the lock.

OBSERVATION 3.6.4

An accessKey used for sharing a lock to a resource need only be unique for a resource, but two different
resources can have the same accessKey.

RULE 3.6.13
 IF an application makes a request for a shared lock on a resource, AND the requestedKey value is not

set to VI_NULL, AND the length of the requestedKey is greater than or equal to 256 characters, THEN
the viLock() operation SHALL return VI_ERROR_INV_ACCESS_KEY.

RULE 3.6.14
 IF an application makes a request for a shared lock on a resource, AND the requestedKey value is not

set to VI_NULL, AND the length of the requestedKey is less than 256 characters, AND the resource is
not locked, THEN VISA SHALL use the requestedKey value as the access key to the resource.

Page 3-26 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

 OBSERVATION 3.6.5
An application can specify any valid string as a requestedKey value when acquiring a shared lock. Care
should be taken in choosing the requestedKey value; otherwise, if a string is chosen that can be easily
replicated, chances are other sessions may have chosen the same string and the sessions might
unknowingly end up sharing the resource.

RULE 3.6.15
 VISA SHALL support nested locking.

RULE 3.6.16
 IF a session that holds a shared lock on the resource makes another invocation of the viLock() operation

with the same lock type, THEN the resource SHALL return the same access key as the one returned in the
previous invocation of viLock().

RULE 3.6.17
 IF a session is being closed AND that session has lock(s) to the resource, THEN the resource locked

through that session SHALL be unlocked by setting both exclusive and shared lock counts associated with
that session to 0 before viClose() returns.

RULE 3.6.18

IF viLock() cannot acquire the lock immediately, THEN the operation SHALL wait for at least the time
period specified in the timeout parameter before returning with an error.

RULE 3.6.19
IF the timeout is VI_TMO_IMMEDIATE AND viLock() cannot acquire the lock immediately, THEN the
viLock() operation SHALL return immediately with an error.

RULE 3.6.20
IF a viLock() operation requests and acquires an exclusive lock successfully, THEN VISA SHALL
ensure that the lock state of the resource associated with the given session is set to VI_EXCLUSIVE_LOCK.

RULE 3.6.21
IF a viLock() operation requests and acquires a shared lock successfully, AND the lock state of the
resource associated with the given session was VI_NO_LOCK prior to the viLock() operation, THEN
VISA SHALL ensure that the lock state of the resource associated with the given session is set to
VI_SHARED_LOCK.

RULE 3.6.22
IF a viLock() operation requests and acquires a shared lock successfully, AND the lock state of the
resource associated with the given session was not VI_NO_LOCK prior to the viLock() operation, THEN
VISA SHALL NOT modify the lock state of the resource associated with the given session.

RULE 3.6.23
IF a viLock() operation requests and acquires an exclusive lock successfully, AND the exclusive lock
count associated with the given session was zero prior to the viLock() operation, THEN viLock()
SHALL return VI_SUCCESS.

RULE 3.6.24
IF a viLock() operation requests and acquires an exclusive lock successfully, AND the exclusive lock
count associated with the given session was non-zero prior to the viLock() operation, THEN viLock()
SHALL return VI_SUCCESS_NESTED_EXCLUSIVE.

Section 3: VISA Resource Template Page 3-27

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 3.6.25
IF a viLock() operation requests and acquires a shared lock successfully, AND the shared lock count
associated with the given session was zero prior to the viLock() operation, THEN viLock() SHALL
return VI_SUCCESS.

RULE 3.6.26
IF a viLock() operation requests and acquires a shared lock successfully, AND the shared lock count
associated with the given session was non-zero prior to the viLock() operation, THEN viLock()
SHALL return VI_SUCCESS_NESTED_SHARED.

RULE 3.6.27
IF a viLock() operation requests a shared lock, AND the exclusive lock count associated with the given
session is zero, AND the shared lock count associated with the given session is non-zero, AND the
requestedKey parameter is not set to VI_NULL, AND the value of requestedKey is not the same as
the access key for the resource associated with the given session, THEN viLock() SHALL return
VI_ERROR_INV_ACCESS_KEY.

Page 3-28 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.6.2.2 viUnlock(vi)

Purpose
 Relinquish a lock for the specified resource.

Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns either
a completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Lock successfully relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE Call succeeded, but this session still has nested
exclusive locks.

VI_SUCCESS_NESTED_SHARED Call succeeded, but this session still has nested
shared locks.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid
(both are the same value).

VI_ERROR_SESN_NLOCKED The current session did not have any lock on the
resource.

Description
 This operation is used to relinquish the lock previously obtained using the viLock() operation.

Related Items
 See viLock().

Implementation Requirements

RULE 3.6.28
 IF the exclusive lock count is non-zero for the given session after an invocation of viUnlock(), THEN

the operation SHALL return VI_SUCCESS_NESTED_EXCLUSIVE.

RULE 3.6.29
 IF the exclusive lock count is zero for the given session, AND the shared lock count is non-zero for the

given session after an invocation of viUnlock(), THEN the operation SHALL return
VI_SUCCESS_NESTED_SHARED.

RULE 3.6.30
 IF the exclusive lock count associated with a session is non-zero, THEN the exclusive lock count SHALL

be decremented for each invocation of viUnlock() from that particular session.

Section 3: VISA Resource Template Page 3-29

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 3.6.31
 IF the shared lock count associated with a session is non-zero, AND the exclusive lock count associated

with the session is zero, THEN the shared lock count SHALL be decremented for each invocation of
viUnlock() from that particular session.

RULE 3.6.32
 When the exclusive lock count is decremented to 0 for a particular session, the session SHALL relinquish

the exclusive lock on the resource.

RULE 3.6.33
 When the shared lock count is decremented to 0 for a particular session, the session SHALL relinquish the

shared lock on the resource.

RULE 3.6.34
 IF both the exclusive and shared lock count associated with a session is 0, THEN any invocation of the

viUnlock() operation on that session SHALL NOT decrement any lock count and SHALL return
VI_ERROR_SESN_NLOCKED.

RULE 3.6.35
 A resource SHALL be unlocked only when the both the lock counts are 0 for all the sessions accessing the

resource.

Page 3-30 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7 Event Services

VISA defines a common mechanism to notify an application when certain conditions occur. These
conditions or occurrences are referred to as events. Typically, events occur because of a condition requiring
the attention of applications. An event is a means of communication between a VISA resource and its
applications.

VISA provides two independent mechanisms for an application to receive notification of event
occurrences: queuing and callback handling. An application can enable either or both mechanisms using
the viEnableEvent() operation. The callback handling mechanism can be enabled for one of two
modes: immediate callback or delayed callback queuing. The viEnableEvent() operation is also used to
switch between the two callback modes. The viDisableEvent() operation is used to disable either or
both mechanisms.

In order to receive events using the queuing mechanism, an application must invoke the
viWaitOnEvent() operation. In order to receive events using the callback mechanism, an application
must install a callback handler using the viInstallHandler() operation.

When an application receives an event occurrence via either mechanism, it can determine information
about the event by invoking viGetAttribute() on that event. When the application no longer needs the
event information, it must call viClose() on that event.

3.7.1 Event Handling and Processing

The VISA event model provides two different ways for an application to receive event notification. The
first method is to place all of the occurrences of a specified event type in a session-based queue. There is
one event queue per event type per session. The application can receive the event occurrences later by
dequeuing them with the viWaitOnEvent() operation. The other method is to call the application
directly, invoking a function that the application installed prior to enabling the event. A callback handler is
invoked on every occurrence of the specified event.

RULE 3.7.1
Every VISA resource SHALL implement both the queuing and callback event handling mechanisms.

The queuing and callback mechanisms are suitable for different programming styles. The queuing
mechanism is generally useful for non-critical events that do not need immediate servicing. The callback
mechanism is useful when immediate responses are needed. These mechanisms work independently of
each other, so both can be enabled at the same time. By default, a session is not enabled to receive any
events by either mechanism. The viEnableEvent() operation can be used to enable a session to respond
to a specified event type using either the queuing mechanism, the callback mechanism, or both. Similarly,
the viDisableEvent() operation can be used to disable one or both mechanisms. Because the two
methods work independently of each other, one can be enabled or disabled regardless of the current state of
the other.

The queuing mechanism is discussed in section 3.7.1.1, Queuing Mechanism. The callback mechanism is
described in section 3.7.1.2, Callback Mechanism.

Section 3: VISA Resource Template Page 3-31

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.7.1.1 Queuing Mechanism

The queuing mechanism in VISA gives an application the flexibility to receive events only when it
requests them. An application retrieves the event information by using the viWaitOnEvent() operation.
If the specified event(s) exist in the queue, these operations retrieve the event information and return
immediately. Otherwise, the application thread is blocked until the specified event(s) occur or until the
timeout expires, whichever happens first. When an event occurrence unblocks a thread, the event is not
queued for the session on which the wait operation was invoked. For more information about these
operations, see section 3.7.2, Event Operations.

Figure 3.7.1 shows the state diagram for the queuing mechanism. This state diagram includes the enabling
and disabling of the queuing mechanism and the corresponding operations.

EQ

DQ

D Q

D - Disable state
Q - Queuing state
EQ - Enable queuing
DQ - Disable queuing

Figure 3.7.1 State Diagram for the Queuing Mechanism

The queuing mechanism of a particular session can be in one of two different states: Disabled or Queuing
(enabled for queuing). A session can transition between these two states using the viEnableEvent() or
viDisableEvent() operation. Once a session is enabled for queuing (EQ transition to the Q state), all
the event occurrences of the specified event type are queued. When a session is disabled for queuing (DQ
transition to D state), any further event occurrences are not queued, but event occurrences that were
already in the event queue are retained. The retained events can be dequeued at any time using the
viWaitOnEvent() operation. An application can explicitly clear (flush) the event queue for a specified
event type using the viDiscardEvents() operation.

RULE 3.7.2
IF there are any events in a session’s queue AND the queuing mechanism transitions between states,
THEN the resource SHALL NOT discard any events from the queue.

Page 3-32 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

The following table lists the state transitions and the corresponding values for the mechanism parameter in
the viEnableEvent() and viDisableEvent() operations.

Table 3.7.1 State Transitions for the Queuing Mechanism

Destination State

Paths Leading to
Destination State

Value of Mechanism Parameter

Operation to Use to
Get State Transition

Q EQ VI_QUEUE viEnableEvent()

D DQ VI_QUEUE, VI_ALL_MECH viDisableEvent()

Every VISA resource provides an attribute for configuring and maintaining session queues. The
VI_ATTR_MAX_QUEUE_LENGTH attribute specifies the maximum number of events that can be queued at
any time on the given session.

Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_MAX_QUEUE_LENGTH R/W Local ViUInt32 1 to FFFFFFFFh

RULE 3.7.3
 Every VISA resource SHALL support the VI_ATTR_MAX_QUEUE_LENGTH attribute.

RULE 3.7.4
 IF a queue is full AND a new event is to be placed on the queue, THEN the event with the lowest priority

SHALL be discarded.

RULE 3.7.5
 A VISA 2.2 system SHALL define the lowest priority to mean the most recent timestamp.

OBSERVATION 3.7.1

Because new events have a later timestamp (and therefore a lower priority) than events already on the
queue, a queue full condition means that new events will be discarded and the state of the queue will not be
altered.

3.7.1.2 Callback Mechanism

The VISA event model also allows applications to install functions that can be called back when a
particular event type is received. The viInstallHandler() operation can be used to install handlers to
receive specified event types. The handlers are invoked on every occurrence of the specified event, once
the session is enabled for the callback mechanism. One handler must be installed before a session can be
enabled for sensing using the callback mechanism.

RULE 3.7.6
 IF no handler is installed for an event type AND an application calls viEnableEvent() AND the

mechanism parameter is VI_HNDLR, THEN the viEnableEvent() operation SHALL return the error
VI_ERROR_HNDLR_NINSTALLED.

Section 3: VISA Resource Template Page 3-33

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VISA allows applications to install multiple handlers for an event type on the same session. Multiple
handlers can be installed through multiple invocations of the viInstallHandler() operation, where
each invocation adds to the previous list of handlers. If more than one handler is installed for an event
type, each of the handlers is invoked on every occurrence of the specified event(s). VISA specifies that the
handlers are invoked in Last In First Out (LIFO) order.

RULE 3.7.7
A VISA implementation SHALL allow at least 4 handlers to be installed on a given session for a given
event type.

PERMISSION 3.7.1
A VISA implementation MAY allow as many handlers as it wishes. VISA does not enforce a maximum
limit on the number of handlers that can be installed.

RULE 3.7.8
IF multiple handlers are installed for the same event type on the same session, THEN VISA SHALL
invoke the handlers in the reverse order of their installation (LIFO order).

When a handler is invoked, the VISA resource provides the event context as a parameter to the handler.
The event context is filled in by the resource. Applications can retrieve information from the event context
object using the viGetAttribute() operation.

An application can supply a reference to any application-defined value while installing handlers. This
reference is passed back to the application as the userHandle parameter to the callback routine during
handler invocation. This allows applications to install the same handler with different application-defined
contexts. For example, an application can install a handler with a fixed value 0x1 on a session for an event
type. It can install the same handler with a different value, for example 0x2, for the same event type. The
two installations of the same handler are different from one another. Both handlers are invoked when the
event of the given type occurs. However, in one invocation the value passed to userHandle is 0x1 and in
the other it is 0x2. Thus, event handlers are uniquely identified by a combination of the handler address
and user context pair. This identification is particularly useful when different handling methods need to be
done depending on the user context data. Refer to the viEventHandler() prototype for more
information.

An application may install the same handler on multiple sessions. In this case, the handler is invoked in the
context of each session for which it was installed (within the process environment).

RULE 3.7.9
 IF a handler is installed on multiple sessions, THEN the handler SHALL be called once for each

installation when an event occurs.

OBSERVATION 3.7.2
 In a multithreaded operating system, the callback may occur in a different thread than the one from which

viInstallHandler() is called.

OBSERVATION 3.7.3

The order of callbacks is only guaranteed for multiple handlers on a given session. A VISA
implementation may perform callbacks to handlers on multiple sessions (or processes) in any order.

An application can uninstall any of the installed handlers using the viUninstallHandler() operation.
This operation can also uninstall multiple handlers from the handler list at one time.

Page 3-34 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

The following section discusses Figure 3.7.2, the state diagram of a resource implementing the callback
mechanism. This state diagram includes the enabling and disabling of the callback mechanism in different
modes. It also briefly describes the operations that can be used for state transitions. The table following the
diagram lists different state transitions and parameter values for the viEnableEvent() and
viDisableEvent() operations.

EH

D = Disabled state
H = Handling state
Hbar = Suspended handling

EHbar

DH

DH
EH

EH = enable handling (callbacks)
DH = disabled handling
EHbar = Suspended handling

EHbar

Hbar
H

D

Figure 3.7.2 State Diagram for the Callback Mechanism

The callback mechanism of a particular session can be in one of three different states: Disabled, Handling,
or suspended handling(Hbar). When a session transitions to the handling state (EH transition to H state),
the callback handler is invoked for all the occurrences of the specified event type. When a session
transitions to the suspended handling state (EHbar transition to Hbar), the callback handler is not invoked
for any new event occurrences, but occurrences are kept in a suspended handler queue. The handler is
invoked later, when a transition to the handling state occurs. When a session transitions to the disabled
state (DH transition to the D state), the session is desensitized to any new event occurrences, but any
pending occurrences are retained in the queue. In the suspended handling state, a maximum of the
VI_ATTR_MAX_QUEUE_LENGTH number of event occurrences are kept pending. If the number of pending
occurrences exceeds the value specified in this attribute, the lowest-priority events are discarded as
described in section 3.7.1.1, Queuing Mechanism. An application can explicitly clear (flush) the callback
queue for a specified event type using the viDiscardEvents() operation.

The following table lists the state transition diagram for the callback mechanism and the corresponding
values for the mechanism parameter in the viEnableEvent() or viDisableEvent() operations.

Section 3: VISA Resource Template Page 3-35

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 3.7.2 State Transition Table for the Callback Mechanism

Destination
State

Source
State

Paths Leading to
Destination State

Value of Mechanism
Parameter

Operation to Use for
State Transition

H D EH VI_HNDLR viEnableEvent()

H Hbar EH VI_HNDLR viEnableEvent()

Hbar D EHbar VI_SUSPEND_HNDLR viEnableEvent()

Hbar H EHbar VI_SUSPEND_HNDLR viEnableEvent()

D H DH VI_HNDLR,
VI_SUSPEND_HNDLR,
VI_ALL_MECH

viDisableEvent()

D Hbar DH VI_SUSPEND_HNDLR,
VI_HNDLR, VI_ALL_MECH

viDisableEvent()

RULE 3.7.10
 IF the callback mechanism mode for event handling is changed from VI_SUSPEND_HNDLR to VI_HNDLR,

THEN all the pending events for the event type specified in eventType parameter of viEnableEvent()
SHALL be handled before viEnableEvent() completes.

OBSERVATION 3.7.4
 The queuing mechanism and the callback mechanism operate independently of each other. In a VISA

system, sessions keep information for event occurrences separate for both mechanisms. If one mechanism
reaches its predefined limit for storing event occurrences, it does not directly affect the other mechanism.

3.7.2 Exceptions

In VISA, when an error occurs while executing an operation, the normal execution of a VISA resource
halts. The resource notifies application of the error condition, invoking the application-specified callback
routine for the exception event. The notification includes sufficient information for the application to
know the cause of the error. Once notified, the application can tell the VISA system the action to take,
depending on the severity of error. VISA provides this functionality through an exception event, which is
referred to as an exception for the remainder of this document. The facility to handle exceptions is referred
to as the exception handling mechanism in this document. In VISA, each error condition defined by
operations of resources can cause exception events.

In VISA, exceptions are defined as events. The exception-handling model follows the event-handling
model for callbacks, and it uses the same operations as those used for general event handling. For
example, an application calls viInstallHandler() and viEnableEvent() to enable exception events.
The exception event is like any other event in VISA, except that the queueing and suspended handler
mechanisms are not allowed.

3.7.2.1 Exception Handling Model

This section describes the exception-handling model in VISA. In the VISA system, exceptions follow the
event model presented earlier in this section. As described in the event-handling model, it is possible to
install a callback handler which is invoked on an error. This installation can be done using the
viInstallHandler() operation on a session. Once a handler is installed, a session can be enabled for
exception event using viEnableEvent() operation.

Page 3-36 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

When an error occurs for a session operation, the exception handler is executed synchronously; that is, the
operation that caused the exception blocks until the exception handler completes its execution. When
invoked, the exception handler can check the error condition and instruct the exception operation to take a
specific action. It can instruct the exception operation to continue normally (returning the indicated error
code) or to not invoke any additional handlers (in the case of handler nesting). A given implementation
may choose to provide implementation-specific return codes for users’ exception handlers and may take
alternate actions based on those implementation-specific codes.

RULE 3.7.11

All VISA implementations SHALL invoke exception handlers in the context of the thread that caused the
exception event.

PERMISSION 3.7.2
A given implementation of VISA MAY define vendor-specific return codes for user exception handlers to
return.

PERMISSION 3.7.3
A given implementation of VISA MAY take vendor-defined actions based on vendor-specific return codes
from a user’s exception handler.

OBSERVATION 3.7.5

An example of a vendor-specific return code from an exception handler is one that causes the VISA
implementation to close all sessions for the given process and exit the application. Remember that using
vendor-specific return codes makes an application incompatible with other implementations.

As stated before, an exception operation blocks until the exception handler execution is completed.
However, an exception handler sometimes may prefer to terminate the program prematurely without
returning the control to the operation generating the exception. VISA does not preclude an application
from using a platform-specific or language-specific exception handling mechanism from within the VISA
exception handler. For example, the C++ try/catch block can be used in an application in conjunction with
the C++ throw mechanism from within the VISA exception handler.

OBSERVATION 3.7.6

When using the C++ try/catch/throw or other exception-handling mechanisms, the control will not return to
the VISA system. This has several important repercussions for both users and VISA implementors:
1) If multiple handlers were installed on the exception event, the handlers that were not invoked prior to

the current handler will not be invoked for the current exception.
2) The exception context will not be deleted by the VISA system when a C++ exception is used. In this

case, the application should delete the exception context as soon as the application has no more use for
the context, before terminating the session. An application should use the viClose() operation to
delete the exception context.

3) Code in any operation (after calling an exception handler) may not be called if the handler does not
return. For example, local allocations must be freed before invoking the exception handler, rather than
after it.

3.7.2.2 Generating an Error Condition

In VISA, when an error occurs, the normal execution of that session operation halts. The operation notifies
the error condition to the application by raising an exception event. Raising the exception event will
invoke the exception callback routine(s) installed for the particular session, based on whether this event is
currently enabled for the given session.

Section 3: VISA Resource Template Page 3-37

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

One situation in which an exception event will not be generated is in the case of asynchronous operations.
If the error is detected after the operation is posted (i.e., once the asynchronous portion has begun), the
status is returned normally via the I/O completion event. However, if an error occurs before the
asynchronous portion begins (i.e., the error is returned from the asynchronous operation itself), then the
exception event will still be raised. This deviation is due to the fact that asynchronous operations already
raise an event when they complete, and this I/O completion event may occur in the context of a separate
thread previously unknown to the application. In summary, a single application event handler can easily
handle error conditions arising from both exception events and failed asynchronous operations.

3.7.2.3 VI_EVENT_EXCEPTION

Description

Notification that an error condition has occurred during an operation invocation.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_EXCEPTION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_OPER_NAME RO ViString N/A

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS Status code returned by the operation generating the error.

VI_ATTR_OPER_NAME The name of the operation generating the event.

RULE 3.7.12

The name of the operation contained in VI_ATTR_OPER_NAME SHALL be exactly as presented in this
specification, The VISA Library.

OBSERVATION 3.7.7

For an exception generated from the viLock() operation, VI_ATTR_OPER_NAME would contain the string
"viLock".

OBSERVATION 3.7.8

The intent of providing VI_ATTR_OPER_NAME is to be able to provide diagnostic information, such as
printing the name of the operation causing the event. Comparing the operation name in order to perform
different actions, while valid, is not a recommended programming style.

3.7.3 Event Operations

viEnableEvent(vi, eventType, mechanism, context)
viDisableEvent(vi, eventType, mechanism)
viDiscardEvents(vi, eventType, mechanism)
viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext)
viInstallHandler(vi, eventType, handler, userHandle)
viUninstallHandler(vi, eventType, handler, userHandle)

Handler Prototype:
viEventHandler(vi, eventType, context, userHandle)

Page 3-38 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7.3.1 viEnableEvent(vi, eventType, mechanism, context)

Purpose
 Enable notification of a specified event.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

mechanism IN ViUInt16 Specifies event handling mechanisms to be
enabled. The queuing mechanism is enabled
by specifying VI_QUEUE, and the callback
mechanism is enabled by specifying
VI_HNDLR or VI_SUSPEND_HNDLR. It is
possible to enable both mechanisms
simultaneously by specifying "bit-wise OR"
of VI_QUEUE and one of the two mode values
for the callback mechanism.

context IN ViEventFilter VI_NULL

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event enabled successfully.

VI_SUCCESS_EVENT_EN Specified event is already enabled for at least one of
the specified mechanisms.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

VI_ERROR_INV_CONTEXT Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified
event. The session cannot be enabled for the
VI_HNDLR mode of the callback mechanism.

VI_ERROR_NSUP_MECH The specified mechanism is not supported for the
given event type.

Section 3: VISA Resource Template Page 3-39

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Description
 This operation enables notification of an event identified by the eventType parameter for mechanisms

specified in the mechanism parameter. The specified session can be enabled to queue events by specifying
VI_QUEUE. Applications can enable the session to invoke a callback function to execute the handler by
specifying VI_HNDLR. The applications are required to install at least one handler to be enabled for this
mode. Specifying VI_SUSPEND_HNDLR enables the session to receive callbacks, but the invocation of the
handler is deferred to a later time. Successive calls to this operation replace the old callback mechanism
with the new callback mechanism. Specifying VI_ALL_ENABLED_EVENTS for the eventType parameter
refers to all events that have previously been enabled on this session, making it easier to switch between
the two callback mechanisms for multiple events.

Table 3.7.3 Special Values for eventType Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Switch all events that were previously enabled to the
callback mechanism specified in the mechanism
parameter.

Table 3.7.4 Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Enable this session to receive the specified event via the
waiting queue. Events must be retrieved manually via the
viWaitOnEvent() operation.

VI_HNDLR Enable this session to receive the specified event via a
callback handler, which must have already been installed
via viInstallHandler().

VI_SUSPEND_HNDLR Enable this session to receive the specified event via a
callback queue. Events will not be delivered to the session
until viEnableEvent() is invoked again with the
VI_HNDLR mechanism.

 Notice that any combination of VISA-defined values for different parameters of the operation is also
supported (except for VI_HNDLR and VI_SUSPEND_HNDLR, which apply to different modes of the same
mechanism).

Related Items
 See the handler prototype, viEventHandler() for its parameter description. Also see the

viInstallHandler() and viUninstallHandler() descriptions for information about installing and
uninstalling event handlers.

Implementation Requirements

OBSERVATION 3.7.9

This specification mandates that event queuing and callback mechanisms operate completely
independently. As such, the enabling and disabling of the two modes in done independently (enabling one
of the modes does not enable or disable the other mode). For example, if viEnableEvent() is called
once with VI_HNDLR and called a second time with VI_QUEUE, both modes would be enabled.

Page 3-40 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 3.7.13
 IF viEnableEvent() is called with the mechanism parameter equal to the "bit-wise OR" of

VI_SUSPEND_HNDLR and VI_HNDLR, THEN viEnableEvent() SHALL return VI_ERROR_INV_MECH.

RULE 3.7.14
 IF the event handling mode is switched from VI_SUSPEND_HNDLR to VI_HNDLR for an event type, THEN

handlers that are installed for the event SHALL be called once for each occurrence of the corresponding
event pending in the session (and dequeued from the suspend handler queue) before switching the modes.

OBSERVATION 3.7.10

A session enabled to receive events can start receiving events before the viEnableEvent() operation
returns. In this case, the handlers set for an event type are executed before the completion of the enable
operation.

RULE 3.7.15

 IF the event handling mode is switched from VI_HNDLR to VI_SUSPEND_HNDLR for an event type, THEN
handler invocation for occurrences of the event type SHALL be deferred to a later time.

RULE 3.7.16

 IF no handler is installed for an event type, THEN the request to enable the callback mechanism for the
event type SHALL return VI_ERROR_HNDLR_NINSTALLED.

RULE 3.7.17

 IF a session has events pending in its queue(s) AND viClose() is invoked on that session, THEN all
pending event occurrences and the associated event contexts that have not yet been delivered to the
application for that session SHALL be freed by the system.

Section 3: VISA Resource Template Page 3-41

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.7.3.2 viDisableEvent(vi, eventType, mechanism)

Purpose
 Disable notification of an event type by the specified mechanisms.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

mechanism IN ViUInt16 Specifies event handling mechanisms to be
disabled. The queuing mechanism is disabled
by specifying VI_QUEUE, and the callback
mechanism is disabled by specifying
VI_HNDLR or VI_SUSPEND_HNDLR. It is
possible to disable both mechanisms
simultaneously by specifying VI_ALL_MECH.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT_DIS Specified event is already disabled for at least one of
the specified mechanisms.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Description
 This operation disables servicing of an event identified by the eventType parameter for the mechanisms

specified in the mechanism parameter. Specifying VI_ALL_ENABLED_EVENTS for the eventType
parameter allows a session to stop receiving all events. The session can stop receiving queued events by
specifying VI_QUEUE. Applications can stop receiving callback events by specifying either VI_HNDLR or
VI_SUSPEND_HNDLR. Specifying VI_ALL_MECH disables both the queuing and callback mechanisms.

Table 3.7.5 Special Values for eventType Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Disable all events that were previously enabled.

Page 3-42 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 3.7.6 Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Disable this session from receiving the specified event(s)
via the waiting queue.

VI_HNDLR or
VI_SUSPEND_HNDLR

Disable this session from receiving the specified event(s)
via a callback handler or a callback queue.

VI_ALL_MECH Disable this session from receiving the specified event(s)
via any mechanism.

 Notice that any combination of VISA-defined values for different parameters of the operation is also
supported.

Related Items
 See the viEventHandler() prototype for its parameter description. Also see the viInstallHandler()

and viUninstallHandler() descriptions for information about installing and uninstalling event
handlers. Refer to event descriptions for context structure definitions.

Implementation Requirements

RULE 3.7.18
 IF a request to disable an event handling mechanism is made for a session, THEN the events pending or

queued in the session SHALL remain pending or queued, respectively, in the session.

OBSERVATION 3.7.11
 Note that viDisableEvent() prevents new event occurrences from being added to the queue(s).

However, event occurrences already existing in the queue(s) are not discarded.

Section 3: VISA Resource Template Page 3-43

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.7.3.3 viDiscardEvents(vi, eventType, mechanism)

Purpose
 Discard event occurrences for specified event types and mechanisms in a session.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

mechanism IN ViUInt16 Specifies the mechanisms for which the
events are to be discarded. The VI_QUEUE
value is specified for the queuing mechanism
and the VI_SUSPEND_HNDLR value is
specified for the pending events in the
callback mechanism. It is possible to specify
both mechanisms simultaneously by
specifying VI_ALL_MECH.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was
empty.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_MECH Invalid mechanism specified.

Description
 This operation discards all pending occurrences of the specified event types and mechanisms from the

specified session. The information about all the event occurrences that have not yet been handled is
discarded. This operation is useful to remove event occurrences that an application no longer needs.

Page 3-44 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 3.7.7 Special Values for eventType Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS Discard events of every type that is enabled.

Table 3.7.8 Special Values for mechanism Parameter

Value Action Description

VI_QUEUE Discard the specified event(s) from the waiting queue.

VI_SUSPEND_HNDLR Discard the specified event(s) from the callback queue.

VI_ALL_MECH Discard the specified event(s) from all mechanisms.

 Notice that any combination of VISA-defined values for different parameters of the operation is also

supported.

Related Items
 Refer to the event handling mechanism.

Implementation Requirements

OBSERVATION 3.7.12
 The event occurrences discarded by applications are not available to a session at a later time. This

operation causes loss of event occurrences.

OBSERVATION 3.7.13
 The viDiscardEvents() operation does not apply to event contexts that have already been delivered to

the application.

Section 3: VISA Resource Template Page 3-45

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

3.7.3.4 viWaitOnEvent(vi, inEventType, timeout, outEventType, outContext)

Purpose
 Wait for an occurrence of the specified event for a given session.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

inEventType IN ViEventType Logical identifier of the event(s) to wait
for.

timeout IN ViUInt32 Absolute time period in time units that the
resource shall wait for a specified event to
occur before returning the time elapsed
error. The time unit is in milliseconds.

outEventType OUT ViEventType Logical identifier of the event actually
received.

outContext OUT ViEvent A handle specifying the unique occurrence
of an event.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event
notification. There is still at least one more event
occurrence of the type specified by inEventType
available for this session.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_TMO Specified event did not occur within the specified time
period.

VI_ERROR_NENABLED The session must be enabled for events of the specified
type in order to receive them.

Description
 The viWaitOnEvent() operation suspends execution of a thread of application and waits for an event

inEventType for a time period not to exceed that specified by timeout. Refer to individual event
descriptions for context definitions. If the specified inEventType is VI_ALL_ENABLED_EVENTS, the

Page 3-46 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

operation waits for any event that is enabled for the given session. If the specified timeout value is
VI_TMO_INFINITE, the operation is suspended indefinitely.

Table 3.7.9 Special Values for outEventType Parameter

Value Action Description

VI_NULL Do not return the type of the event.

Table 3.7.10 Special Values for outContext Parameter

Value Action Description

VI_NULL Do not return an event context.

Related Items
 Refer to the overview of this section for more information on event handling. Also refer to the event

descriptions in Section 5.

Implementation Requirements

RULE 3.7.19
 IF the value VI_TMO_INFINITE is specified in the timeout parameter of viWaitOnEvent(), THEN the

execution thread SHALL be suspended indefinitely to wait for an occurrence of an event.

RULE 3.7.20
 IF the value VI_TMO_IMMEDIATE is specified in the timeout parameter of viWaitOnEvent(), THEN

application execution SHALL NOT be suspended.

OBSERVATION 3.7.14
 Notice that this operation can be used to dequeue events from an event queue by setting the timeout value

to VI_TMO_IMMEDIATE.

OBSERVATION 3.7.15
 viWaitOnEvent() removes the specified event from the event queue if one that matches the type is

available. The process of dequeuing makes an additional space available in the queue for events of the
same type.

OBSERVATION 3.7.16
 A user of VISA must call viEnableEvent() to enable the reception of events of the specified type before

calling viWaitOnEvent(). viWaitOnEvent() does not perform any enabling or disabling of event
reception.

RULE 3.7.21
 viWaitOnEvent() SHALL dequeue events pending in the queue regardless of the enabled state of

reception of events.

RULE 3.7.22

IF the value VI_NULL is specified in the outContext parameter of viWaitOnEvent(), AND the return
value is successful, THEN the VISA system SHALL automatically invoke viClose() on the event
context rather than returning it to the application.

Section 3: VISA Resource Template Page 3-47

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

OBSERVATION 3.7.17
The outEventType and outContext parameters to the viWaitOnEvent() operation are optional. This
can be used if the event type is known from the inEventType parameter, or if the eventContext is not
needed to retrieve additional information.

RULE 3.7.23

IF a session has at least one event of the requested type in its queue, AND the requested event type has
been disabled since the arrival of the last event, THEN calling viWaitOnEvent SHALL return a
success code AND SHALL NOT return VI_ERROR_NENABLED.

Page 3-48 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7.3.5 viInstallHandler(vi, eventType, handler, userHandle)

Purpose
 Install handlers for event callbacks.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a handler to
be installed by a client application.

userHandle IN ViAddr A value specified by an application that can
be used for identifying handlers uniquely for
an event type.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler installed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED The handler was not installed. This may be returned if
an application attempts to install multiple handlers for
the same event on the same session.

Description
 This operation allows applications to install handlers on sessions. The handler specified in the handler

parameter is installed along with previously installed handlers for the specified event. Applications can
specify a value in the userHandle parameter that is passed to the handler on its invocation. VISA
identifies handlers uniquely using the handler reference and this value.

Related Items
 See the viEventHandler() description for information.

Section 3: VISA Resource Template Page 3-49

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

RULE 3.7.24
 IF the value VI_ANY_HNDLR is passed as the handler parameter to viInstallHandler(), THEN the

operation SHALL return the error VI_ERROR_INV_HNDLR_REF.

RULE 3.7.25
 Every VISA implementation that returns a value greater than 00100100h for the

VI_ATTR_RSRC_SPEC_VERSION attribute SHALL support multiple handlers per event type per session.

OBSERVATION 3.7.18
 Previous versions of VISA (prior to Version 2.0) allowed only a single handler per event type per session.

Page 3-50 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7.3.6 viUninstallHandler(vi, eventType, handler, userHandle)

Purpose
 Uninstall handlers for events.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valid reference to a handler to
be uninstalled by a client application.

userHandle IN ViAddr A value specified by an application that can
be used for identifying handlers uniquely in a
session for an event.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handler successfully uninstalled.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR_REF Either the specified handler reference or the user
context value (or both) does not match any installed
handler.

VI_ERROR_HNDLR_NINSTALLED A handler is not currently installed for the specified
event.

Description
 This operation allows client applications to uninstall handlers for events on sessions. Applications should

also specify the value in the userHandle parameter that was passed while installing the handler. VISA
identifies handlers uniquely using the handler reference and this value. All the handlers, for which the
handler reference and the value matches, are uninstalled. The following tables list all the VISA-defined
values and corresponding actions of uninstalling handlers.

Section 3: VISA Resource Template Page 3-51

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 3.7.11 Special Values for handler Parameter

Value Action Description

VI_ANY_HNDLR Uninstall all the handlers with the matching value in the
userHandle parameter.

Related Items
 See the viEventHandler() description for its parameter description. Also see the viEnableEvent()

description for information about enabling different event handling mechanisms. Refer to individual event
descriptions for context definitions.

Implementation Requirements

RULE 3.7.26
 IF no handler is installed for an event type as a result of this operation AND a session is enabled for the

callback mechanism in the VI_HNDLR mode, THEN the callback mechanism for the event type SHALL be
disabled for the session before this operation completes.

OBSERVATION 3.7.19
 The userHandle value is used by the resource to uniquely identify the handlers along with the handler

reference. Applications can use this value to process an event differently based on the value returned as a
parameter of the handler.

Page 3-52 Section 3: VISA Resource Template

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

3.7.3.7 viEventHandler(vi, eventType, context, userHandle)

Purpose
 Event service handler procedure prototype.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

context IN ViEvent A handle specifying the unique occurrence of
an event.

userHandle IN ViAddr A value specified by an application that can
be used for identifying handlers uniquely in a
session for an event.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Event handled successfully.

VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any other
handlers on this session for this event.

Description
 This user handle is called whenever a session receives an event and is enabled for handling events in the

VI_HNDLR mode. The handler services the event and returns VI_SUCCESS on completion. Because each
event type defines its own context in terms of attributes, refer to the appropriate event definition to
determine which attributes can be retrieved using the context parameter.

Related Items
 Refer to the overview of this section for more information on event handling and exception handling, and

also to the event descriptions in Section 5.

Implementation Requirements

RULE 3.7.27
 The VISA system SHALL automatically invoke the viClose() operation on the event context when a

user handler returns.

OBSERVATION 3.7.20

Because the event context must still be valid after the user handler returns (so that VISA can free it up), an
application should not invoke the viClose() operation on an event context passed to a user handler.

OBSERVATION 3.7.21
 If the user handler will not return to VISA, the application should call viClose() on the event context to

manually delete the event object. This may occur when a handler throws a C++ exception in response to a
VISA exception event. Note that this is an advanced case, so the previous observation applies in most cases.

Section 3: VISA Resource Template Page 3-53

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

OBSERVATION 3.7.22
Normally, an application should return VI_SUCCESS from all callback handlers. If a specific handler does
not want other handlers to be invoked for the given event for the given session, it should return
VI_SUCCESS_NCHAIN. No return value from a handler on one session will affect callbacks on other
sessions. Future versions of VISA (or specific implementations of VISA) may take actions based on other
return values, so a user should return VI_SUCCESS from handlers unless there is a specific reason to do
otherwise.

Section 4: VISA Resource Management Page 4-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 4 VISA Resource Management

This section describes the mechanisms available in VISA to control and manage resources. This includes,
but is not limited to, the assignment of unique resource addresses, unique resource IDs, and operation
invocation. Much of the work is done by the VISA Resource Manager.

The VISA Resource Manager is a resource like any other resource in the system. As such it derives its
interface from the VISA Template. In addition, the VISA Resource Manager resource provides
connectivity to all of the VISA resources registered with it. It gives applications control and access to
individual resources and provides the services described as follows. The VISA Resource Manager relies on
the resources available to it to service requests from the applications and other resources requiring service.

The VISA Resource Manager resource provides basic services to applications that include searching for
resources, and the ability to open sessions to these resources. A summary of these services for VISA is
presented below:

• Access
 The VISA Resource Manager allows the opening of sessions to resources established on request by

applications. Applications can request this service using viOpen(). The system has responsibility of
freeing up all the associated system resources whenever an application closes the session or becomes
dysfunctional.

• Search
 These services are used to find a resource in order to establish a communication link to it. The search

is based on a description string. Instead of locating and searching for individual resources, the VISA
Resource Manager searches for resources associated with an interface. Applications can request this
service by using the viFindRsrc() and viFindNext() operations.

4.1 Organization of Resources

The VISA Resource Manager provides access to all of the resources that are registered with it. It is
therefore at the root of a subsystem of connected resources. Currently, one such entity is available by
default to a VISA application after initialization—the Default Resource Manager. This identifier is used
when opening resources, finding available resources, and performing other operations at the resource level.

RULE 4.1.1

A VISA system SHALL make a Default Resource Manager resource available to the rest of the system.

RULE 4.1.2

A session to the Default Resource Manager resource SHALL be returned from the viOpenDefaultRM()
function.

Page 4-2 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.2 VISA Resource Manager Interface Overview

This section summarizes the interface that each VISA implementation must incorporate. The different
attributes and operations are described in detail in subsequent sections.

4.2.1 VISA Resource Manager Attributes

There are no attributes defined in the VISA Resource Manager resource in addition to those defined in the
VISA Resource Template.

RULE 4.2.1
The value of the attribute VI_ATTR_RSRC_NAME for the Default Resource Manager SHALL be "", the
empty string.

RULE 4.2.2

The value of the attribute VI_ATTR_RM_SESSION for the Default Resource Manager SHALL be
VI_NULL.

4.2.2 VISA Resource Manager Functions

viOpenDefaultRM(sesn)

RULE 4.2.3

Every VISA Resource Manager resource SHALL implement the following function:
viOpenDefaultRM().

4.2.3 VISA Resource Manager Operations

viFindRsrc(sesn, expr, findList, retcnt, instrDesc)
viFindNext(findList, instrDesc)
viOpen(sesn, rsrcName, accessMode, timeout, vi)
viParseRsrc(sesn, rsrcName, intfType, intfNum)
viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,

unaliasedExpandedRsrcName, aliasIfExists)

RULE 4.2.4

Every VISA Resource Manager resource SHALL implement the following operations: viFindRsrc(),
viFindNext(), viOpen(), viParseRsrc(), and viParseRsrcEx().

Section 4: VISA Resource Management Page 4-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

4.3 Access Services

The VISA Resource Manager provides facilities to create sessions to resources. viOpenDefaultRM() is
used by an application to get access to the default Resource Manager. viOpen() is used to get access to a
resource through a session. In order to open a session to a device resource or any other type of resource
with VISA, it is essential to be able to uniquely identify a resource in the system. The Address String
defined in the following section is the mechanism by which the resource must be uniquely identified.

4.3.1 Address String

An address string must uniquely identify a VISA resource. The address string is used in viOpen().

4.3.1.1 Address String Grammar

The grammar for the Address String is shown in Table 4.3.1. Optional string segments are shown in square
brackets ([]).

Table 4.3.1 Explanation of Address String Grammar

Interface Grammar

VXI VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI logical address]::BACKPLANE

VXI VXI[board]::SERVANT

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI logical address]::BACKPLANE

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB GPIB[board]::SERVANT

ASRL ASRL[board][::INSTR]

TCPIP TCPIP[board][::LAN device name]::SERVANT

TCPIP TCPIP[board]::host address[::LAN device name][::INSTR]

TCPIP TCPIP[board]::host address::port::SOCKET

USB USB[board]::manufacturer ID::model code::serial number[::USB interface
number][::INSTR]

PXI PXI[bus]::device[::function][::INSTR]

PXI PXI[interface]::bus-device[.function][::INSTR]

PXI PXI[interface]::CHASSISchassis::SLOTslot[::FUNCfunction][::INSTR]

PXI PXI[interface]::MEMACC

Page 4-4 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

The VXI keyword is used for VXI instruments via either embedded or MXIbus controllers. The GPIB-VXI
keyword is used for a GPIB-VXI controller. The GPIB keyword can be used to establish communication
with a GPIB device. The ASRL keyword is used to establish communication with an asynchronous serial
(such as RS-232) device. The TCPIP keyword is used to establish communication with Ethernet
instruments. The USB keyword is used to establish communication with USB instruments.

Resources classes, including INSTR (instrument control), are discussed in Section 5.

The default value for optional string segments is shown below.

Optional String Segment Default Value

board 0

GPIB secondary address none

LAN device name inst0

USB interface number lowest numbered
relevant interface

PCI function number 0

RULE 4.3.1

The VISA resource string for a USB INSTR SHALL use hexadecimal digits for the manufacturer ID and
model code. Specifically, the new variables must be present in “0xXXXX” format.

RULE 4.3.2

In a system where all PCI devices are accessible through a single configuration address space, the interface
parameter SHALL be zero (0) for all resources.

In the PXI INSTR strings, the bus, device, and function parameters refer to the PCI bus number, PCI device number,
and PCI function number that would be used to access the resource in PCI configuration space. The chassis and slot
parameters correspond to the chassis number and slot number attributes of the resource.

Notice that the address string for a PXI INSTR resource has three acceptable formats.

RULE 4.3.3

A VISA implementation that supports PXI INSTR resources SHALL support all defined PXI INSTR
string formats.

OBSERVATION 4.3.1

The VISA resource string for a single-function device on bus zero (0) is identical in both formats for PXI
INSTR resources.

OBSERVATION 4.3.2

The Bus/device/function legacy string format does not allow for multiple PXI systems with separate
address spaces. Although PCI-based systems typically have a single address space today, there may be a
need for multiple address spaces in the future.

Section 4: VISA Resource Management Page 4-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 4.3.2 Examples of Address Strings

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface
VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI
controlled VXI system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

ASRL1::INSTR A serial device located on port 1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface
number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI
system, which is interface 0.

GPIB-VXI2::BACKPLANE Mainframe resource for default chassis on
GPIB-VXI interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

TCPIP0::1.2.3.4::999::
SOCKET

Raw TCP/IP access to port 999 at the specified
address.

TCPIP::devicename.
company.com::INSTR

A TCP/IP device using VXI-11 located at the
specified address. This uses the default LAN Device
Name of inst0.

USB::0x1234::0x5678::A
22-5::INSTR

A USB Test & Measurement class device with
manufacturer ID 0x1234, model code 0x5678, and
serial number A22-5. This uses the device’s first
available USBTMC interface. This is usually
number 0.

PXI0::3-18::INSTR PXI device 18 on bus 3.

PXI0::3-18.2::INSTR Function 2 on PXI device 18 on bus 3.

PXI0::21::INSTR PXI device 21 on bus 0.

PXI0::CHASSIS1::SLOT4:
:INSTR

PXI device in slot 4 of chassis 1.

PXI0::MEMACC Access to system controller memory available to
devices in the PXI system.

Page 4-6 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.3.2 System Configuration

Although the VISA specification describes certain default values for an implementation, it is valid for a
VISA implementation to allow a user to change various settings on a system via some external
configuration utility. Such a utility is neither defined nor mandated by this VISA specification. Several
optional return values are defined by the VISA Resource Manager, but these may not apply to all VISA
implementations.

PERMISSION 4.3.1

A VISA implementation MAY provide an external configuration utility.

RULE 4.3.4

A VISA implementation that supports PXI INSTR resources SHALL provide a tool for registering
modules using the module.ini files specified in the PXI Software Specification. The tool SHALL
provide a mechanism for registering those devices in a programmatic or scriptable manner.

RECOMMENDATION 4.3.1

A VISA implementation that supports PXI INSTR resources should provide an interactive tool for
registering modules that does not require a module.ini file.

OBSERVATION 4.3.3

PXI end users will first install VISA, then use tools provided with the VISA implementation to register the
module description file with the operating system, then install the hardware. For example, on Microsoft
Windows operating systems, VISA would read the module description and generate a Windows Setup
Information (.inf) file that the operating system would then use to identify the hardware. Installing the
software before the hardware ensures that the information in the module description file is available to the
operating system when it needs to identify the hardware.

Section 4: VISA Resource Management Page 4-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

4.3.3 Access Functions and Operations

 viOpenDefaultRM(sesn)
 viOpen(sesn, rsrcName, accessMode, timeout, sesn)
 viParseRsrc(sesn, rsrcName, intfType, intfNum)
 viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,

unaliasedExpandedRsrcName, aliasIfExists)

Page 4-8 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.3.3.1 viOpenDefaultRM(sesn)

Purpose
 Return a session to the Default Resource Manager resource.

Parameter

Name Direction Type Description

sesn OUT ViSession Unique logical identifier to a Default
Resource Manager session.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session to the Default Resource Manager resource
created successfully.

Error Codes Description

VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.

VI_ERROR_ALLOC Insufficient system resources to create a session to the
Default Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is
corrupt or does not exist.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located
or loaded.

Description
 This function must be called before any VISA operations can be invoked. The first call to this function

initializes the VISA system, including the Default Resource Manager resource, and also returns a session
to that resource. Subsequent calls to this function return unique sessions to the same Default Resource
Manager resource.

Related Items
 See also viOpen(), viFindRsrc().

Implementation Requirements

RULE 4.3.5
 The viOpenDefaultRM() function SHALL be invoked before any operation in VISA.

RULE 4.3.6
 Repetitive calls to the viOpenDefaultRM() function SHALL return new and unique sessions to the

Default Resource Manager.

Section 4: VISA Resource Management Page 4-9

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 4.3.7
 IF the viClose() operation is invoked on a session returned from viOpenDefaultRM(), THEN all

VISA sessions opened with the corresponding Default Resource Manager session SHALL be closed.

RULE 4.3.8
 IF the viClose() operation is invoked on a session returned from viOpenDefaultRM(), THEN all

VISA system resources associated with the corresponding Default Resource Manager session SHALL be
deallocated.

RULE 4.3.9
 For compatibility with earlier versions of this specification, a VISA system SHALL provide the function

viGetDefaultRM() with the same signature and semantics as viOpenDefaultRM().

OBSERVATION 4.3.4
 The function viOpenDefaultRM() renders the viGetDefaultRM() function obsolete. The function

name has changed to match the semantics of the action that the function performs.

Page 4-10 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.3.3.2 viOpen(sesn, rsrcName, accessMode, timeout, vi)

Purpose
 Open a session to the specified device.

Parameters

Name Direction Type Description

sesn IN ViSession Resource Manager session (should always be
the Default Resource Manager for VISA
returned from viOpenDefaultRM()).

rsrcName IN ViRsrc Unique symbolic name of a resource.

accessMode IN ViAccessMode Specifies the modes by which the resource is
to be accessed. The value
VI_EXCLUSIVE_LOCK is used to acquire an
exclusive lock immediately upon opening a
session; if a lock cannot be acquired, the
session is closed and an error is returned. The
value VI_LOAD_CONFIG is used to configure
attributes to values specified by some external
configuration utility; if this value is not used,
the session uses the default values provided
by this specification. Multiple access modes
can be used simultaneously by specifying a
"bit-wise OR" of the above values.

timeout IN ViUInt32 If the accessMode parameter requests a lock,
then this parameter specifies the absolute time
period (in milliseconds) that the resource
waits to get unlocked before this operation
returns an error; otherwise, this parameter is
ignored.

vi OUT ViSession Unique logical identifier reference to a
session.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Session opened successfully.

VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the
specified address is not responding.

VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or
could not be loaded; using VISA-specified defaults.

Section 4: VISA Resource Management Page 4-11

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For
VISA, this operation is supported only by the Default
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently
access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because the
resource is already locked with a lock type
incompatible with the lock requested.

VI_ERROR_TMO A session to the resource could not be obtained within
the specified timeout period.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface
number is not configured.

Description
 This operation opens a session to the specified device. It returns a session identifier that can be used to call

any other operations of that device.

Related Items
 See also viClose().

Implementation Requirements

RULE 4.3.10
 A VISA implementation SHALL support the access mode of opening a session with

VI_EXCLUSIVE_LOCK.

RULE 4.3.11
 IF a VISA implementation does not provide an external configuration utility to specify the attribute values

AND viOpen() is invoked with the accessMode value set to VI_LOAD_CONFIG, AND the operation is
successful, THEN the operation SHALL return VI_WARN_CONFIG_NLOADED.

OBSERVATION 4.3.5
 The VI_LOAD_CONFIG value provides a way to create a session with attribute values initialized other than

the default values. An optional, external configuration utility is required to support this option.

Page 4-12 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 4.3.12
 A VISA implementation of viOpen() SHALL use a case-insensitive compare function when matching

resource names against the name specified in rsrcName.

OBSERVATION 4.3.6
 Calling viOpen() with "VXI::1::INSTR" will open the same resource as invoking it with

"vxi::1::instr".

Section 4: VISA Resource Management Page 4-13

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

4.3.3.3 viParseRsrc(sesn, rsrcName, intfType, intfNum)

Purpose
 Parse a resource string to get the interface information.

Parameters

Name Direction Type Description

sesn IN ViSession Resource Manager session (should always be
the Default Resource Manager for VISA
returned from viOpenDefaultRM()).

rsrcName IN ViRsrc Unique symbolic name of a resource.

intfType OUT ViUInt16 Interface type of the given resource string.

intfNum OUT ViUInt16 Board number of the interface of the given
resource string.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Resource string is valid.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For
VISA, this operation is supported only by the Default
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the string.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface
number is not configured.

Description
 This operation parses a resource string to verify its validity. It should succeed for all strings returned by

viFindRsrc() and recognized by viOpen(). This operation is useful if you want to know what interface
a given resource descriptor would use without actually opening a session to it.

Page 4-14 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

 The values returned in intfType and intfNum correspond to the attributes VI_ATTR_INTF_TYPE and
VI_ATTR_INTF_NUM. These values would be the same if a user opened that resource with viOpen() and
queried the attributes with viGetAttribute().

Related Items
 See also viFindRsrc(), viOpen(), and viParseRsrcEx().

Implementation Requirements

RULE 4.3.13

IF a VISA implementation recognizes aliases in viOpen(), THEN it SHALL recognize those same
aliases in viParseRsrc().

RECOMMENDATION 4.3.2

A VISA implementation should not perform any I/O to the specified resource during this operation. The
recommended implementation of viParseRsrc() will return information determined solely from the
resource string and any static configuration information (e.g., .INI files or the Registry).

RULE 4.3.14

A VISA implementation of viParseRsrc() SHALL use a case-insensitive compare function when
matching resource names against the name specified in rsrcName.

OBSERVATION 4.3.7
Calling viParseRsrc() with "VXI::1::INSTR" will produce the same results as invoking it with
"vxi::1::instr".

Section 4: VISA Resource Management Page 4-15

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

4.3.3.4 viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliasIfExists)

Purpose
 Parse a resource string to get extended interface information.

Parameters

Name Direction Type Description

sesn IN ViSession Resource Manager session (should always be
the Default Resource Manager for VISA
returned from viOpenDefaultRM()).

rsrcName IN ViRsrc Unique symbolic name of a resource.

intfType OUT ViUInt16 Interface type of the given resource string.

intfNum OUT ViUInt16 Board number of the interface of the given
resource string.

rsrcClass OUT ViString Specifies the resource class (for example,
“INSTR”) of the given resource string, as
defined in Section 5.

Unaliased
Expanded
RsrcName

OUT ViString This is the expanded version of the given
resource string. The format should be similar
to the VISA-defined canonical resource name.

aliasIf
Exists

OUT ViString Specifies the user-defined alias for the given
resource string, if a VISA implementation
allows aliases and an alias exists for the given
resource string.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Resource string is valid.

VI_WARN_EXT_FUNC_NIMPL The operation succeeded, but a lower level driver did
not implement the extended functionality.

Page 4-16 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation. For
VISA, this operation is supported only by the Default
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the string.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be located
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interface
number is not configured.

Description
 This operation parses a resource string to verify its validity. It should succeed for all strings returned by

viFindRsrc() and recognized by viOpen(). This operation is useful if you want to know what
interface a given resource descriptor would use without actually opening a session to it.

 The values returned in intfType, intfNum, and rsrcClass correspond to the attributes

VI_ATTR_INTF_TYPE, VI_ATTR_INTF_NUM, and VI_ATTR_RSRC_CLASS. These values would be
the same if a user opened that resource with viOpen() and queried the attributes with
viGetAttribute().

 The value returned in unaliasedExpandedRsrcName should in most cases be identical to the VISA-

defined canonical resource name. However, there may be cases where the canonical name includes
information that the driver may not know until the resource has actually been opened. In these cases, the
value returned in this parameter must be semantically similar.

 The value returned in aliasIfExists allows programmatic access to user-defined aliases. If a VISA

implementation does not implement aliases, the return value must be an empty string. If a VISA
implementation allows multiple aliases for a single resource, then the implementation must pick one alias
(in an implementation-defined manner) and return it in this parameter.

Table 4.3.3 Special Values for rsrcClass Parameter

Value Action Description

VI_NULL Do not return the resource class.

Table 4.3.4 Special Values for unaliasedExpandedRsrcName Parameter

Value Action Description

VI_NULL Do not return the full resource name.

Section 4: VISA Resource Management Page 4-17

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 4.3.5 Special Values for aliasIfExists Parameter

Value Action Description

VI_NULL Do not return the alias.

Related Items
 See also viFindRsrc(), viOpen(), and viParseRsrc().

Implementation Requirements

RULE 4.3.15

IF a VISA implementation recognizes aliases in viOpen(), THEN it SHALL recognize those same
aliases in viParseRsrcEx().

RECOMMENDATION 4.3.3

A VISA implementation should not perform any I/O to the specified resource during this operation. The
recommended implementation of viParseRsrcEx() will return information determined solely from the
resource string and any static configuration information (e.g., .INI files or the Registry).

RULE 4.3.16

A VISA implementation of viParseRsrcEx() SHALL use a case-insensitive compare function when
matching resource names against the name specified in rsrcName.

OBSERVATION 4.3.8
Calling viParseRsrcEx() with "VXI::1::INSTR" will produce the same results as invoking it with
"vxi::1::instr".

OBSERVATION 4.3.9

Calling viParseRsrc() with "VXI::BACKPLANE" may result in unaliasedExpandedRsrcName
containing either "VXI0::BACKPLANE" or "VXI0::0::BACKPLANE". This is because the driver may not
know the mainframe number until the resource is actually opened.

RULE 4.3.17

IF a VISA implementation of viParseRsrcEx() does not support aliases, AND the aliasIfExists
parameter is not NULL, THEN the output value of aliasIfExists SHALL be an empty string.

RULE 4.3.18

IF a VISA implementation of viParseRsrcEx() supports multiple aliases per resource string, AND
multiple aliases exist for the given rsrcName, AND the aliasIfExists parameter is not NULL, THEN
the VISA implementation SHALL use one alias as the output value of aliasIfExists.

RECOMMENDATION 4.3.4

A VISA implementation should not allow the colon character (“:”) in user-defined aliases.

PERMISSION 4.3.2

A VISA implementation MAY allow the colon character (“:”) in user-defined aliases.

OBSERVATION 4.3.10

The intent of disallowing colons in aliases is that the VISA specification reserves that character for
definition of all future canonical resource names. If a VISA implementation allows the user to enter a

Page 4-18 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

name that could later be defined as an actual resource name, then the behavior of such an alias could
change in a way that users might not expect.

OBSERVATION 4.3.11

There are valid scenarios where a VISA implementation may want to allow colons in aliases. One such
scenario is allowing one resource name to intentionally masquerade as another. However, an
implementation that allows such behavior should take care to avoid user confusion over which resource is
actually accessed when such an alias is defined.

RULE 4.3.19

The function viParseRsrcEx SHALL return unaliasedExpandedRsrcName in the format specified in
this document.

RULE 4.3.20
A VISA implementation SHALL return PXI INSTR resource strings from viParseRsrc that include the
function number, regardless of whether the PXI instrument has one or multiple functions.

RULE 4.3.21
A VISA implementation SHALL return USB INSTR resource strings from viParseRsrc that include the
interface number, regardless of whether the USB instrument has one or multiple interfaces.

Section 4: VISA Resource Management Page 4-19

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

4.4 Search Services

VISA provides the ability to search and locate resources regardless of where the resource is residing. To
be able to locate a resource in a VISA system, it is essential to be able to uniquely identify the given
resource throughout the system. As described in Section 4.3, Access Services, a resource string is used for
uniquely identifying a given resource in the system. In order to specify different variations of the resource
strings to search for, the VISA Resource Manager allows the use of a regular expression to describe them.

4.4.1 Resource Regular Expression

A regular expression is a string consisting of ordinary characters as well as special characters. A regular
expression is used for specifying patterns to match in a given string. Given a string and a regular
expression, one can determine if the string matches the regular expression. A regular expression can also
be used as a search criterion. Given a regular expression and a list of strings, one can match the regular
expression against each string and return a list of strings that match the regular expression.

Tables 4.4.1 and 4.4.2 define the special characters and literals used in the grammar rules defined in this
section and other sections of this document.

Table 4.4.1 Special Characters

Character Description Symbol

NL / LF New Line / Line Feed "\n"

HT Horizontal Tab "\t"

CR Carriage Return "\r"

FF Form Feed "\f"

SP Blank Space " "

OBSERVATION 4.4.1
 The definitions of character constants do not require any specific implementation. The implementor

should follow language or industry standards as appropriate.

Table 4.4.2 Literals

Literal Definition

white_space NL, LF, HT, CR, FF, SP

digit "0","1".."9"

letter "a","b".."z", "A","B".."Z"

hex_digit "0","1".."9", "a","b".."f",
"A","B".."F"

underscore "_"

Page 4-20 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 4.4.3 Regular Expression Characters and Operators

Special Characters
and Operators

Meaning

? Matches any one character.
\ Makes the character that follows it an ordinary character

instead of special character. For example, when a
question mark follows a backslash (i.e. '\?'), it
matches the '?' character instead of any one character.

[list] Matches any one character from the enclosed list. A
hyphen can be used to match a range of characters.

[^list] Matches any character not in the enclosed list. A
hyphen can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding
character or expression.

+ Matches 1 or more occurrences of the preceding
character or expression.

exp|exp Matches either the preceding or following expression.
The or operator | matches the entire expression that
precedes or follows it and not just the character that
precedes or follows it. For example, VXI|GPIB means
(VXI)|(GPIB), not VXI(I|G)PIB.

(exp) Grouping characters or expressions.

RULE 4.4.1
 The grouping operator () in a regular expression SHALL have the highest precedence.

RULE 4.4.2
 The + and * operators in a regular expression SHALL have the next highest precedence after the grouping

operator.

RULE 4.4.3
 The or operator | in a regular expression SHALL have the lowest precedence.

Table 4.4.4 Examples

Regular Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR,
GPIB1::1::1::INSTR, and
GPIB-VXI1::8::INSTR.

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR.

GPIB[0-9]::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB12::8::INSTR.

Section 4: VISA Resource Management Page 4-21

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 4.4.4 Examples (continued)

Regular Expression Sample Matches

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not
GPIB0::2::INSTR or GPIB12::8::INSTR.

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR.

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not
VXI0::1::INSTR.

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and
GPIB-VXI0::1::INSTR.

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not
VXI0::5::INSTR.

ASRL1+::INSTR Matches ASRL1::INSTR and
ASRL11::INSTR but not ASRL2::INSTR.

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and
VXI0::3::INSTR but not ASRL2::INSTR.

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and
VXI0::1::INSTR.

?*INSTR Matches all INSTR (device) resources.
?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and

GPIB-VXI1::MEMACC.
VXI0::?* Matches VXI0::1::INSTR,

VXI0::2::INSTR, and VXI0::MEMACC.
?* Matches all resources.

OBSERVATION 4.4.2
 Because VISA interprets strings as regular expressions, notice that the string GPIB?*INSTR applies to

both GPIB and GPIB-VXI resources.

4.4.2 Search Operations

viFindRsrc(sesn, expr, findList, retcnt, instrDesc)
viFindNext(findList, instrDesc)

OBSERVATION 4.4.3
 For VISA, the local controller for VXI and GPIB-VXI interfaces will appear in the list of resources to find.

The main purpose of this is to be able to access any shared memory that the controller exports as a VXI
resource.

OBSERVATION 4.4.4
 The non-immediate servants will also appear in the list of devices to find. For these devices, the attribute

VI_ATTR_IMMEDIATE_SERV will be set to VI_FALSE.

Page 4-22 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.4.2.1 viFindRsrc(sesn, expr, findList, retcnt, instrDesc)

Purpose
 Query a VISA system to locate the resources associated with a specified interface.

Parameters

Name Direction Type Description

sesn IN ViSession Resource Manager session (should always be
the Default Resource Manager for VISA
returned from viOpenDefaultRM()).

expr IN ViString This is a regular expression followed by an
optional logical expression. The grammar for
this expression is given below.

findList OUT ViFindList Returns a handle identifying this search
session. This handle will be used as an input
in viFindNext().

retcnt OUT ViUInt32 Number of matches.

instrDesc OUT ViRsrc Returns a string identifying the location of a
device. Strings can then be passed to
viOpen() to establish a session to the given
device.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

Description
 This operation matches the value specified in the expr parameter with the resources available for a

particular interface. On successful completion, it returns the first resource found in the list and returns a
count to indicate if there were more resources found for the designated interface. This function also returns
a handle to a find list. This handle points to the list of resources and it must be used as an input to
viFindNext(). When this handle is no longer needed, it should be passed to viClose().

Section 4: VISA Resource Management Page 4-23

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 4.4.5 Special Values for findList Parameter

Value Action Description

VI_NULL Do not return a find list handle.

Table 4.4.6 Special Values for retcnt Parameter

Value Action Description

VI_NULL Do not return the number of matches.

 The search criteria specified in the expr parameter has two parts: a regular expression over a resource

string (which is explained later), and an optional logical expression over attribute values. The regular
expression is matched against the resource strings of resources known to the VISA Resource Manager. If
the resource string matches the regular expression, the attribute values of the resource are then matched
against the expression over attribute values. If the match is successful, the resource has met the search
criteria and gets added to the list of resources found.

 The optional attribute expression allows construction of flexible and powerful expressions with the use of

logical ANDs, ORs and NOTs. Equal (==) and unequal (!=) comparators can be used compare attributes
of any type, and in addition, other inequality comparators (>, <, >=, <=) can be used to compare attributes
of numeric type. Only global attributes can be used in the attribute expression.

 The syntax of expr is defined as follows:

Table 4.4.7 Special Characters and their Meaning

Special Character Meaning

&& Logical AND

|| Logical OR

! Logical negation (NOT)

() Parenthesis

expr :=
 regularExpr ['{' attrExpr '}']

attrExpr :=
 attrTerm |
 attrExpr '||' attrTerm

attrTerm :=
 attrFactor |
 attrTerm '&&' attrFactor

attrFactor :=
 '(' attrExpr ')' |
 '!' attrFactor |
 relationExpr

Page 4-24 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

relationExpr :=
 attributeId compareOp numValue |
 attributeId equalityOp stringValue

compareOp :=
 '==' | '!=' | '>' | '<' | '>=' | '<='

equalityOp :=
 '==' | '!='

attributeId :=

 character (character|digit|underscore)*

numValue :=

 digit+ |

 '-' digit+ |

 '0x' hex_digit+ |

 '0X' hex_digit+

stringValue :=
 '"' character* '"'

regularExpr is defined in Section 4.4.1, Resource Regular Expressions.

RULE 4.4.4
 The grouping operator () in a logical expression SHALL have the highest precedence.

RULE 4.4.5
 The not operator ! in a logical expression SHALL have the next highest precedence after the grouping

operator.

RULE 4.4.6
 The or operator || in a logical expression SHALL have the lowest precedence.

Table 4.4.8 Examples

Expr Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR > 0}

Find all GPIB devices that have
secondary addresses greater than 0.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at
9600 baud.

?*VXI?*INSTR{VI_ATTR_MANF_ID == 0xFF6 &&
!(VI_ATTR_VXI_LA == 0 || VI_ATTR_SLOT <=
0)}

Find all VXI instrument resources
whose manufacturer ID is FF6 and
who are not logical address 0, slot 0,
or external controllers.

Related Items
 See viFindNext().

Section 4: VISA Resource Management Page 4-25

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

RULE 4.4.7
 Local attributes SHALL NOT be allowed in the logical expression part of the expr parameter to the

viFindRsrc() operation.

RULE 4.4.8
 IF the value VI_NULL is specified in the findList parameter of viFindRsrc(), AND the return value is

successful, THEN the VISA system SHALL automatically invoke viClose() on the find list handle
rather than returning it to the application.

OBSERVATION 4.4.5
 The findList and retCnt parameters to the viFindRsrc() operation are optional. This can be used if

only the first match is important, and the number of matches is not needed.

RULE 4.4.9
 A VISA implementation of viFindRsrc() SHALL use a case-insensitive compare function when

matching resource names against the regular expression specified in expr.

OBSERVATION 4.4.6
 Calling viFindRsrc() with "VXI?*INSTR" will return the same resources as invoking it with

"vxi?*instr".

PERMISSION 4.4.1

A given implementation of viFindRsrc MAY return strings in formats other than those defined in this
specification.

OBSERVATION 4.4.7
 There are many ways that a vendor may want to return strings from viFindRsrc in an alternate format. One

example is if the vendor has a configuration option to return aliases instead of canonical names. Another
example is if the vendor chooses to omit optional portions of the resource name.

OBSERVATION 4.4.8
 All resource strings returned by viFindRsrc() must be recognized by viParseRsrc() and

viParseRsrcEx() and viOpen(). However, not all resource strings that can be parsed or opened have to
be findable. Within these guidelines, it is acceptable for the exact behavior of viFindRsrc() to be
modifiable through an optional, external configuration utility. For example, it is implementation dependent
which (if any) VISA TCPIP resources a given implementation will return from viFindRsrc().

RULE 4.4.10

A VISA implementation that supports PXI INSTR resources SHALL match and return only one resource
string per PXI INSTR resource.

RULE 4.4.11

VISA implementation that supports PXI INSTR SHALL be capable of returning the bus/device/function
format for the string.

PERMISSION 4.4.2

A VISA implementation that supports PXI INSTR MAY provide configuration options to return other
resource string formats for PXI resources, not limited to those defined in this specification, as long as only
one resource string is returned per PXI resource.

Page 4-26 Section 4: VISA Resource Management

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

4.4.2.2 viFindNext(findList, instrDesc)

Purpose
 Return the next resource found during a previous call to viFindRsrc().

Parameters

Name Direction Type Description

findList IN ViFindList Describes a find list. This parameter must be
created by viFindRsrc().

instrDesc OUT ViRsrc Returns a string identifying the location of a
device. Strings can then be passed to
viOpen() to establish a session to the given
device.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Resource(s) found.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given findList does not support this operation.

VI_ERROR_RSRC_NFOUND There are no more matches.

Description
 This operation returns the next device found in the list created by viFindRsrc(). The list is referenced by

the handle that was returned by viFindRsrc().

Related Items
 See viFindRsrc().

Implementation Requirements

RULE 4.4.12
 The findList passed to viFindNext() SHALL have been returned by viFindRsrc().

Section 5: VISA Resource Classes Page 5-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 5 VISA Resource Classes

The following sections define various resource classes that a complete VISA system, fully compliant with
this specification, should implement. Since not all VISA implementations may implement all resource
classes for all interfaces, the following rules and recommendations specify which classes are required for
which interfaces.

RULE 5.0.1
IF a VISA implementation supports the GPIB interface (VI_INTF_GPIB), THEN it SHALL implement
the resource types INSTR and INTFC.

RECOMMENDATION 5.0.1

If a VISA implementation supports the GPIB interface (VI_INTF_GPIB), it should also implement the
resource type SERVANT.

RULE 5.0.2

IF a VISA implementation supports the VXI interface (VI_INTF_VXI), THEN it SHALL implement the
resource types INSTR and MEMACC.

RECOMMENDATION 5.0.2

If a VISA implementation supports the VXI interface (VI_INTF_VXI), it should also implement the
resource types BACKPLANE and SERVANT.

RULE 5.0.3

IF a VISA implementation supports the GPIB-VXI interface (VI_INTF_GPIB_VXI), THEN it SHALL
implement the resource types INSTR and MEMACC.

RECOMMENDATION 5.0.3

If a VISA implementation supports the GPIB-VXI interface (VI_INTF_GPIB_VXI), it should also
implement the resource type BACKPLANE.

RULE 5.0.4

IF a VISA implementation supports the Serial interface (VI_INTF_ASRL), THEN it SHALL implement
the resource type INSTR.

RULE 5.0.5

IF a VISA implementation supports the TCPIP interface (VI_INTF_TCPIP), THEN it SHALL implement
the resource types INSTR and SOCKET.

RECOMMENDATION 5.0.4

If a VISA implementation supports the TCPIP interface (VI_INTF_TCPIP), it should also implement the
resource type SERVANT.

RULE 5.0.6

IF a VISA implementation supports the USB interface (VI_INTF_USB), THEN it SHALL implement the
resource type INSTR.

RULE 5.0.7

IF a VISA implementation supports the PXI interface (VI_INTF_PXI), THEN it SHALL implement the
resource types INSTR and MEMACC.

Page 5-2 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.1 Instrument Control Resource

This section describes the resource that is provided to encapsulate the various operations of a device
(reading, writing, triggering, and so on). A VISA Instrument Control (INSTR) Resource, like any other
resource, defines the basic operations and attributes of the VISA Resource Template. For example,
modifying the state of an attribute is done via the operation viSetAttribute(), which is defined in the
VISA Resource Template. Although the following resource does not have viSetAttribute() listed in
its operations, it provides the operation because it is defined in the VISA Resource Template. From this
basic set, each resource adds its specific operations and attributes that allow it to perform its dedicated task,
such as sending a string to a message-based device.

5.1.1 INSTR Resource Overview

The INSTR Resource lets a controller interact with the device associated with this resource, by providing
the controller with services to send blocks of data to the device, request blocks of data from the device,
send the device clear command to the device, trigger the device, and find information about the device’s
status. In addition, it allows the controller to access registers on devices that reside on memory-mapped
buses. These services are described in detail in the remainder of this section.

• Basic I/O Services

– The Read Service lets a controller request blocks of data from the device that is associated with this
resource. How the returned data is interpreted depends on how the device has been programmed—for
example, messages, commands, or binary encoded data. The resource receives data in the native mode
of the interface it is associated with. It also permits implementations that provide alternate modes
supported by the interface. Setting the appropriate attribute modifies the data transmittal method and
other features, such as setting the termination character.

– The Write Service lets a controller send blocks of data to the device associated with this resource. The

device can interpret the data as necessary—for example, messages, commands, or binary encoded
data. The resource sends data in the native mode of the interface it is associated with. It also permits
implementations that provide alternate modes supported by the interface. Setting the appropriate
attribute modifies the data transmittal method and other features, such as specifying whether to send
an END indicator with each block of data.

– The Trigger Service provides monitoring and control access to the trigger capabilities of the device

associated with the resource. Assertion of both software and hardware triggers is handled by using the
viAssertTrigger() operation. (See the operation listing for more information.)

– The Status/Service Request Service allows the controller to service requests made by the other service

requesters in a system. In this role of a service provider, it can procure the device status information.
Applications can use the viReadSTB() operation to manually obtain the status information. If the
resource cannot obtain the status information from the requester in the actual timeout period, timeout
is returned.

– The Clear Service lets a controller send the device clear command to the device it is associated with,

as specified by the interface regulations and the type of device. For a GPIB device, this amounts to
sending the IEEE 488.1 SDC (04h) command; for a VXI or MXI device, it amounts to sending the
Word Serial command Clear (FFFFh). The action that the device takes depends on the interface to
which it is connected.

Section 5: VISA Resource Classes Page 5-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

• Formatted I/O Services

– The Formatted I/O Services perform formatted and buffered I/O for devices. A formatted write
operation writes to a buffer, while a formatted read operation reads from a buffer. Buffering improves
system performance by making it possible to transfer large blocks of data to and from devices. The
system provides separate read and write buffers that can be disabled or have their sizes modified by a
user application, via the viSetBuf() operation.

 The following section describes buffer maintenance and buffer flushing issues that are related to

formatted I/O resources. The descriptions apply to all buffered read and buffered write operations. For
example, the viPrintf() description applies equally to other buffered write operations
(viVPrintf() and viBufWrite()). Similarly, the viScanf() description applies to other buffered
read operations (viVScanf() and viBufRead()).

RULE 5.1.1

 All formatted write operations (viPrintf(), viVPrintf(), and viBufWrite()) SHALL use the
same write buffer for a corresponding session.

RULE 5.1.2

 All formatted read operations (viScanf(), viVScanf(), and viBufRead()) SHALL use the same
read buffer for a corresponding session.

RULE 5.1.3
 The write buffer used in the formatted buffered write operations SHALL be unique per session.

RULE 5.1.4
 The read buffer used in the formatted buffered read operations SHALL be unique per session.

RULE 5.1.5
 The write buffer used in the buffered write operation SHALL NOT be same as the read buffer used in

the read operations.

 Although you can explicitly flush the buffers by making a call to viFlush(), the buffers are flushed
implicitly under some conditions. These conditions vary for the viPrintf() and viScanf()
operations.

 Flushing a write buffer immediately sends any queued data to the device. The write buffer is
maintained by the viPrintf() operation. To explicitly flush the write buffer, you can make a call to
the viFlush() operation with a write flag set.

RULE 5.1.6
 The write buffer SHALL be flushed automatically under the following conditions:

• When an END-indicator character is sent.
• When the buffer is full.
• In response to a call to viSetBuf() with the VI_WRITE_BUF flag set.

 Flushing a read buffer discards the data in the read buffer. This guarantees that the next call to a
viScanf() (or related) operation reads data directly from the device rather than from queued data
residing in the read buffer. The read buffer is maintained by the viScanf() operation. To explicitly
flush the read buffer, you can make a call to the viFlush() operation with a read flag set.

 The formatted I/O buffers of a session to a given device are reset whenever that device is cleared. At
such a time, the read and write buffer must be flushed and any ongoing operation through the
read/write port must be aborted.

Page 5-4 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 5.1.7
 An invocation of a viClear() operation on a resource SHALL flush the read buffer and discard the

contents of the write buffers.

• Memory I/O Services

– The High-Level Access Service allows register-level access to devices on interfaces that support direct
memory access, such as the VXIbus, VMEbus, MXIbus, or even VXI or VME devices controlled by a
GPIB-to-VXI device. A resource exists for each interface to which the controller has access. When
dealing with memory accesses, there is a tradeoff between speed and complexity, and between
software overhead and encapsulation. The High-Level Access Service is similar in purpose to the
Low-Level Access Service. The difference between these two services is that the High-Level Access
Service has greater software overhead because it encapsulates most of the code required to perform the
memory access, such as window mapping and error checking. In general, high-level accesses are
slower than low-level accesses, but they encapsulate the operations necessary to perform the access
and are considered safer.

 The High-Level Access Service lets the programmer access memory on the interface bus through
simple operations such as viIn16() and viOut16(). These operations encapsulate the map/unmap
and peek/poke operations found in the Low-Level Access Service. There is no need to explicitly map
the memory to a window.

– The Low-Level Access Service, like the High-Level Access Service, allows register-level access to
devices on interfaces that support direct memory access, such as the VXIbus, VMEbus, MXIbus, or
VME or VXI memory through a system controlled by a GPIB-to-VXI controller. A resource exists for
each interface of this type that the controller has locally. When dealing with memory accesses, there is
a tradeoff between speed and complexity and between software overhead and encapsulation. The Low-
Level Access Service is similar in purpose to the High-Level Access Service. The difference between
these two services is that the Low-Level Access Service increases access speed by removing software
overhead, but requires more programming effort by the user. To decrease the amount of overhead
involved in the memory access, the Low-Level Access Service does not return any error information
in the access operations.

 Before an application can use the Low-Level Access Service on the interface bus, it must map a range
of addresses using the operation viMapAddress(). Although the resource handles the allocation and
operation of the window, the programmer must free the window via viUnmapAddress() when
finished. This makes the window available for the system to reallocate.

RULE 5.1.8
IF an application performs viClose() on a session with memory still mapped, THEN viClose()
SHALL perform an implicit unmapping of the mapped window.

• Shared Memory Services

– The Shared Memory Service allows users to allocate memory on a particular device to be used
exclusively by that session. The viMemAlloc() operation allows such an allocation, by specifying the
size. The space in which the memory is located is that which is exported by the device to a given bus.
The viMemFree() operation allows the user to free memory previously allocated using
viMemAlloc().

RULE 5.1.9
IF an application performs viClose() on a session with shared memory still allocated, THEN
viClose() SHALL perform an implicit freeing up of the allocated region(s).

Section 5: VISA Resource Classes Page 5-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.1.2 INSTR Resource Attributes

Generic INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI

VI_INTF_GPIB

VI_INTF_GPIB_VXI

VI_INTF_ASRL

VI_INTF_PXI

VI_INTF_TCPIP

VI_INTF_USB

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_TRIG_ID R/W* Local ViInt16 VI_TRIG_SW;

VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE

VI_FALSE

* The attribute VI_ATTR_TRIG_ID is R/W (readable and writeable) when the corresponding session is not enabled
to receive trigger events. When the session is enabled to receive trigger events, the attribute VI_ATTR_TRIG_ID
is RO (read only).

Message-Based INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_IO_PROT R/W Local ViUInt16 VI_PROT_NORMAL

VI_PROT_FDC

VI_PROT_HS488

VI_PROT_4882_STRS

VI_PROT_USBTMC_VENDOR

VI_ATTR_RD_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A

VI_ATTR_SEND_END_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_SUPPRESS_END_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

(continues)

Page 5-6 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Message-Based INSTR Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_TERMCHAR R/W Local ViUInt8 0 to FFh
VI_ATTR_TERMCHAR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_WR_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A

GPIB and GPIB-VXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0 to 30

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0 to 31, VI_NO_SEC_ADDR

VI_ATTR_GPIB_READDR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_GPIB_UNADDR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_GPIB_REN_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VXI and GPIB-VXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_MAINFRAME_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

VI_ATTR_MEM_BASE_32 RO Global ViBusAddress N/A

VI_ATTR_MEM_BASE_64 RO Global ViBusAddress64 N/A

VI_ATTR_MEM_SIZE_32 RO Global ViBusSize N/A

VI_ATTR_MEM_SIZE_64 RO Global ViBusSize64 N/A

VI_ATTR_MEM_SPACE RO Global ViUInt16 VI_A16_SPACE

VI_A24_SPACE

VI_A32_SPACE

VI_A64_SPACE

VI_ATTR_VXI_LA RO Global ViInt16 0 to 511

VI_ATTR_CMDR_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

VI_ATTR_IMMEDIATE_SERV RO Global viBoolean VI_TRUE

VI_FALSE

VI_ATTR_FDC_CHNL R/W Local ViUInt16 0 to 7

VI_ATTR_FDC_GEN_SIGNAL_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

 (continues)

Section 5: VISA Resource Classes Page 5-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VXI and GPIB-VXI Specific INSTR Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_FDC_MODE R/W Local ViUInt16 VI_FDC_NORMAL

VI_FDC_STREAM

VI_ATTR_FDC_USE_PAIR R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_SRC_BYTE_ORDER R/W Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

VI_ATTR_DEST_BYTE_ORDER R/W Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

VI_ATTR_WIN_BYTE_ORDER R/W* Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

VI_ATTR_SRC_ACCESS_PRIV R/W Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

VI_D64_NPRIV

VI_D64_PRIV

VI_ATTR_DEST_ACCESS_PRIV R/W Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

VI_D64_NPRIV

VI_D64_PRIV

VI_ATTR_WIN_ACCESS_PRIV R/W* Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

VI_ATTR_VXI_DEV_CLASS RO Global ViUInt16 VI_VXI_CLASS_MEMORY
VI_VXI_CLASS_EXTENDED
VI_VXI_CLASS_MESSAGE
VI_VXI_CLASS_REGISTER
VI_VXI_CLASS_OTHER

VI_ATTR_VXI_TRIG_SUPPORT RO Global ViUInt32 N/A

* For VISA 2.2, the attributes VI_ATTR_WIN_BYTE_ORDER and VI_ATTR_WIN_ACCESS_PRIV are R/W

(readable and writeable) when the corresponding session is not mapped (VI_ATTR_WIN_ACCESS ==
VI_NMAPPED). When the session is mapped, these attributes are RO (read only).

Page 5-8 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

GPIB-VXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0 to FFFFh

ASRL Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_ASRL_AVAIL_NUM RO Global ViUInt32 0 to FFFFFFFFh

VI_ATTR_ASRL_BAUD R/W Global ViUInt32 0 to FFFFFFFFh

VI_ATTR_ASRL_DATA_BITS R/W Global ViUInt16 5 to 8

VI_ATTR_ASRL_PARITY R/W Global ViUInt16 VI_ASRL_PAR_NONE

VI_ASRL_PAR_ODD

VI_ASRL_PAR_EVEN

VI_ASRL_PAR_MARK

VI_ASRL_PAR_SPACE

VI_ATTR_ASRL_STOP_BITS R/W Global ViUInt16 VI_ASRL_STOP_ONE

VI_ASRL_STOP_ONE5

VI_ASRL_STOP_TWO

VI_ATTR_ASRL_FLOW_CNTRL R/W Global ViUInt16 VI_ASRL_FLOW_NONE

VI_ASRL_FLOW_XON_XOFF

VI_ASRL_FLOW_RTS_CTS

VI_ASRL_FLOW_DTR_DSR

VI_ATTR_ASRL_END_IN R/W Local ViUInt16 VI_ASRL_END_NONE

VI_ASRL_END_LAST_BIT

VI_ASRL_END_TERMCHAR

VI_ATTR_ASRL_END_OUT R/W Local ViUInt16 VI_ASRL_END_NONE

VI_ASRL_END_LAST_BIT

VI_ASRL_END_TERMCHAR

VI_ASRL_END_BREAK

VI_ATTR_ASRL_CTS_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_ASRL_DCD_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_ASRL_DSR_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_ASRL_DTR_STATE R/W Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_ASRL_RI_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_ASRL_RTS_STATE R/W Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

 (continues)

Section 5: VISA Resource Classes Page 5-9

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

ARSL Specific INSTR Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_ASRL_REPLACE_CHAR R/W Local ViUInt8 0 to FFh

VI_ATTR_ASRL_XON_CHAR R/W Local ViUInt8 0 to FFh

VI_ATTR_ASRL_XOFF_CHAR R/W Local ViUInt8 0 to FFh

TCPIP Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_TCPIP_ADDR RO Global ViString N/A

VI_ATTR_TCPIP_HOSTNAME RO Global ViString N/A

VI_ATTR_TCPIP_DEVICE_NAME RO Global ViString N/A

VXI and GPIB-VXI and USB Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_4882_COMPLIANT RO Global ViBoolean VI_TRUE

VI_FALSE

VXI and GPIB-VXI and USB and PXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_MANF_ID RO Global ViUInt16 0 to FFFFh

VI_ATTR_MODEL_CODE RO Global ViUInt16 0 to FFFFh

VI_ATTR_MANF_NAME RO Global ViString N/A

VI_ATTR_MODEL_NAME RO Global ViString N/A

USB Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_USB_SERIAL_NUM RO Global ViString N/A

VI_ATTR_USB_INTFC_NUM RO Global ViInt16 0 to 254

VI_ATTR_USB_MAX_INTR_SIZE RW Local ViUInt16 0 to FFFFh

VI_ATTR_USB_PROTOCOL RO Global ViInt16 0 to 255

Page 5-10 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VXI and GPIB-VXI and PXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_SLOT RO Global ViInt16 0 to 18
VI_UNKNOWN_SLOT

VI_ATTR_SRC_INCREMENT R/W Local ViInt32 0 to 1

VI_ATTR_DEST_INCREMENT R/W Local ViInt32 0 to 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED

VI_USE_OPERS

VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR_32 RO Local ViBusAddress N/A

VI_ATTR_WIN_BASE_ADDR_64 RO Local ViBusAddress64 N/A

VI_ATTR_WIN_SIZE_32 RO Local ViBusSize N/A

VI_ATTR_WIN_SIZE_64 RO Local ViBusSize64 N/A

PXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_PXI_BUS_NUM RO Global ViUInt16 0 to 255

VI_ATTR_PXI_DEV_NUM RO Global ViUInt16 0 to 31

VI_ATTR_PXI_FUNC_NUM RO Global ViUInt16 0 to 7

VI_ATTR_PXI_SLOTPATH RO Global ViString N/A

VI_ATTR_PXI_SLOT_LBUS_LEFT RO Global ViInt16 0 to 32767
VI_UNKNOWN_SLOT

VI_ATTR_PXI_SLOT_LBUS_RIGHT RO Global ViInt16 0 to 32767
VI_UNKNOWN_SLOT

VI_ATTR_PXI_TRIG_BUS RO Global ViInt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_STAR_TRIG_BUS RO Global ViInt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_STAR_TRIG_LINE RO Global ViInt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_MEM_TYPE_BARn
(where n is 0,1,2,3,4,5)

RO Global ViUInt16 VI_PXI_ADDR_MEM,
VI_PXI_ADDR_IO,
VI_PXI_ADDR_NONE

(continues)

Section 5: VISA Resource Classes Page 5-11

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

PXI Specific INSTR Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_PXI_MEM_BASE_BARn
(where n is 0,1,2,3,4,5)

RO Global ViBusAddress N/A

VI_ATTR_PXI_MEM_SIZE_BARn
(where n is 0,1,2,3,4,5)

RO Global ViBusSize N/A

VI_ATTR_PXI_CHASSIS RO Global ViInt16 0 to 255
VI_UNKNOWN_CHASSIS

VI_ATTR_PXI_IS_EXPRESS RO Global ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_PXI_SLOT_LWIDTH RO Global ViInt16 1, 4, 8

VI_ATTR_PXI_MAX_LWIDTH RO Global ViInt16 1, 4, 8

VI_ATTR_PXI_ACTUAL_LWIDTH RO Global ViInt16 1, 4, 8

VI_ATTR_PXI_DSTAR_BUS RO Global ViInt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_DSTAR_SET RO Global ViInt16 0 to 32767
VI_UNKNOWN_TRIG

Page 5-12 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Attribute Descriptions

Generic INSTR Resource Attributes

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_TRIG_ID Identifier for the current triggering mechanism.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use

DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In
some implementations, this attribute may have global
effects even though it is documented to be a local attribute.
Since this affects performance and not functionality, that
behavior is acceptable.

Message-Based INSTR Resource Attributes

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile() will
overwrite (truncate) or append when opening a file.

VI_ATTR_IO_PROT Specifies which protocol to use. In VXI systems, for example,

you can choose between normal word serial or fast data
channel (FDC). In GPIB, you can choose between normal and
high-speed (HS488) data transfers. In ASRL and TCPIP
systems, you can choose between normal and 488-style
transfers, in which case the viAssertTrigger() and
viReadSTB() operations send 488.2-defined strings.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the

operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush().

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

buffer is flushed every time a viScanf() operation
completes.

VI_ATTR_RD_BUF_SIZE This attribute specifies the size of the formatted I/O read

buffer. The user can modify this value by calling
viSetBuf().

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of

the buffer.

VI_ATTR_SUPPRESS_END_EN Whether to suppress the END indicator termination. If this

attribute is set to VI_TRUE, the END indicator does not

Section 5: VISA Resource Classes Page 5-13

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

terminate read operations. If this attribute is set to VI_FALSE,
the END indicator terminates read operations.

VI_ATTR_TERMCHAR Termination character. When the termination character is read

and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should

terminate when a termination character is received.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When

the operational mode is set to VI_FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

write buffer is flushed under the same conditions, and also
every time a viPrintf() operation completes.

VI_ATTR_WR_BUF_SIZE This attribute specifies the size of the formatted I/O write

buffer. The user can modify this value by calling
viSetBuf().

GPIB and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB device used by the given session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB device used by the given

session.

VI_ATTR_GPIB_READDR_EN This attribute specifies whether to use repeat addressing

before each read or write operation.

VI_ATTR_GPIB_UNADDR_EN This attribute specifies whether to unaddress the device (UNT

and UNL) after each read or write operation.

VI_ATTR_GPIB_REN_STATE This attribute returns the current state of the GPIB REN
interface line.

VXI and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_MAINFRAME_LA This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other
possible values include the logical address of the slot-0
controller or of the parent-side extender. Often, these are all
the same value. The purpose of this attribute is to provide a
unique ID for each mainframe. A VISA manufacturer can
choose any of these values, but must be consistent across
mainframes. If this value is not known, the attribute value
returned is VI_UNKNOWN_LA.

Page 5-14 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_BASE_32 Base address of the device in VXIbus memory address space.

This base address is applicable to A24 or A32 address space.

VI_ATTR_MEM_SIZE_64

VI_ATTR_MEM_SIZE_32 Size of memory requested by the device in VXIbus address
space.

VI_ATTR_MEM_SPACE VXIbus address space used by the device. The four types are

A16 only, A16/A24, A16/A32, or A16/A64 memory address
space.

VI_ATTR_VXI_LA Logical address of the VXI or VME device used by the given

session. For a VME device, the logical address is actually a
pseudo-address in the range 256 to 511.

VI_ATTR_CMDR_LA Logical address of the commander of the VXI device used by

the given session.

VI_ATTR_IMMEDIATE_SERV Specifies whether the given device is an immediate servant of

the controller running VISA.

VI_ATTR_FDC_CHNL This attribute determines which FDC channel will be used to

transfer the buffer.

VI_ATTR_FDC_SIGNAL_GEN_EN Setting this attribute to VI_TRUE lets the servant send a signal

when control of the FDC channel is passed back to the
commander. This action frees the commander from having to
poll the FDC header while engaging in an FDC transfer.

VI_ATTR_FDC_MODE This attribute determines which FDC mode to use (Normal

mode or Stream mode).

VI_ATTR_FDC_USE_PAIR If set to VI_TRUE, a channel pair will be used for transferring

data. Otherwise, only one channel will be used.

VI_ATTR_SRC_BYTE_ORDER This attribute specifies the byte order to be used in high-level

access operations, such as viInXX() and viMoveInXX(),
when reading from the source.

VI_ATTR_DEST_BYTE_ORDER This attribute specifies the byte order to be used in high-level

access operations, such as viOutXX() and viMoveOutXX(),
when writing to the destination.

VI_ATTR_WIN_BYTE_ORDER This attribute specifies the byte order to be used in low-level

access operations, such as viMapAddress(), viPeekXX() and
viPokeXX(), when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV This attribute specifies the address modifier to be used in

high-level access operations, such as viInXX() and
viMoveInXX(), when reading from the source.

Section 5: VISA Resource Classes Page 5-15

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_DEST_ACCESS_PRIV This attribute specifies the address modifier to be used in
high-level access operations, such as viOutXX() and
viMoveOutXX(), when writing to the destination.

VI_ATTR_WIN_ACCESS_PRIV This attribute specifies the address modifier to be used in low-

level access operations, such as viMapAddress(),
viPeekXX() and viPokeXX(), when accessing the mapped
window.

VI_ATTR_VXI_DEV_CLASS This attribute represents the VXI-defined device class to
which the resource belongs, either message based
(VI_VXI_CLASS_MESSAGE), register based
(VI_VXI_CLASS_REGISTER), extended
(VI_VXI_CLASS_EXTENDED), or memory
(VI_VXI_CLASS_MEMORY). VME devices are usually either
register based or belong to a miscellaneous class
(VI_VXI_CLASS_OTHER).

VI_ATTR_VXI_TRIG_SUPPORT This attribute shows which VXI trigger lines this

implementation supports. This is a bit vector with bits 0-9
corresponding to VI_TRIG_TTL0 through VI_TRIG_ECL1.

GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

ASRL Specific INSTR Resource Attributes

VI_ATTR_ASRL_AVAIL_NUM This attribute shows the number of bytes available in the
global receive buffer.

VI_ATTR_ASRL_BAUD This is the baud rate of the interface. It is represented as an

unsigned 32-bit integer so that any baud rate can be used, but
it usually requires a commonly used rate such as 300, 1200,
2400, or 9600 baud.

VI_ATTR_ASRL_DATA_BITS This is the number of data bits contained in each frame (from

5 to 8). The data bits for each frame are located in the
low-order bits of every byte stored in memory.

VI_ATTR_ASRL_PARITY This is the parity used with every frame transmitted and

received. VI_ASRL_PAR_MARK means that the parity bit exists
and is always 1. VI_ASRL_PAR_SPACE means that the parity
bit exists and is always 0.

VI_ATTR_ASRL_STOP_BITS This is the number of stop bits used to indicate the end of a

frame. The value VI_ASRL_STOP_ONE5 indicates one-and-
one-half (1.5) stop bits.

Page 5-16 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_ASRL_FLOW_CNTRL If this attribute is set to VI_ATTR_ASRL_FLOW_NONE, the
transfer mechanism does not use flow control, and buffers on
both sides of the connection are assumed to be large enough to
hold all data transferred.

If this attribute is set to VI_ATTR_ASRL_FLOW_XON_XOFF,
the transfer mechanism uses the XON and XOFF characters to
perform flow control. The transfer mechanism controls input
flow by sending XOFF when the receive buffer is nearly full,
and it controls the output flow by suspending transmission
when XOFF is received.

If this attribute is set to VI_ATTR_ASRL_FLOW_RTS_CTS, the
transfer mechanism uses the RTS output signal and the CTS
input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the RTS signal when the
receive buffer is nearly full, and it controls output flow by
suspending the transmission when the CTS signal is
unasserted.

If this attribute is set to VI_ASRL_FLOW_DTR_DSR, the
transfer mechanism uses the DTR output signal and the DSR
input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the DTR signal when the
receive buffer is nearly full, and it controls output flow by
suspending the transmission when the DSR signal is
unasserted.

This attribute can specify multiple flow control mechanisms
by bit-ORing multiple values together. However, certain
combinations may not be supported by all serial ports and/or
operating systems.

VI_ATTR_ASRL_END_IN This attribute indicates the method used to terminate read

operations. If it is set to VI_ASRL_END_NONE, the read will
not terminate until all of the requested data is received (or an
error occurs). If it is set to VI_ASRL_END_TERMCHAR, the
read will terminate as soon as the character in
VI_ATTR_TERMCHAR is received. If it is set to
VI_ASRL_END_LAST_BIT, the read will terminate as soon as
a character arrives with its last bit set. For example, if
VI_ATTR_ASRL_DATA_BITS is set to 8, then the read will
terminate when a character arrives with the 8th bit set.

VI_ATTR_ASRL_END_OUT This attribute indicates the method used to terminate write

operations. If it is set to VI_ASRL_END_NONE, the write will
not append anything to the data being written. If it is set to
VI_ASRL_END_BREAK, the write will transmit a break after all
the characters for the write have been sent. If it is set to
VI_ASRL_END_LAST_BIT, the write will send all but
the last character with the last bit clear, then transmit
the last character with the last bit set. For example, if
VI_ATTR_ASRL_DATA_BITS is set to 8, then the write will

Section 5: VISA Resource Classes Page 5-17

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

clear the 8th bit for all but the last character, then transmit
the last character with the 8th bit set. If it is set to
VI_ASRL_END_TERMCHAR, the write will send the character in
VI_ATTR_TERMCHAR after the data being transmitted.

VI_ATTR_ASRL_CTS_STATE This attribute shows the current state of the Clear To Send

(CTS) input signal.

VI_ATTR_ASRL_RTS_STATE This attribute is used to manually assert or unassert the
Request To Send (RTS) output signal. When the
VI_ATTR_ASRL_FLOW_CNTRL attribute is set to
VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when
changed, but can be read to determine whether the
background flow control is asserting or unasserting the signal.

VI_ATTR_ASRL_DTR_STATE This attribute is used to manually assert or unassert the Data

Terminal Ready (DTR) output signal.

VI_ATTR_ASRL_DSR_STATE This attribute shows the current state of the Data Set Ready
(DSR) input signal.

VI_ATTR_ASRL_DCD_STATE This attribute shows the current state of the Data Carrier

Detect (DCD) input signal. The DCD signal is often used by
modems to indicate the detection of a carrier (remote modem)
on the telephone line. The DCD signal is also known as
“Receive Line Signal Detect (RLSD).”

VI_ATTR_ASRL_RI_STATE This attribute shows the current state of the Ring Indicator

(RI) input signal. The RI signal is often used by modems to
indicate that the telephone line is ringing.

VI_ATTR_ASRL_REPLACE_CHAR This attribute specifies the character to be used to replace

incoming characters that arrive with errors (such as parity
error).

VI_ATTR_ASRL_XON_CHAR This attribute specifies the value of the XON character used

for XON/XOFF flow control (both directions). If XON/XOFF
flow control (software handshaking) is not being used, the
value of this attribute is ignored.

VI_ATTR_ASRL_XOFF_CHAR This attribute specifies the value of the XOFF character used

for XON/XOFF flow control (both directions). If XON/XOFF
flow control (software handshaking) is not being used, the
value of this attribute is ignored.

TCPIP Specific INSTR Resource Attributes

VI_ATTR_TCPIP_ADDR This is the TCPIP address of the device to which the session is
connected. This string is formatted in dot-notation.

VI_ATTR_TCPIP_HOSTNAME This specifies the host name of the device. If no host name is

available, this attribute returns an empty string.

Page 5-18 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_TCPIP_DEVICE_NAME This specifies the LAN device name used by the VXI-11
protocol during connection.

VXI, GPIB-VXI, and USB Specific INSTR Resource Attributes

VI_ATTR_4882_COMPLIANT Specifies whether the device is 488.2 compliant.

VXI, GPIB-VXI, USB, and PXI Specific INSTR Resource Attributes

VI_ATTR_MANF_ID Manufacturer identification number of the device. For PXI, if
Subsystem ID and Subsystem Vendor ID are defined for the
device, then this attribute value is the Subsystem Vendor ID,
or else this attribute value is the PCI Vendor ID.

VI_ATTR_MODEL_CODE Model code for the device. For PXI, If Subsystem ID and

Subsystem Vendor ID are defined for the device, then this
attribute value is the Subsystem ID, or else this attribute value
is the PCI Device ID.

VI_ATTR_MANF_NAME This string attribute is the manufacturer’s name. The value of

this attribute should be used for display purposes only and not
for programmatic decisions, as the value can be different
between VISA implementations and/or revisions.

VI_ATTR_MODEL_NAME This string attribute is the model name of the device. The

value of this attribute should be used for display purposes
only and not for programmatic decisions, as the value can be
different between VISA implementations and/or revisions.

USB Specific INSTR Resource Attributes

VI_ATTR_USB_SERIAL_NUM This string attribute is the serial number of the USB
instrument. The value of this attribute should be used for
display purposes only and not for programmatic decisions.

VI_ATTR_USB_INTFC_NUM Specifies the USB interface number of this device to which

this session is connected.

VI_ATTR_USB_MAX_INTR_SIZE Specifies the maximum number of bytes that this USB device
will send on the interrupt IN pipe. The default value is the
same as the maximum packet size of the interrupt IN pipe.

VI_ATTR_USB_PROTOCOL Specifies the USB protocol number.

VXI, GPIB-VXI, and PXI Specific INSTR Resource Attributes

VI_ATTR_SLOT Physical slot location of the device. If the slot number is not
known, VI_UNKNOWN_SLOT is returned.

VI_ATTR_SRC_INCREMENT This is used in the viMoveInXX() operation to specify how

much the source offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
source address will be incremented by 1 after each transfer),

Section 5: VISA Resource Classes Page 5-19

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

and the viMoveInXX() operation moves from consecutive
elements. If this attribute is set to 0, the viMoveInXX()
operation will always read from the same element, essentially
treating the source as a FIFO register.

VI_ATTR_DEST_INCREMENT This is used in the viMoveOutXX() operation to specify how

much the destination offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
destination address will be incremented by 1 after each
transfer), and the viMoveOutXX() operation moves into
consecutive elements. If this attribute is set to 0, the
viMoveOutXX() operation will always write to the same
element, essentially treating the destination as a FIFO register.

VI_ATTR_WIN_ACCESS Modes in which the current window may be accessed: not

currently mapped, through operations viPeekXX() and
viPokeXX() only, or through operations and/or by directly
dereferencing the address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BASE_ADDR_32 Base address of the interface bus to which this window is

mapped.

VI_ATTR_WIN_SIZE_64
VI_ATTR_WIN_SIZE_32 Size of the region mapped to this window.

Page 5-20 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

PXI Specific INSTR Resource Attributes

VI_ATTR_PXI_BUS_NUM PCI bus number of this device.

VI_ATTR_PXI_DEV_NUM PCI device number of this device.

VI_ATTR_PXI_FUNC_NUM PCI function number of the device. All devices have a function 0.
Multifunction devices will also support other function numbers.

VI_ATTR_PXI_SLOTPATH Slot path of this device. PXI slot paths are a sequence of values
representing the PCI device number and function number of a PCI
module and each parent PCI bridge that routes the module to the
host PCI bridge. The string format of the attribute value is
device1[.function1][,device2[.function2]][,...].

VI_ATTR_PXI_SLOT_LBUS_LEFT Slot number or special feature connected to the local bus left lines
of this device.

VI_ATTR_PXI_SLOT_LBUS_RIGHT Slot number or special feature connected to the local bus right
lines of this device.

VI_ATTR_PXI_TRIG_BUS Number of the trigger bus connected to this device in the chassis.

VI_ATTR_PXI_STAR_TRIG_BUS Number of the star trigger bus connected to this device in the
chassis.

VI_ATTR_PXI_STAR_TRIG_LINE PXI_STAR line connected to this device.

VI_ATTR_PXI_MEM_TYPE_BARn Memory type (memory mapped or I/O mapped) used by the device
in the specified BAR.

VI_ATTR_PXI_MEM_BASE_BARn Memory base address assigned to the specified BAR for this
device.

VI_ATTR_PXI_MEM_SIZE_BARn Size of the memory assigned to the specified BAR for this device.

VI_ATTR_PXI_CHASSIS Chassis number in which this device is located.

VI_ATTR_PXI_IS_EXPRESS Specifies whether this device is PXI Express.

VI_ATTR_PXI_SLOT_LWIDTH Specifies the link width used by the slot in which this device is
located.

VI_ATTR_PXI_MAX_LWIDTH Specifies the maximum link width that this device can use.

VI_ATTR_PXI_ACTUAL_LWIDTH Specifies the negotiated link width that this device is using.

VI_ATTR_PXI_DSTAR_BUS Number of the DSTAR bus connected to this device in the chassis.

VI_ATTR_PXI_DSTAR_SET Specifies the set of PXI_DSTAR lines connected to this device.

RULE 5.1.10

All INSTR resource implementations SHALL support the attributes VI_ATTR_INTF_TYPE,
VI_ATTR_INTF_INST_NAME, VI_ATTR_TMO_VALUE, VI_ATTR_INTF_NUM, VI_ATTR_TRIG_ID, and
VI_ATTR_DMA_ALLOW_EN.

RULE 5.1.11

An INSTR resource implementation for a GPIB, GPIB-VXI, VXI, ASRL, TCPIP, or USB system SHALL
support the attributes VI_ATTR_IO_PROT, VI_ATTR_SEND_END_EN, VI_ATTR_SUPPRESS_END_EN,

Section 5: VISA Resource Classes Page 5-21

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_TERMCHAR, VI_ATTR_TERM_CHAR_EN, VI_ATTR_RD_BUF_OPER_MODE,
VI_ATTR_WR_BUF_OPER_MODE, and VI_ATTR_FILE_APPEND_EN.

RULE 5.1.12

An INSTR resource implementation for a GPIB or GPIB-VXI system SHALL support the attributes
VI_ATTR_GPIB_PRIMARY_ADDR, VI_ATTR_GPIB_SECONDARY_ADDR, VI_ATTR_GPIB_READDR_EN,
VI_ATTR_GPIB_UNADDR_EN, and VI_ATTR_GPIB_REN_STATE.

RULE 5.1.13

An INSTR resource implementation for a VXI or GPIB-VXI system SHALL support the attributes
VI_ATTR_FDC_CHNL, VI_ATTR_FDC_MODE, VI_ATTR_MEM_BASE, VI_ATTR_MEM_SIZE,
VI_ATTR_MEM_SPACE, VI_ATTR_SLOT, VI_ATTR_VXI_LA, VI_ATTR_CMDR_LA,
VI_ATTR_WIN_BASE_ADDR, VI_ATTR_WIN_SIZE, VI_ATTR_MAINFRAME_LA,
VI_ATTR_FDC_USE_PAIR, VI_ATTR_FDC_GEN_SIGNAL_EN, VI_ATTR_SRC_INCREMENT,
VI_ATTR_DEST_INCREMENT, VI_ATTR_WIN_ACCESS, VI_ATTR_IMMEDIATE_SERV,
VI_ATTR_SRC_BYTE_ORDER, VI_ATTR_DEST_BYTE_ORDER, VI_ATTR_WIN_BYTE_ORDER,
VI_ATTR_SRC_ACCESS_PRIV, VI_ATTR_DEST_ACCESS_PRIV, VI_ATTR_WIN_ACCESS_PRIV,
VI_ATTR_VXI_DEV_CLASS, and VI_ATTR_VXI_TRIG_SUPPORT.

RULE 5.1.14
An INSTR resource implementation for an ASRL system SHALL support the attributes
VI_ATTR_ASRL_BAUD, VI_ATTR_ASRL_DATA_BITS, VI_ATTR_ASRL_PARITY,
VI_ATTR_ASRL_STOP_BITS, VI_ATTR_ASRL_FLOW_CNTRL, VI_ATTR_ASRL_END_IN,
VI_ATTR_ASRL_END_OUT, VI_ATTR_ASRL_REPLACE_CHAR, VI_ATTR_ASRL_XON_CHAR, and
VI_ATTR_ASRL_XOFF_CHAR.

RULE 5.1.15
An INSTR resource implementation for a TCPIP system SHALL support the attributes
VI_ATTR_TCPIP_ADDR, VI_ATTR_TCPIP_HOSTNAME, and VI_ATTR_TCPIP_DEVICE_NAME.

RULE 5.1.16

For each INSTR session, the attribute VI_ATTR_TRIG_ID SHALL be R/W (readable and writeable) when
the corresponding session is not enabled for sensing triggers (via viEnableEvent() for trigger events).

RULE 5.1.17
For each INSTR session, the attribute VI_ATTR_TRIG_ID SHALL be RO (read only and not writeable)
when the corresponding session is enabled for sensing triggers (via viEnableEvent() for trigger events).

RULE 5.1.18

IF a GPIB or GPIB-VXI INSTR resource does not have an associated GPIB secondary address, THEN the
call to viGetAttribute() SHALL return the completion code VI_SUCCESS and the value of the
attribute returned SHALL be VI_NO_SEC_ADDR.

RULE 5.1.19

IF a GPIB or GPIB-VXI INSTR resource does not support HS488 data transfers, AND the attribute is
VI_ATTR_IO_PROT, AND the attribute state is VI_PROT_HS488, THEN the call to viSetAttribute()
SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

OBSERVATION 5.1.1

RULE 5.2.8 allows the HS488 protocol as an optional attribute range value for GPIB and
GPIB-VXI INSTR resources.

Page 5-22 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

PERMISSION 5.1.1
IF the attribute VI_ATTR_IMMEDIATE_SERV for a given VXI or GPIB-VXI INSTR is VI_FALSE, THEN
calls to viRead(), viReadAsync(), viWrite(), viWriteAsync(), viAssertTrigger(),
viReadSTB(), and viClear() on sessions to the given INSTR resource MAY return
VI_ERROR_NSUP_OPER.

PERMISSION 5.1.2
IF the range value of 0 is passed to viSetAttribute() for VI_ATTR_SRC_INCREMENT or
VI_ATTR_DEST_INCREMENT, THEN viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

RULE 5.1.20
IF a GPIB or GPIB-VXI INSTR resource does not support turning off device readdressing, AND the
attribute is VI_ATTR_GPIB_READDR_EN, AND the attribute state is VI_FALSE, THEN the call to
viSetAttribute() SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

OBSERVATION 5.1.2
RULE 5.1.20 allows disabling unnecessary device readdressing using an optional attribute range value for
GPIB and GPIB-VXI resources.

RULE 5.1.21

An INSTR resource implementation for a VXI or GPIB-VXI system SHALL support the attribute state
VI_BIG_ENDIAN for the attributes VI_ATTR_SRC_BYTE_ORDER, VI_ATTR_DEST_BYTE_ORDER, and
VI_ATTR_WIN_BYTE_ORDER.

PERMISSION 5.1.3

IF the range value of VI_LITTLE_ENDIAN is passed to viSetAttribute() for
VI_ATTR_SRC_BYTE_ORDER, VI_ATTR_DEST_BYTE_ORDER, or VI_ATTR_WIN_BYTE_ORDER, THEN
viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

OBSERVATION 5.1.3

As an example of VI_BIG_ENDIAN and VI_LITTLE_ENDIAN formats, assume that the data 0x12 is at VXI
address 0, 0x34 is at address 1, 0x56 at 2, and 0x78 at 3. A 32-bit access at address 0 using
VI_BIG_ENDIAN format would return 0x12345678; the same access using VI_LITTLE_ENDIAN format
would return 0x78563412. Notice that the setting of the attribute values has no relation to and no effect on
the native byte order of the local machine.

RULE 5.1.22

An INSTR resource implementation for a VXI or GPIB-VXI system SHALL support the attribute state
VI_DATA_PRIV for the attributes VI_ATTR_SRC_ACCESS_PRIV, VI_ATTR_DEST_ACCESS_PRIV, and
VI_ATTR_WIN_ACCESS_PRIV.

PERMISSION 5.1.4

IF any range value other than VI_DATA_PRIV is passed to viSetAttribute() for
VI_ATTR_SRC_ACCESS_PRIV, VI_ATTR_DEST_ACCESS_PRIV, or VI_ATTR_WIN_ACCESS_PRIV,
THEN viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

RULE 5.1.23

IF a VISA system implements the INSTR resource for a VXI system, THEN it SHALL implement the
MEMACC resource for a VXI system.

Section 5: VISA Resource Classes Page 5-23

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 5.1.24
IF a VISA system implements the INSTR resource for a GPIB-VXI system, THEN it SHALL implement
the MEMACC resource for a GPIB-VXI system.

RULE 5.1.25
For VISA 2.2, the attributes VI_ATTR_WIN_ACCESS_PRIV and VI_ATTR_WIN_BYTE_ORDER are R/W
(readable and writeable) when the corresponding session is not mapped (VI_ATTR_WIN_ACCESS ==
VI_NMAPPED).

RULE 5.1.26

For VISA 2.2, the attributes VI_ATTR_WIN_ACCESS_PRIV and VI_ATTR_WIN_BYTE_ORDER are RO
(read-only) when the corresponding session is mapped (VI_ATTR_WIN_ACCESS != VI_NMAPPED).

RULE 5.1.27
An INSTR resource implementation for a TCPIP system SHALL use the VXI-11 protocol.

RULE 5.1.28

IF an INSTR resource implementation does not support DMA transfers, AND the attribute is
VI_ATTR_DMA_ALLOW_EN, AND the attribute state is VI_TRUE, THEN the call to
viSetAttribute() SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

RULE 5.1.29

An INSTR resource implementation for a USB system SHALL use the protocol defined in the USB Test
and Measurement class (USBTMC) specification or a USBTMC subclass specification.

RULE 5.1.30

An INSTR resource implementation for a USB system SHALL support the value of VI_TRUE for the
attribute VI_ATTR_TERMCHAR_EN even if the USB interface does not indicate support for TermChar in its
capabilities bits.

OBSERVATION 5.1.4

A given VISA implementation of an INSTR resource for a USB system can choose how to implement
termination character support if the device does not support it natively. Two possible valid options are for
the VISA implementation to request 1 byte at a time from the device, or for the VISA implementation to
request larger blocks of data and buffer the data internally.

RULE 5.1.31

An INSTR resource implementation for a VXI or GPIB-VXI or USB system SHALL support the attributes
VI_ATTR_MANF_ID, VI_ATTR_MODEL_CODE, VI_ATTR_MANF_NAME, VI_ATTR_MODEL_NAME, and
VI_ATTR_4882_COMPLIANT.

RULE 5.1.32

An INSTR resource implementation for a USB system SHALL support the attributes
VI_ATTR_USB_SERIAL_NUM, VI_ATTR_USB_INTFC_NUM, VI_ATTR_USB_MAX_INTR_SIZE, and
VI_ATTR_USB_PROTOCOL.

RULE 5.1.33

For each INSTR session, the attribute VI_ATTR_USB_MAX_INTR_SIZE SHALL be R/W (readable and
writeable) when the corresponding session is not enabled for sensing USB interrupts (via
viEnableEvent() for USB interrupt events).

Page 5-24 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 5.1.34
For each INSTR session, the attribute VI_ATTR_USB_MAX_INTR_SIZE SHALL be RO (read only and not
writeable) when the corresponding session is enabled for sensing USB interrupts (via viEnableEvent()
for USB interrupt events).

OBSERVATION 5.1.5

In a previous version of the VISA specification, the I/O protocol value names were VI_NORMAL, VI_FDC,
VI_HS488, and VI_ASRL488. The new names are VI_PROT_NORMAL, VI_PROT_FDC, VI_PROT_HS488,
and VI_PROT_4882_STRS. It is the intent of this specification that the numeric values for these names
must be consistent for backward compatibility.

RULE 5.1.35
IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_MEM_SIZE and
VI_ATTR_MEM_SIZE_64 SHALL be identical.

RULE 5.1.36

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_MEM_BASE and
VI_ATTR_MEM_BASE_32 SHALL be identical.

RULE 5.1.37

IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_MEM_BASE and
VI_ATTR_MEM_BASE_64 SHALL be identical.

RULE 5.1.38

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_MEM_SIZE and
VI_ATTR_MEM_SIZE_32 SHALL be identical.

RULE 5.1.39

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_WIN_BASE_ADDR and
VI_ATTR_WIN_BASE_ADDR_32 SHALL be identical.

RULE 5.1.40

IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_WIN_BASE_ADDR and
VI_ATTR_WIN_BASE_ADDR_64 SHALL be identical.

RULE 5.1.41

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_WIN_SIZE and
VI_ATTR_WIN_SIZE_32 SHALL be identical.

RULE 5.1.42

IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_WIN_SIZE and
VI_ATTR_WIN_SIZE_64 SHALL be identical.

Section 5: VISA Resource Classes Page 5-25

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.1.3 INSTR Resource Events

This resource defines the following events for communication with applications.

VI_EVENT_SERVICE_REQ

Description
Notification that a service request was received from the device.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_SERVICE_REQ

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_VXI_SIGP

Description

Notification that a VXIbus signal or VXIbus interrupt was received from the device.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_SIGP

VI_ATTR_SIGP_STATUS_ID RO ViUInt16 0 to FFFFh

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_SIGP_STATUS_ID The 16-bit Status/ID value retrieved during the IACK cycle or

from the Signal register.

Page 5-26 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_EVENT_TRIG

Description
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be
sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the

specified trigger event was received.

VI_EVENT_IO_COMPLETION

Description

Notification that an asynchronous operation has completed.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_JOB_ID RO ViJobId N/A

VI_ATTR_BUFFER RO ViBuf N/A

VI_ATTR_RET_COUNT RO ViBusSize *

VI_ATTR_OPER_NAME RO ViString N/A

VI_ATTR_RET_COUNT_32 RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RET_COUNT_64** RO ViUInt64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPP 4.3.x framework specification.
** Defined only for frameworks that are 64-bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Section 5: VISA Resource Classes Page 5-27

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O
operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronous operation

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an

asynchronous operation.

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously transferred.
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information on VI_ATTR_OPER_NAME, see its definition in Section 3.7.2.3, VI_EVENT_EXCEPTION.

VI_EVENT_VXI_VME_INTR

Description

Notification that a VXIbus interrupt was received from the device.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_INTR

VI_ATTR_INTR_STATUS_ID RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RECV_INTR_LEVEL RO ViInt16 1 to 7, VI_UNKNOWN_LEVEL

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_INTR_STATUS_ID This attribute value is the 32-bit status/ID retrieved during the

IACK cycle.

VI_ATTR_RECV_INTR_LEVEL This attribute value is the VXI interrupt level on which the

interrupt was received.

Page 5-28 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_EVENT_USB_INTR

Description
Notification that a vendor-specific USB interrupt was received from the device.

Event Attributes

Symbolic Name Access
Privilege

Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_SIZE RO ViUInt16 0 to FFFFh

VI_ATTR_USB_RECV_INTR_DATA RO ViBuf N/A

VI_ATTR_STATUS RO ViStatus N/A

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_USB_RECV_INTR_SIZE Specifies the size of the data that was received from the USB

interrupt-IN pipe. This value will never be larger than the
session’s value of VI_ATTR_USB_MAX_INTR_SIZE.

VI_ATTR_USB_RECV_INTR_DATA Specifies the actual data that was received from the USB

interrupt-IN pipe. Querying this attribute copies the contents
of the data to the user’s buffer. The user’s buffer must be
sufficiently large enough to hold all of the data.

VI_ATTR_STATUS Specifies the status of the read operation from the USB

interrupt-IN pipe. If the device sent more data than the user
specified in VI_ATTR_USB_MAX_INTR_SIZE, then this
attribute value will contain the status code
VI_WARN_QUEUE_OVERFLOW.

VI_EVENT_PXI_INTR

Description

Notification that a PCI Interrupt was received from the device.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_PXI_INTR

RULE 5.1.43

All INSTR resource implementations SHALL support the generation of the events
VI_EVENT_IO_COMPLETION and VI_EVENT_EXCEPTION.

Section 5: VISA Resource Classes Page 5-29

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 5.1.44
An INSTR resource implementation for a GPIB, GPIB-VXI, VXI, TCPIP, or USB system SHALL support
the generation of the event VI_EVENT_SERVICE_REQ.

RULE 5.1.45

An INSTR resource implementation for a VXI system SHALL support the generation of the events
VI_EVENT_VXI_SIGP, VI_EVENT_TRIG, and VI_EVENT_VXI_VME_INTR.

RULE 5.1.46

An INSTR resource implementation for a PXI system SHALL support the generation of the event
VI_EVENT_PXI_INTR.

RULE 5.1.47

On some operating systems, it may be a requirement to handle PXI interrupts in the OS kernel
environment. VISA implementations on such operating systems SHALL provide a mechanism for
performing device-specific operations in the kernel in response to an interrupt. The PXI Module
Description File Specification specifies a VISA Registration Descriptor for this purpose. This mechanism
allows the event to be delivered to the instrument driver software in the application environment once the
PXI interrupt has been safely removed in the OS kernel environment.

To implement the above rule, a VISA implementation could implement the following behavior.

1. The user, integrator, or instrument driver developer registers information from the module description
file with the VISA implementation. The information about the device registered includes a description
of these operations:
a. How to detect whether the device is asserting a PXI interrupt (Operation DETECT).
b. How to stop the device from asserting its PXI interrupt line. (Operation QUIESCE).

2. When the user enables events from the device, the VISA implementation reads the device description
to find descriptions of the above operations.

3. Upon receiving an interrupt, the VISA implementation uses OS services combined with the DETECT
operation on each device to determine which device is interrupting.

4. The VISA implementation uses the QUIESCE operation on the interrupting device.
5. The VISA implementation delivers the VI_EVENT_PXI_INTR to each session enabled for interrupts to

that device.

OBSERVATION 5.1.6

In any implementation, the VISA client code must ensure that the device is enabled to drive the interrupt
line again after handling the condition that caused the interrupt.

RULE 5.1.48

IF a session is enabled for VI_EVENT_VXI_SIGP, AND a VXI interrupt or signal is detected with the
value FDxx (where xx is the logical address associated with the given session), THEN the VISA system
SHALL generate a VI_EVENT_VXI_SIGP in addition to a VI_EVENT_SERVICE_REQ.

RULE 5.1.49

IF a session is enabled for VI_EVENT_VXI_VME_INTR, AND a VXI interrupt is detected with the value
FDxx (where xx is the logical address associated with the given session), THEN the VISA system SHALL
generate a VI_EVENT_VXI_VME_INTR in addition to a VI_EVENT_SERVICE_REQ.

RULE 5.1.50

An INSTR resource implementation for a VXI or GPIB-VXI system SHALL return the error
VI_ERROR_INV_EVENT when a user tries to enable VI_EVENT_SERVICE_REQ for VME devices or VXI
register based devices.

Page 5-30 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 5.1.51
An INSTR resource implementation for a USB system SHALL return the error VI_ERROR_INV_EVENT
when a user tries to enable VI_EVENT_SERVICE_REQ for USBTMC base-class (non-488) devices.

RULE 5.1.52

An INSTR resource implementation for a USB system SHALL return the error VI_ERROR_INV_EVENT
when a user tries to enable VI_EVENT_SERVICE_REQ for a USB488 device that does not have an interrupt
IN pipe.

RULE 5.1.53

An INSTR resource implementation for a USB system SHALL support the generation of the event
VI_EVENT_USB_INTR.

RULE 5.1.54

An INSTR resource implementation for a USB system SHALL return the error VI_ERROR_INV_EVENT
when a user tries to enable VI_EVENT_USB_INTR for a USBTMC device (base-class or USB488) that does
not have an interrupt IN pipe.

RULE 5.1.55

An INSTR resource implementation for a USB system SHALL generate VI_EVENT_USB_INTR only when
the interrupt header contains a vendor-specific notification as defined by the USBTMC specification.

OBSERVATION 5.1.7

A USB488 service request notification will not cause VI_EVENT_USB_INTR to be generated.

RULE 5.1.56

IF a framework is 32-bit, THEN the values of the attributes VI_ATTR_RET_COUNT and
VI_ATTR_RET_COUNT_32 SHALL be identical.

RULE 5.1.57

IF a framework is 64-bit, THEN the values of the attributes VI_ATTR_RET_COUNT and
VI_ATTR_RET_COUNT_64 SHALL be identical.

RULE 5.1.58

IF a framework is 32-bit, THEN the attribute VI_ATTR_RET_COUNT_64 SHALL NOT be defined.

OBSERVATION 5.1.8

A user on a 32-bit framework cannot transfer more data than would fit in a 32-bit size.

Section 5: VISA Resource Classes Page 5-31

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.1.4 INSTR Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
viAssertTrigger(vi, protocol)
viReadSTB(vi, status)
viClear(vi)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viBufRead(vi, buf, count, retCount)
viQueryf(vi, writeFmt, readFmt, arg1, arg2, ...)
viVQueryf(vi, writeFmt, readFmt, params)
viIn8(vi, space, offset, val8)
viIn16(vi, space, offset, val16)
viIn32(vi, space, offset, val32)
viIn64(vi, space, offset, val64)
viOut8(vi, space, offset, val8)
viOut16(vi, space, offset, val16)
viOut32(vi, space, offset, val32)
viOut64(vi, space, offset, val64)
viMoveIn8(vi, space, offset, length, buf8)
viMoveIn16(vi, space, offset, length, buf16)
viMoveIn32(vi, space, offset, length, buf32)
viMoveIn64(vi, space, offset, length, buf64)
viMoveOut8(vi, space, offset, length, buf8)
viMoveOut16(vi, space, offset, length, buf16)
viMoveOut32(vi, space, offset, length, buf32)
viMoveOut64(vi, space, offset, length, buf64)
viMoveIn8Ex(vi, space, offset64, length, buf8)
viMoveIn16Ex(vi, space, offset64, length, buf16)
viMoveIn32Ex(vi, space, offset64, length, buf32)
viMoveIn64Ex(vi, space, offset64, length, buf64)
viMoveOut8Ex(vi, space, offset64, length, buf8)
viMoveOut16Ex(vi, space, offset64, length, buf16)
viMoveOut32Ex(vi, space, offset64, length, buf32)
viMoveOut64Ex(vi, space, offset64, length, buf64)
viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,

length)
viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,

length, jobId)
viMoveEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,

destWidth, length)
viMoveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,

destWidth, length, jobId)
viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested, address)
viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access, suggested, address)
viUnmapAddress(vi)
viPeek8(vi, addr, val8)
viPeek16(vi, addr, val16)
viPeek32(vi, addr, val32)
viPeek64(vi, addr, val64)
viPoke8(vi, addr, val8)
viPoke16(vi, addr, val16)
viPoke32(vi, addr, val32)

Page 5-32 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

viPoke64(vi, addr, val64)
viMemAlloc(vi, size, offset)
viMemFree(vi, offset)
viMemAllocEx(vi, size, offset64)
viMemFreeEx(vi, offset64)
viGpibControlREN(vi, mode)
viVxiCommandQuery(vi, mode, cmd, response)
viUsbControlOut(vi, bmRequestType, bRequest, wValue, wIndex, wLength, buf)
viUsbControlIn(vi, bmRequestType, bRequest, wValue, wIndex, wLength, buf,

retCnt)

RULE 5.1.59

An INSTR resource implementation for a GPIB system SHALL support the operations viRead(),
viReadAsync(), viReadToFile(), viWrite(), viWriteAsync(), viWriteFromFile(),
viAssertTrigger(), viReadSTB(), viClear(), viSetBuf(), viFlush(), viPrintf(),
viVPrintf(), viScanf(), viVScanf(), viQueryf(), viVQueryf(), viSPrintf(), viVSPrintf(),
viBufWrite(), viSScanf(), viVSScanf(), viBufRead(), and viGpibControlREN().

RULE 5.1.60

An INSTR resource implementation for a GPIB-VXI or VXI system SHALL support the operations
viRead(), viReadAsync(), viReadToFile(), viWrite(), viWriteAsync(),
viWriteFromFile(),viAssertTrigger(), viReadSTB(), viClear(), viSetBuf(), viFlush(),
viPrintf(), viVPrintf(), viScanf(), viVScanf(), viQueryf(), viVQueryf(), viIn8(),
viIn16(), viIn32(), viIn64(), viOut8(), viOut16(), viOut32(), viOut64(), viMoveIn8(),
viMoveIn16(), viMoveIn32(), viMoveIn64(), viMoveOut8(), viMoveOut16(), viMoveOut32(),
viMoveOut64(), viMoveIn8Ex(), viMoveIn16Ex(), viMoveIn32Ex(), viMoveIn64Ex(),
viMoveOut8Ex(), viMoveOut16Ex(), viMoveOut32Ex(), viMoveOut64Ex(), viMoveAsync(),
viMapAddress(), viMoveAsyncEx(), viMapAddressEx(), viUnmapAddress(), viPeek8(),
viPeek16(), viPeek32(), viPeek64(), viPoke8(), viPoke16(), viPoke32(), viPoke64(),
viMemAlloc(), viMemFree(), viMemAllocEx(), viMemFreeEx(), viSPrintf(), viVSPrintf(),
viBufWrite(), viSScanf(), viVSScanf(), viBufRead(), and viVxiCommandQuery().

RULE 5.1.61

An INSTR resource implementation for an ASRL system SHALL support the operations viRead(),
viReadAsync(), viReadToFile(),viWrite(), viWriteAsync(), viWriteFromFile(),
viAssertTrigger(), viReadSTB(), viClear(), viSetBuf(), viFlush(), viPrintf(),
viVPrintf(), viScanf(), viVScanf(), viQueryf(), viVQueryf(), viSPrintf(), viVSPrintf(),
viBufWrite(), viSScanf(), viVSScanf(), and viBufRead().

RULE 5.1.62
An INSTR resource implementation for a TCPIP system SHALL support the operations viRead(),
viReadAsync(), viReadToFile(), viWrite(), viWriteAsync(), viWriteFromFile(),
viAssertTrigger(), viReadSTB(), viClear(), viSetBuf(), viFlush(), viPrintf(),
viVPrintf(), viScanf(), viVScanf(), viQueryf(), viVQueryf(), viSPrintf(),
viVSPrintf(), viBufWrite(), viSScanf(), viVSScanf(), and viBufRead().

RULE 5.1.63

An INSTR resource implementation for a USB system SHALL support the operations viRead(),
viReadAsync(), viReadToFile(), viWrite(), viWriteAsync(), viWriteFromFile(),
viAssertTrigger(), viReadSTB(), viClear(), viSetBuf(), viFlush(), viPrintf(),
viVPrintf(), viScanf(), viVScanf(), viQueryf(), viVQueryf(), viSPrintf(),
viVSPrintf(), viBufWrite(), viSScanf(), viVSScanf(), viBufRead(), viGpibControlREN(),
viUsbControlOut(), and viUsbControlIn().

Section 5: VISA Resource Classes Page 5-33

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 5.1.64
An INSTR resource implementation for a PXI system SHALL support the operations
viAssertTrigger(), viIn8(), viIn16(), viIn32(), viIn64(), viOut8(), viOut16(),
viOut32(), viOut64(), viMoveIn8(), viMoveIn16(), viMoveIn32(), viMoveIn64(),
viMoveOut8(), viMoveOut16(), viMoveOut32(), viMoveOut64(), viMoveIn8Ex(),
viMoveIn16Ex(), viMoveIn32Ex(), viMoveIn64Ex(), viMoveOut8Ex(), viMoveOut16Ex(),
viMoveOut32Ex(), viMoveOut64Ex(), viMove(), viMoveAsync(), viMoveEx(),
viMoveAsyncEx(), viMapAddress(), viMapAddressEx(), viUnmapAddress(), viPeek8(),
viPeek16(), viPeek32(), viPeek64(), viPoke8(), viPoke16(), viPoke32(), and viPoke64().

Page 5-34 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.2 Memory Access Resource

The Memory Access (MEMACC) Resource encapsulates the address space of a memory mapped bus such
as the VXIbus. A VISA Memory Access Resource, like any other resource, starts with the basic operations
and attributes of the VISA Resource Template. For example, modifying the state of an attribute is done via
the operation viSetAttribute(), which is defined in the VISA Resource Template. Although the
following resource does not have viSetAttribute() listed in its operations, it provides the operation
because it is defined in the VISA Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task, such as reading a register or writing to a
memory location.

5.2.1 MEMACC Resource Overview

The MEMACC Resource lets a controller interact with the interface associated with this resource. It does
this by providing the controller with services to access arbitrary registers or memory addresses on memory-
mapped buses. These services are described in detail in the remainder of this section.

• Memory I/O Services

– The High-Level Access Service allows register-level access to the interfaces that support direct

memory access, such as the VXIbus, VMEbus, MXIbus, or even VME or VXI memory through a
system controlled by a GPIB-to-VXI controller. A resource exists for each interface to which the
controller has access. When dealing with memory accesses, there is a tradeoff between speed and
complexity, and between software overhead and encapsulation. The High-Level Access Service is
similar in purpose to the Low-Level Access Service. The difference between these two services is that
the High-Level Access Service has greater software overhead because it encapsulates most of the code
required to perform the memory access, such as window mapping and error checking. In general,
high-level accesses are slower than low-level accesses, but they encapsulate the operations necessary
to perform the access and are considered safer.

The High-Level Access Service lets the programmer access memory on the interface bus through
simple operations such as viIn16() and viOut16(). These operations encapsulate the map/unmap
and peek/poke operations found in the Low-Level Access Service. There is no need to explicitly map
the memory to a window.

– The Low-Level Access Service, like the High-Level Access Service, allows register-level access to the

interfaces that support direct memory access, such as the VXIbus, VMEbus, MXIbus, or VME or VXI
memory through a system controlled by a GPIB-to-VXI controller. A resource exists for each interface
of this type that the controller has locally. When dealing with memory accesses, there is a tradeoff
between speed and complexity and between software overhead and encapsulation. The Low-Level
Access Service is similar in purpose to the High-Level Access Service. The difference between these
two services is that the Low-Level Access Service increases access speed by removing software
overhead, but requires more programming effort by the user. To decrease the amount of overhead
involved in the memory access, the Low-Level Access Service does not return any error information
in the access operations.

Before an application can use the Low-Level Access Service on the interface bus, it must map a range
of addresses using the operation viMapAddress(). Although the resource handles the allocation and
operation of the window, the programmer must free the window via viUnmapAddress() when
finished. This makes the window available for the system to reallocate.

Section 5: VISA Resource Classes Page 5-35

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 5.2.1
IF an application performs viClose() on a session to a MEMACC resource with memory still mapped,
THEN viClose() SHALL perform an implicit unmapping of the mapped window.

PERMISSION 5.2.1

A VISA implementation that supports the PXI MEMACC resource MAY limit accesses to that resource to
permit only accesses to memory allocated by viMemAlloc().

Page 5-36 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.2.2 MEMACC Resource Attributes

Generic MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI

VI_INTF_GPIB_VXI

VI_INTF_PXI

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_DMA_ALLOW_EN R/W Local ViBoolean VI_TRUE
VI_FALSE

VXI, GPIB-VXI, and PXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_SRC_INCREMENT R/W Local ViInt32 0 to 1

VI_ATTR_DEST_INCREMENT R/W Local ViInt32 0 to 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED

VI_USE_OPERS

VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR_32 RO Local ViBusAddress N/A

VI_ATTR_WIN_BASE_ADDR_64 RO Local ViBusAddress64 N/A

VI_ATTR_WIN_SIZE_32 RO Local ViBusSize N/A

VI_ATTR_WIN_SIZE_64 RO Local ViBusSize64 N/A

VXI and GPIB-VXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_VXI_LA RO Global ViInt16 0 to 255

VI_ATTR_SRC_BYTE_ORDER R/W Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

VI_ATTR_DEST_BYTE_ORDER R/W Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

VI_ATTR_WIN_BYTE_ORDER R/W* Local ViUInt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

 (continues)

Section 5: VISA Resource Classes Page 5-37

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VXI and GPIB-VXI Specific MEMACC Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_SRC_ACCESS_PRIV R/W Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

VI_D64_NPRIV

VI_D64_PRIV

VI_ATTR_DEST_ACCESS_PRIV R/W Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

VI_D64_NPRIV

VI_D64_PRIV

VI_ATTR_WIN_ACCESS_PRIV R/W* Local ViUInt16 VI_DATA_NPRIV

VI_DATA_PRIV

VI_PROG_NPRIV

VI_PROG_PRIV

VI_BLCK_NPRIV

VI_BLCK_PRIV

* For VISA 2.2, the attributes VI_ATTR_WIN_BYTE_ORDER and VI_ATTR_WIN_ACCESS_PRIV are R/W (readable

and writeable) when the corresponding session is not mapped (VI_ATTR_WIN_ACCESS == VI_NMAPPED).
When the session is mapped, these attributes are RO (read only).

GPIB-VXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0 to 30

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0 to 31,
VI_NO_SEC_ADDR

Page 5-38 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Attribute Descriptions

Generic MEMACC Resource Attributes

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use

DMA (VI_TRUE) or Programmed I/O (VI_FALSE). In
some implementations, this attribute may have global
effects even though it is documented to be a local attribute.
Since this affects performance and not functionality, that
behavior is acceptable.

VXI, GPIB-VXI, and PXI Specific MEMACC Resource Attributes

VI_ATTR_SRC_INCREMENT This is used in the viMoveInXX() operation to specify how
much the source offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
source address will be incremented by 1 after each transfer),
and the viMoveInXX() operation moves from consecutive
elements. If this attribute is set to 0, the viMoveInXX()
operation will always read from the same element, essentially
treating the source as a FIFO register.

VI_ATTR_DEST_INCREMENT This is used in the viMoveOutXX() operation to specify how

much the destination offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
destination address will be incremented by 1 after each
transfer), and the viMoveOutXX() operation moves into
consecutive elements. If this attribute is set to 0, the
viMoveOutXX() operation will always write to the same
element, essentially treating the destination as a FIFO register.

VI_ATTR_WIN_ACCESS Modes in which the current window may be accessed. The

valid modes are as follows:
• not currently mapped;
• through the operations viPeekXX() and viPokeXX()

only;
• through operations and/or by directly dereferencing the

address parameter as a pointer.

VI_ATTR_WIN_BASE_ADDR_64

VI_ATTR_WIN_BASE_ADDR_32 Base address of the interface bus to which this window is
mapped.

Section 5: VISA Resource Classes Page 5-39

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_WIN_SIZE_64

VI_ATTR_WIN_SIZE_32 Size of the region mapped to this window.

VXI and GPIB-VXI Specific MEMACC Resource Attributes

VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_BYTE_ORDER This attribute specifies the byte order to be used in high-level

access operations, such as viInXX() and viMoveInXX(),
when reading from the source.

VI_ATTR_DEST_BYTE_ORDER This attribute specifies the byte order to be used in high-level

access operations, such as viOutXX() and viMoveOutXX(),
when writing to the destination.

VI_ATTR_WIN_BYTE_ORDER This attribute specifies the byte order to be used in low-level

access operations, such as viMapAddress(), viPeekXX()
and viPokeXX(), when accessing the mapped window.

VI_ATTR_SRC_ACCESS_PRIV This attribute specifies the address modifier to be used in

high-level access operations, such as viInXX() and
viMoveInXX(), when reading from the source.

VI_ATTR_DEST_ACCESS_PRIV This attribute specifies the address modifier to be used in

high-level access operations, such as viOutXX() and
viMoveOutXX(), when writing to the destination.

VI_ATTR_WIN_ACCESS_PRIV This attribute specifies the address modifier to be used in low-

level access operations, such as viMapAddress(),
viPeekXX() and viPokeXX(), when accessing the mapped
window.

GPIB-VXI Specific MEMACC Attributes

VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GPIB-VXI is
attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the GPIB-VXI controller used by the given

session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPIB-VXI controller used by the

given session.

PERMISSION 5.2.2
IF the range value of 0 is passed to viSetAttribute() for VI_ATTR_SRC_INCREMENT or
VI_ATTR_DEST_INCREMENT, THEN viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

PERMISSION 5.2.3

IF the range value of VI_LITTLE_ENDIAN is passed to viSetAttribute() for
VI_ATTR_SRC_BYTE_ORDER, VI_ATTR_DEST_BYTE_ORDER, or VI_ATTR_WIN_BYTE_ORDER, THEN
viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

Page 5-40 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

PERMISSION 5.2.4

IF any range value other than VI_DATA_PRIV is passed to viSetAttribute() for
VI_ATTR_SRC_ACCESS_PRIV, VI_ATTR_DEST_ACCESS_PRIV, or VI_ATTR_WIN_ACCESS_PRIV,
THEN viSetAttribute() MAY return VI_ERROR_NSUP_ATTR_STATE.

RULE 5.2.2

All MEMACC resource implementations SHALL support the attributes VI_ATTR_INTF_TYPE,
VI_ATTR_INTF_INST_NAME, VI_ATTR_TMO_VALUE, VI_ATTR_INTF_NUM, and
VI_ATTR_DMA_ALLOW_EN.

RULE 5.2.3

A MEMACC resource implementation for a VXI or GPIB-VXI system SHALL support the attributes
VI_ATTR_WIN_BASE_ADDR, VI_ATTR_WIN_SIZE, VI_ATTR_WIN_ACCESS, VI_ATTR_SRC_INCREMENT,
VI_ATTR_DEST_INCREMENT, VI_ATTR_SRC_BYTE_ORDER, VI_ATTR_DEST_BYTE_ORDER,
VI_ATTR_WIN_BYTE_ORDER, VI_ATTR_SRC_ACCESS_PRIV, VI_ATTR_DEST_ACCESS_PRIV, and
VI_ATTR_WIN_ACCESS_PRIV.

RULE 5.2.4

A MEMACC resource implementation for a PXI system SHALL support the attributes
VI_ATTR_WIN_BASE_ADDR, VI_ATTR_WIN_SIZE, VI_ATTR_WIN_ACCESS, VI_ATTR_SRC_INCREMENT,
and VI_ATTR_DEST_INCREMENT.

RULE 5.2.5

IF a MEMACC resource implementation does not support DMA transfers, AND the attribute is
VI_ATTR_DMA_ALLOW_EN, AND the attribute state is VI_TRUE, THEN the call to viSetAttribute()
SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

Section5: VISA Resource Classes Page 5-41

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.2.3 MEMACC Resource Events

This resource defines the following event for communication with applications.

VI_EVENT_IO_COMPLETION

Description
Notification that an asynchronous operation has completed.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_JOB_ID RO ViJobId N/A

VI_ATTR_BUFFER RO ViBuf N/A

VI_ATTR_RET_COUNT RO ViBusSize *

VI_ATTR_OPER_NAME RO ViString N/A

VI_ATTR_RET_COUNT_32 RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RET_COUNT_64** RO ViUInt64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPP 4.3.x framework specification.
** Defined only for frameworks that are 64-bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O

operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronous operation

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an

asynchronous operation.

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously transferred.
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information on VI_ATTR_OPER_NAME, see its definition in Section 3.7.2.3, VI_EVENT_EXCEPTION.

RULE 5.2.6

All MEMACC resource implementations SHALL support the generation of the events
VI_EVENT_IO_COMPLETION and VI_EVENT_EXCEPTION.

Page 5-42 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.2.4 MEMACC Resource Operations

viIn8(vi, space, offset, val8)
viIn16(vi, space, offset, val16)
viIn32(vi, space, offset, val32)
viIn64(vi, space, offset, val64)
viOut8(vi, space, offset, val8)
viOut16(vi, space, offset, val16)
viOut32(vi, space, offset, val32)
viOut64(vi, space, offset, val64)
viMoveIn8(vi, space, offset, length, buf8)
viMoveIn16(vi, space, offset, length, buf16)
viMoveIn32(vi, space, offset, length, buf32)
viMoveIn64(vi, space, offset, length, buf64)
viMoveOut8(vi, space, offset, length, buf8)
viMoveOut16(vi, space, offset, length, buf16)
viMoveOut32(vi, space, offset, length, buf32)
viMoveOut64(vi, space, offset, length, buf64)
viMoveIn8Ex(vi, space, offset64, length, buf8)
viMoveIn16Ex(vi, space, offset64, length, buf16)
viMoveIn32Ex(vi, space, offset64, length, buf32)
viMoveIn64Ex(vi, space, offset64, length, buf64)
viMoveOut8Ex(vi, space, offset64, length, buf8)
viMoveOut16Ex(vi, space, offset64, length, buf16)
viMoveOut32Ex(vi, space, offset64, length, buf32)
viMoveOut64Ex(vi, space, offset64, length, buf64)
viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,

length)
viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,

length, jobId)
viMoveEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,

destWidth, length)
viMoveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,

destWidth, length, jobId)
viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested, address)
viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access, suggested, address)
viUnmapAddress(vi)
viPeek8(vi, addr, val8)
viPeek16(vi, addr, val16)
viPeek32(vi, addr, val32)
viPeek64(vi, addr, val64)
viPoke8(vi, addr, val8)
viPoke16(vi, addr, val16)
viPoke32(vi, addr, val32)
viPoke64(vi, addr, val64)
viMemAlloc(vi, size, offset)
viMemFree(vi, offset)
viMemAllocEx(vi, size, offset64)
viMemFreeEx(vi, offset64)

RULE 5.2.7

All MEMACC resource implementations SHALL support the operations viIn8(), viIn16(),
viIn32(), viIn64(), viOut8(), viOut16(), viOut32(), viOut64(), viMoveIn8(),
viMoveIn16(), viMoveIn32(), viMoveIn64(), viMoveOut8(), viMoveOut16(), viMoveOut32(),
viMoveOut64(), viMoveIn8Ex(), viMoveIn16Ex(), viMoveIn32Ex(), viMoveIn64Ex(),
viMoveOut8Ex(), viMoveOut16Ex(), viMoveOut32Ex(), viMoveOut64Ex(), viMove(),
viMoveAsync(), viMoveEx(), viMoveAsync(), viMapAddress(), viMapAddressEx(),
viUnmapAddress(), viPeek8(), viPeek16(), viPeek32(), viPeek64(), viPoke8(),
viPoke16(),viPoke32(), and viPoke64().

RULE 5.2.8

A MEMACC resource implementation for a PXI system SHALL support the operations viMemAlloc(),
viMemFree(), viMemAllocEx(), and viMemFreeEx().

Section 5: VISA Resource Classes Page 5-43

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.3 GPIB Bus Interface Resource

This section describes the resource that is provided to encapsulate the operations and properties of a raw
GPIB interface (reading, writing, triggering, and so on). A VISA GPIB Bus Interface (INTFC) Resource,
like any other resource, defines the basic operations and attributes of the VISA Resource Template. For
example, modifying the state of an attribute is done via the operation viSetAttribute(), which is
defined in the VISA Resource Template. Although the following resource does not have
viSetAttribute() listed in its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific operations and attributes that allow
it to perform its dedicated task.

5.3.1 INTFC Resource Overview

The INTFC Resource lets a controller interact with any devices connected to the board associated with this
resource. Services are provided to send blocks of data onto the bus, request blocks of data from the bus,
trigger devices on the bus, and send miscellaneous commands to any or all devices. In addition, the
controller can directly query and manipulate specific lines on the bus, and also pass control to other
devices with controller capability. These services are described in detail in the remainder of this section.
The Basic I/O and Formatted I/O services are also described in the INSTR Resource Overview in section
5.1.1.

Page 5-44 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.3.2 INTFC Resource Attributes

Generic INTFC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_GPIB

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_SEND_END_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TERMCHAR R/W Local ViUInt8 0 to FFh

VI_ATTR_TERMCHAR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_DEV_STATUS_BYTE RW Global ViUInt8 0 to FFh

VI_ATTR_WR_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_RD_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A

GPIB Specific INTFC Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_GPIB_PRIMARY_ADDR RW Global ViUInt16 0 to 30

VI_ATTR_GPIB_SECONDARY_ADDR RW Global ViUInt16 0 to 31, VI_NO_SEC_ADDR
VI_ATTR_GPIB_REN_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_GPIB_ATN_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

 (continues)

Section 5: VISA Resource Classes Page 5-45

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

GPIB Specific INTFC Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range

VI_ATTR_GPIB_NDAC_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_GPIB_SRQ_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_GPIB_CIC_STATE RO Global ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_GPIB_SYS_CNTRL_STATE RW Global ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_GPIB_HS488_CBL_LEN RW Global ViInt16 1 to 15,
VI_GPIB_HS488_DISABLED,

VI_GPIB_HS488_NIMPL

VI_ATTR_GPIB_ADDR_STATE RO Global ViInt16 VI_GPIB_UNADDRESSED
VI_GPIB_TALKER
VI_GPIB_LISTENER

Generic INTFC Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of

the buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read

and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should

terminate when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_DEV_STATUS_BYTE This attribute specifies the 488-style status byte of the local
controller associated with this session.

 If this attribute is written and bit 6 (0x40) is set, this device or
controller will assert a service request (SRQ) if it is defined
for this interface.

Page 5-46 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When
the operational mode is set to VI_FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

write buffer is flushed under the same conditions, and also
every time a viPrintf() operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use DMA

(VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this
affects performance and not functionality, that behavior is
acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the

operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush().

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

buffer is flushed every time a viScanf() operation
completes.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile() will

overwrite (truncate) or append when opening a file.

GPIB Specific INTFC Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the local GPIB controller used by the
given session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the local GPIB controller used by the

given session.

VI_ATTR_GPIB_REN_STATE This attribute returns the current state of the GPIB REN

(Remote ENable) interface line.

VI_ATTR_GPIB_ATN_STATE This attribute shows the current state of the GPIB ATN

(ATtentioN) interface line.

VI_ATTR_GPIB_NDAC_STATE This attribute shows the current state of the GPIB NDAC

(Not Data ACcepted) interface line.

VI_ATTR_GPIB_SRQ_STATE This attribute shows the current state of the GPIB SRQ

(Service ReQuest) interface line.

VI_ATTR_GPIB_CIC_STATE This attribute shows whether the specified GPIB interface is

currently CIC (controller in charge).

Section 5: VISA Resource Classes Page 5-47

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_GPIB_SYS_CNTRL_STATE This attribute shows whether the specified GPIB interface is
currently the system controller. In some implementations, this
attribute may be modified only through a configuration utility.
On these systems, this attribute is read only (RO).

VI_ATTR_GPIB_HS488_CBL_LEN This attribute specifies the total number of meters of GPIB

cable used in the specified GPIB interface. If HS488 is not
implemented, querying this attribute should return the value
VI_GPIB_HS488_NIMPL. On these systems, trying to set this
attribute value will return the error
VI_ERROR_NSUP_ATTR_STATE.

VI_ATTR_GPIB_ADDR_STATE This attribute shows whether the specified GPIB interface is
currently addressed to talk or listen, or is not addressed.

RULE 5.3.1

All INTFC resource implementations SHALL support the attributes VI_ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI_ATTR_SEND_END_EN, VI_ATTR_TERMCHAR,
VI_ATTR_TERMCHAR_EN, VI_ATTR_TMO_VALUE, VI_ATTR_DEV_STATUS_BYTE,
VI_ATTR_WR_BUF_OPER_MODE, VI_ATTR_DMA_ALLOW_EN, VI_ATTR_RD_BUF_OPER_MODE, and
VI_ATTR_FILE_APPEND_EN.

RULE 5.3.2
An INTFC resource implementation for a GPIB system SHALL support the attributes
VI_ATTR_GPIB_PRIMARY_ADDR, VI_ATTR_GPIB_SECONDARY_ADDR, VI_ATTR_GPIB_REN_STATE,
VI_ATTR_GPIB_ATN_STATE, VI_ATTR_GPIB_NDAC_STATE, VI_ATTR_GPIB_SRQ_STATE,
VI_ATTR_GPIB_CIC_STATE, VI_ATTR_GPIB_SYS_CNTRL_STATE, VI_ATTR_GPIB_HS488_CBL_LEN,
and VI_ATTR_GPIB_ADDR_STATE.

Page 5-48 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.3.3 INTFC Resource Events

VI_EVENT_GPIB_CIC

Description

Notification that the GPIB controller has gained or lost CIC (controller in charge) status.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_STATE RO ViBoolean VI_TRUE
VI_FALSE

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_GPIB_TALK

Description

Notification that the GPIB controller has been addressed to talk.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_TALK

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_GPIB_LISTEN

Description

Notification that the GPIB controller has been addressed to listen.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_LISTEN

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Section 5: VISA Resource Classes Page 5-49

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_EVENT_CLEAR

Description

Notification that the local controller has been sent a device clear message.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_CLEAR

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_TRIG

Description

Notification that a trigger interrupt was received from the interface.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID RO ViInt16 VI_TRIG_SW

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the

specified trigger event was received.

Page 5-50 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_EVENT_IO_COMPLETION

Description
Notification that an asynchronous operation has completed.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_JOB_ID RO ViJobId N/A

VI_ATTR_BUFFER RO ViBuf N/A

VI_ATTR_RET_COUNT RO ViBusSize *

VI_ATTR_OPER_NAME RO ViString N/A

VI_ATTR_RET_COUNT_32 RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RET_COUNT_64** RO ViUInt64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPP 4.3.x framework specification.
** Defined only for frameworks that are 64-bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O

operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronous operation

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an

asynchronous operation.

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously transferred.
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information on VI_ATTR_OPER_NAME, see its definition in Section 3.7.2.3, VI_EVENT_EXCEPTION.

RULE 5.3.3

All INTFC resource implementations SHALL support the generation of the events VI_EVENT_GPIB_CIC,
VI_EVENT_GPIB_TALK, VI_EVENT_GPIB_LISTEN, VI_EVENT_CLEAR, VI_EVENT_TRIG,
VI_EVENT_SERVICE_REQ, and VI_EVENT_IO_COMPLETION.

Section 5: VISA Resource Classes Page 5-51

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.3.4 INTFC Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
viAssertTrigger(vi, protocol)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viBufRead(vi, buf, count, retCount)
viGpibControlREN(vi, mode)
viGpibControlATN (vi, mode)
viGpibPassControl(vi, primAddr, secAddr)

viGpibCommand(vi, buf, count, retCount)
viGpibSendIFC(vi)

RULE 5.3.4

All INTFC resource implementations SHALL support the operations viRead(), viReadAsync(),
viReadToFile(), viWrite(), viWriteAsync(), viWriteFromFile(), viAssertTrigger(),
viSetBuf(), viFlush(), viPrintf(), viVPrintf(), viSPrintf(), viVSPrintf(),
viBufWrite(), viScanf(), viVScanf(), viSScanf(), viVSScanf(), viBufRead(),
viGpibControlREN(), viGpibControlATN(), viGpibPassControl(), viGpibCommand(), and
viGpibSendIFC().

Page 5-52 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.4 VXI Mainframe Backplane Resource

The VXI Mainframe Backplane (BACKPLANE) Resource encapsulates the VXI-defined operations and
properties of the backplane in a VXIbus system. A VISA VXI Mainframe Backplane Resource, like any
other resource, starts with the basic operations and attributes of the VISA Resource Template. For
example, modifying the state of an attribute is done via the operation viSetAttribute(), which is
defined in the VISA Resource Template. Although the following resource does not have
viSetAttribute() listed in its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resource adds its specific operations and attributes that allow
it to perform its dedicated task.

5.4.1 BACKPLANE Resource Overview

The BACKPLANE Resource lets a controller query and manipulate specific lines on a specific mainframe
in a given VXI system. Services are provided to map, unmap, assert, and receive hardware triggers, and
also to assert various utility and interrupt signals. This includes advanced functionality that may not be
available in all implementations or all vendors’ controllers. These services are described in detail in the
remainder of this section.

A VXI system with an embedded CPU with one mainframe will always have exactly one BACKPLANE
resource. Valid examples of resource strings for this are VXI0::0::BACKPLANE and VXI::BACKPLANE.
A multi-chassis VXI system may provide only one BACKPLANE resource total, but the recommended
way is to provide one BACKPLANE resource per chassis, with the resource string address corresponding
to the attribute VI_ATTR_MAINFRAME_LA. If a multi-chassis VXI system provides only one BACKPLANE
resource, it is assumed to control the backplane resources in all chassis.

RULE 5.4.1
A VXI or GPIB-VXI implementation that supports the BACKPLANE resource SHALL provide at least
one BACKPLANE resource per VXI or GPIB-VXI system.

RECOMMENDATION 5.4.1
A VXI or GPIB-VXI implementation should provide one BACKPLANE resource per VXI chassis.

OBSERVATION 5.4.1
Some VXI or GPIB-VXI implementations view all chassis in a VXI system as one entity. In these
configurations, separate BACKPLANE resources are not possible.

5.4.2 BACKPLANE Resource Attributes

Generic BACKPLANE Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI

VI_INTF_GPIB_VXI

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

Section 5: VISA Resource Classes Page 5-53

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VXI and GPIB-VXI Specific BACKPLANE Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_TRIG_ID R/W* Local ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_ATTR_MAINFRAME_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

VI_ATTR_VXI_VME_SYSFAIL_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN
VI_ATTR_VXI_VME_INTR_STATUS RO Global ViUInt16 N/A

VI_ATTR_VXI_TRIG_STATUS RO Global ViUInt32 N/A

VI_ATTR_VXI_TRIG_SUPPORT RO Global ViUInt32 N/A

Generic BACKPLANE Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VXI and GPIB-VXI Specific BACKPLANE Resource Attributes

VI_ATTR_TRIG_ID Identifier for the current triggering mechanism.

VI_ATTR_MAINFRAME_LA This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other
possible values include the logical address of the slot-0
controller or of the parent-side extender. Often, these are all
the same value. The purpose of this attribute is to provide a
unique ID for each mainframe. A VISA manufacturer can
choose any of these values, but must be consistent across
mainframes. If this value is not known, the attribute value
returned is VI_UNKNOWN_LA.

VI_ATTR_VXI_VME_SYSFAIL_STATE This attribute shows the current state of the VXI/VME
SYSFAIL (SYStem FAILure) backplane line.

VI_ATTR_VXI_VME_INTR_STATUS This attribute shows the current state of the VXI/VME

interrupt lines. This is a bit vector with bits 0-6 corresponding
to interrupt lines 1-7.

Page 5-54 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_VXI_TRIG_STATUS This attribute shows the current state of the VXI trigger lines.
This is a bit vector with bits 0-9 corresponding to
VI_TRIG_TTL0 through VI_TRIG_ECL1.

VI_ATTR_VXI_TRIG_SUPPORT This attribute shows which VXI trigger lines this implementation
supports. This is a bit vector with bits 0-9 corresponding to
VI_TRIG_TTL0 through VI_TRIG_ECL1.

RULE 5.4.2

All BACKPLANE resource implementations SHALL support the attributes VI_ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, and VI_ATTR_TMO_VALUE.

RULE 5.4.3

A BACKPLANE resource implementation for a VXI or GPIB-VXI system SHALL support the attributes
VI_ATTR_TRIG_ID, VI_ATTR_VXI_VME_SYSFAIL_STATE, VI_ATTR_VXI_VME_INTR_STATUS,
VI_ATTR_VXI_TRIG_STATUS, VI_ATTR_MAINFRAME_LA, and VI_ATTR_VXI_TRIG_SUPPORT.

Section 5: VISA Resource Classes Page 5-55

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.4.3 BACKPLANE Resource Events

VI_EVENT_TRIG

Description

Notification that a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID RO ViInt16 VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the

specified trigger event was received.

VI_EVENT_VXI_VME_SYSFAIL

Description

Notification that the VXI/VME SYSFAIL* line has been asserted.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_SYSFAIL

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

Page 5-56 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_EVENT_VXI_VME_SYSRESET

Description

Notification that the VXI/VME SYSRESET* line has been asserted.

Event Attribute

Symbolic Name
Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_SYSRESET

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

RULE 5.4.4

A BACKPLANE resource implementation for a VXI system SHALL support the generation of the events
VI_EVENT_VXI_VME_SYSFAIL, VI_EVENT_VXI_VME_SYSRESET, and VI_EVENT_TRIG.

5.4.4 BACKPLANE Resource Operations

viAssertTrigger(vi, protocol)
viAssertUtilSignal(vi, line)
viAssertIntrSignal(vi, mode, statusID)
viMapTrigger(vi, trigSrc, trigDest, mode)
viUnmapTrigger(vi, trigSrc, trigDest)

RULE 5.4.5

All BACKPLANE resource implementations SHALL support the operations viAssertTrigger(),
viAssertUtilSignal(), viAssertIntrSignal(), viMapTrigger(), viUnmapTrigger().

Section 5: VISA Resource Classes Page 5-57

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.5 Servant Device-Side Resource

The Servant (SERVANT) Resource encapsulates the operations and properties of the capabilities of a
device and a device’s view of the system in which it exists. A VISA Servant Resource, like any other
resource, starts with the basic operations and attributes of the VISA Resource Template. For example,
modifying the state of an attribute is done via the operation viSetAttribute(), which is defined in the
VISA Resource Template. Although the following resource does not have viSetAttribute() listed in
its operations, it provides the operation because it is defined in the VISA Resource Template. From this
basic set, each resource adds its specific operations and attributes that allow it to perform its dedicated task.

5.5.1 SERVANT Resource Overview

The SERVANT Resource exposes the device-side functionality of the device associated with this resource.
Services are provided to receive blocks of data from a commander and respond with blocks of data in
return, setting a 488-style status byte, and receiving device clear and trigger events. These services are
described in detail in the remainder of this section. The Basic I/O and Formatted I/O services are also
described in the INSTR Resource Overview in section 5.1.1.

The SERVANT resource is a class for advanced users who want to write firmware code that exports device
functionality across multiple interfaces. Most VISA users will not need this level of functionality and
should not use the SERVANT resource in their applications.

A VISA user of the TCPIP SERVANT resource should be aware that each VISA session corresponds to a
unique socket connection. If the user opens only one SERVANT session, this precludes multiple clients
from accessing the device.

Page 5-58 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.5.2 SERVANT Resource Attributes

Generic SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI

VI_INTF_GPIB

VI_INTF_TCPIP

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_SEND_END_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TERMCHAR R/W Local ViUInt8 0 to FFh

VI_ATTR_TERMCHAR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_DEV_STATUS_BYTE RW Global ViUInt8 0 to FFh

VI_ATTR_WR_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_RD_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A

GPIB Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_GPIB_PRIMARY_ADDR R/W Global ViUInt16 0 to 30

VI_ATTR_GPIB_SECONDARY_ADDR R/W Global ViUInt16 0 to 31,
VI_NO_SEC_ADDR

VI_ATTR_GPIB_REN_STATE RO Global ViInt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

VI_ATTR_GPIB_ADDR_STATE RO Global ViInt16 VI_GPIB_UNADDRESSED
VI_GPIP_TALKER
VI_GPIB_LISTENER

Section 5: VISA Resource Classes Page 5-59

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VXI Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_VXI_LA RO Global ViInt16 0 to 511

VI_ATTR_CMDR_LA RO Global ViInt16 0 to 255
VI_UNKNOWN_LA

TCPIP Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_TCPIP_DEVICE_NAME RO Global ViString N/A

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of

the buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should

terminate when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_DEV_STATUS_BYTE This attribute specifies the 488-style status byte of the local

controller associated with this session.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When

the operational mode is set to VI_FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

write buffer is flushed under the same conditions, and also
every time a viPrintf() operation completes.

Page 5-60 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use DMA
(VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this
affects performance and not functionality, that behavior is
acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the

operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush().

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

buffer is flushed every time a viScanf() operation
completes.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile() will

overwrite (truncate) or append when opening a file.

GPIB Specific SERVANT Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary address of the local GPIB controller used by the
given session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the local GPIB controller used by the

given session.

VI_ATTR_GPIB_REN_STATE This attribute returns the current state of the GPIB REN
(Remote ENable) interface line.

VI_ATTR_GPIB_ADDR_STATE This attribute showswhether the specified GPIB interface is
currently addressed to talk to listen, or to not addressed.

VXI Specific SERVANT Resource Attributes

VI_ATTR_VXI_LA Logical address of the VXI or VME device used by the given
session. For a VME device, the logical address is actually a
pseudo-address in the range 256 to 511.

VI_ATTR_CMDR_LA Logical address of the commander of the VXI device used by

the given session.

VI_ATTR_TCPIP_DEVICE_NAME This specifies the LAN device name used by the VXI-11
protocol during connection.

RULE 5.5.1

All SERVANT resource implementations SHALL support the attributes VI_ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI_ATTR_SEND_END_EN, VI_ATTR_TERMCHAR,
VI_ATTR_TERMCHAR_EN, VI_ATTR_TMO_VALUE, VI_ATTR_WR_BUF_OPER_MODE,
VI_ATTR_RD_BUF_OPER_MODE, VI_ATTR_DEV_STATUS_BYTE, VI_ATTR_DMA_ALLOW_EN, and
VI_ATTR_FILE_APPEND_EN.

Section 5: VISA Resource Classes Page 5-61

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 5.5.2
A SERVANT resource implementation for a GPIB system SHALL support the attributes
VI_ATTR_GPIB_PRIMARY_ADDR, VI_ATTR_GPIB_SECONDARY_ADDR, VI_ATTR_GPIB_REN_STATE,
and VI_ATTR_GPIB_ADDR_STATE.

RULE 5.5.3
A SERVANT resource implementation for a VXI system SHALL support the attributes
VI_ATTR_VXI_LA and VI_ATTR_CMDR_LA.

RULE 5.5.4
IF a SERVANT resource implementation does not support DMA transfers, AND the attribute is
VI_ATTR_DMA_ALLOW_EN, AND the attribute state is VI_TRUE, THEN the call to viSetAttribute()
SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

Page 5-62 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.5.3 SERVANT Resource Events

VI_EVENT_CLEAR

Description

Notification that the local controller has been sent a device clear message.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_CLEAR

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_IO_COMPLETION

Description
Notification that an asynchronous operation has completed.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_JOB_ID RO ViJobId N/A

VI_ATTR_BUFFER RO ViBuf N/A

VI_ATTR_RET_COUNT RO ViBusSize *

VI_ATTR_OPER_NAME RO ViString N/A

VI_ATTR_RET_COUNT_32 RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RET_COUNT_64** RO ViUInt64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPP 4.3.x framework specification.
** Defined only for frameworks that are 64-bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O

operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronous operation

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an

asynchronous operation.

Section 5: VISA Resource Classes Page 5-63

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously transferred.
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information on VI_ATTR_OPER_NAME, see its definition in Section 3.7.2.3, VI_EVENT_EXCEPTION.

VI_EVENT_GPIB_TALK

Description

Notification that the GPIB controller has been addressed to talk.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_TALK

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_GPIB_LISTEN

Description

Notification that the GPIB controller has been addressed to listen.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_LISTEN

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_TRIG

Description
Notification that the local controller has been triggered.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID RO ViInt16 VI_TRIG_SW

Page 5-64 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the

specified trigger event was received.

Section 5: VISA Resource Classes Page 5-65

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

VI_EVENT_VXI_VME_SYSRESET

Description

Notification that the VXI/VME SYSRESET* line has been asserted.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_SYSRESET

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_TCPIP_CONNECT

Description

Notification that a TCP/IP connection has been made.

Event Attribute

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TCPIP_CONNECT

VI_ATTR_RECV_TCPIP_ADDR RO ViString N/A

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TCPIP_ADDR This is the TCP/IP address of the device from which the

session received a connection.

RULE 5.5.5

All SERVANT resource implementations SHALL support the events VI_EVENT_IO_COMPLETION,
VI_EVENT_TRIG, and VI_EVENT_CLEAR.

RULE 5.5.6

A SERVANT resource implementation for a GPIB system SHALL support the events
VI_EVENT_GPIB_TALK and VI_EVENT_GPIB_LISTEN.

RULE 5.5.7

A SERVANT resource implementation for a VXI system SHALL support the event
VI_EVENT_VXI_VME_SYSRESET.

RULE 5.5.8

A SERVANT resource implementation for a TCPIP system SHALL support the event
VI_EVENT_TCPIP_CONNECT.

Page 5-66 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.5.4 SERVANT Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)

viAssertIntrSignal(vi, mode, statusID)
viAssertUtilSignal(vi, line)

RULE 5.5.9

All SERVANT resource implementations SHALL support the operations viRead(), viReadAsync(),
viWrite(), viWriteAsync(), viSetBuf(), viBufRead(), viScanf(), viPrintf(), viVPrintf(),
viFlush(),viBufWrite(), viSScanf(), viVSScanf(), viSPrintf(), viVSPrintf(),
viReadToFile(), and viWriteFromFile().

RULE 5.5.10
A SERVANT resource implementation for a VXI system SHALL support the operations
viAssertIntrSignal and viAssertUtilSignal().

RULE 5.5.11

A SERVANT resource implementation for a TCPIP system SHALL use the VXI-11 protocol.

Section 5: VISA Resource Classes Page 5-67

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.6 TCP/IP Socket Resource

The TCP/IP Socket (SOCKET) Resource encapsulates the operations and properties of the capabilities of a
raw network socket connection using TCP/IP. A VISA Socket Resource, like any other resource, starts
with the basic operations and attributes of the VISA Resource Template. For example, modifying the state
of an attribute is done via the operation viSetAttribute(), which is defined in the VISA Resource
Template. Although the following resource does not have viSetAttribute() listed in its operations, it
provides the operation because it is defined in the VISA Resource Template. From this basic set, each
resource adds its specific operations and attributes that allow it to perform its dedicated task.

5.6.1 SOCKET Resource Overview

The SOCKET Resource exposes the capability of a raw network socket connection over TCP/IP. This
ususally means Ethernet but the protocol is not restricted to that physical interface. Services are provided to
send and receive blocks of data. If the device is capable of communicating with 488.2-style strings, an
attribute setting also allows sending software triggers, querying a 488-style status byte, and sending a
device clear message. These services are described in detail in the remainder of this section. The Basic I/O
and Formatted I/O services are also described in the INSTR Resource Overview in section 5.1.1.

5.6.2 SOCKET Resource Attributes

Generic SOCKET Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_INTF_NUM RO Global ViUInt16 0 to FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_TCPIP

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_SEND_END_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TERMCHAR R/W Local ViUInt8 0 to FFh

VI_ATTR_TERMCHAR_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_WR_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN R/W Local ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_RD_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN R/W Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_IO_PROT R/W Local ViUInt16 VI_PROT_NORMAL
VI_PROT_4882_STRS

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A

Page 5-68 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

TCPIP Specific SOCKET Resource Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_TCPIP_ADDR RO Global ViString N/A

VI_ATTR_TCPIP_HOSTNAME RO Global ViString N/A

VI_ATTR_TCPIP_PORT RO Global ViUInt16 0 to FFFFh

VI_ATTR_TCPIP_NODELAY R/W Local ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_TCPIP_KEEPALIVE R/W Local ViBoolean VI_TRUE, VI_FALSE

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.

VI_ATTR_INTF_TYPE Interface type of the given session.

VI_ATTR_INTF_INST_NAME Human-readable text describing the given interface.

VI_ATTR_SEND_END_EN Whether to assert END during the transfer of the last byte of

the buffer.

VI_ATTR_TERMCHAR Termination character. When the termination character is read
and VI_ATTR_TERMCHAR_EN is enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag that determines whether the read operation should

terminate when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout

value of VI_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When

the operational mode is set to VI_FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the

write buffer is flushed under the same conditions, and also
every time a viPrintf() operation completes.

VI_ATTR_DMA_ALLOW_EN This attribute specifies whether I/O accesses should use DMA

(VI_TRUE) or Programmed I/O (VI_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this
affects performance and not functionality, that behavior is
acceptable.

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the

operational mode is set to VI_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls to viFlush().

Section 5: VISA Resource Classes Page 5-69

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

 If the operational mode is set to VI_FLUSH_ON_ACCESS, the
buffer is flushed every time a viScanf() operation
completes.

VI_ATTR_FILE_APPEND_EN This attribute specifies whether viReadToFile() will
overwrite (truncate) or append when opening a file.

VI_ATTR_IO_PROT Specifies which protocol to use.

TCPIP Specific SOCKET Resource Attributes

VI_ATTR_TCPIP_ADDR This is the TCPIP address of the device to which the session is
connected. This string is formatted in dot notation.

VI_ATTR_TCPIP_HOSTNAME This specifies the host name of the device. If no host name is
available, this attribute returns an empty string.

VI_ATTR_TCPIP_PORT This specifies the port number for a given TCPIP address.
For a TCPIP SOCKET resource, this is a required part of the
address string.

VI_ATTR_TCPIP_NODELAY The Nagle algorithm is disabled when this attribute is enabled
(and vice versa). The Nagle algorithm improves network
performance by buffering “send” data until a full-size packet
can be sent. This attribute is enabled by default in VISA to
verify that synchronous writes get flushed immediately.

VI_ATTR_TCPIP_KEEPALIVE An application can request that a TCP/IP provider enable the
use of “keep-alive” packets on TCP connections by turning on
this attribute. If a connection is dropped as a result of “keep-
alives,” the error code VI_ERROR_CONN_LOST is returned to
current and subsequent I/O calls on the session.

RULE 5.6.1
All SOCKET resource implementations SHALL support the attributes VI_ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI_ATTR_SEND_END_EN, VI_ATTR_TERMCHAR,
VI_ATTR_TERMCHAR_EN, VI_ATTR_TMO_VALUE, VI_ATTR_WR_BUF_OPER_MODE,
VI_ATTR_RD_BUF_OPER_MODE, VI_ATTR_DMA_ALLOW_EN, and VI_ATTR_FILE_APPEND_EN.

RULE 5.6.2
A SOCKET resource implementation for a TCPIP system SHALL support the attributes
VI_ATTR_TCPIP_ADDR, VI_ATTR_TCPIP_HOSTNAME, VI_ATTR_TCPIP_PORT,
VI_ATTR_TCPIP_NODELAY, and VI_ATTR_TCPIP_KEEPALIVE.

RULE 5.6.3
IF a SOCKET resource implementation does not support DMA transfers, AND the attribute is
VI_ATTR_DMA_ALLOW_EN, AND the attribute state is VI_TRUE, THEN the call to viSetAttribute()
SHALL return the completion code VI_WARN_NSUP_ATTR_STATE.

OBSERVATION 5.6.1
Since most SOCKET implementations use Ethernet, and Ethernet services do not usually support DMA,
trying to enable DMA on a SOCKET resource will most likely return VI_WARN_NSUP_ATTR_STATE.

Page 5-70 Section 5: VISA Resource Classes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

5.6.3 SOCKET Resource Events

VI_EVENT_IO_COMPLETION

Description

Notification that an asynchronous operation has completed.

Event Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS RO ViStatus N/A

VI_ATTR_JOB_ID RO ViJobId N/A

VI_ATTR_BUFFER RO ViBuf N/A

VI_ATTR_RET_COUNT RO ViBusSize *

VI_ATTR_OPER_NAME RO ViString N/A

VI_ATTR_RET_COUNT_32 RO ViUInt32 0 to FFFFFFFFh

VI_ATTR_RET_COUNT_64** RO ViUInt64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPP 4.3.x framework specification.
** Defined only for frameworks that are 64-bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O

operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronous operation

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an

asynchronous operation.

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously transferred.
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information on VI_ATTR_OPER_NAME, see its definition in Section 3.7.2.3, VI_EVENT_EXCEPTION.

RULE 5.6.4

All SOCKET resource implementations SHALL support the event VI_EVENT_IO_COMPLETION.

Section 5: VISA Resource Classes Page 5-71

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

5.6.4 SOCKET Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, filename, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, filename, count, retCount)
viAssertTrigger(vi, protocol)
viReadSTB(vi, status)
viClear(vi)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)

RULE 5.6.5

All SOCKET resource implementations SHALL support the operations viRead(), viReadAsync(),

viReadToFile (), viWrite(), viWriteAsync(), viWriteFromFile (), viAssertTrigger(),

viReadSTB(), viClear(), viSetBuf(), viFlush(), viBufRead(), viScanf(), viPrintf(),

viVPrintf(), viBufWrite(), viSScanf(), viVSScanf(), viSPrintf(), and viVSPrintf().

Section 6: VISA Resource-Specific Operations Page 6-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 6 VISA Resource-Specific Operations

This section describes in detail the operations that are specific to the VISA resources listed in the previous
sections. Under the Related Items section, each operation includes a list of the resources to which it
belongs. For operations that apply to more than one resource but have slightly different behavior for
different resources, any resource-specific information will be listed separately at the end of each operation.

These operations are grouped by the type of service they provide. The types of services, listed below, have
already been introduced in the previous sections.

• Basic I/O Services

• Formatted I/O Services

• Memory I/O Services

• Shared Memory Services

• Interface Specific Services

Page 6-2 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1 Basic I/O Services

6.1.1 viRead(vi, buf, count, retCount)

Purpose
 Read data from device synchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Represents the location of a buffer to receive
data from device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Represents the location of an integer that will
be set to the number of bytes actually
transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have END
indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

 (continues)

Section 6: VISA Resource-Specific Operations Page 6-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character
was not read from the hardware before the next
character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description
 The synchronous read operation synchronously transfers data. The data read is to be stored in the buffer

represented by buf. This operation returns only when the transfer terminates. Only one synchronous read
operation can occur at any one time.

Table 6.1.1 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INSTR resource description. Also see viWrite().

Implementation Requirements

OBSERVATION 6.1.1

A viRead() operation can complete successfully if one or more of the following conditions were met:
a) END indicator received. b) Termination character read. c) Number of bytes read is equal to count.
It is possible to have one, two, or all three of these conditions satisfied at the same time.

RULE 6.1.1

IF an END indicator is received, AND VI_ATTR_SUPPRESS_END_EN is VI_FALSE, THEN viRead()
SHALL return VI_SUCCESS, regardless of whether the termination character is received or the number of
bytes read is equal to count.

RULE 6.1.2

IF no END indicator is received, AND the termination character is read, AND VI_ATTR_TERMCHAR_EN is
VI_TRUE, THEN viRead() SHALL return VI_SUCCESS_TERM_CHAR, regardless of whether the number
of bytes read is equal to count.

Page 6-4 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 6.1.3
IF no END indicator is received, AND no termination character is read, AND the number of bytes read is
equal to count, THEN viRead() SHALL return VI_SUCCESS_MAX_CNT.

OBSERVATION 6.1.2

If you pass VI_NULL as the retCount parameter to the viRead() operation, the number of bytes
transferred will not be returned. This may be useful if it is important to know only whether the operation
succeeded or failed.

RULE 6.1.4

IF VI_ATTR_SUPPRESS_END_EN is VI_TRUE, THEN viRead() SHALL NOT return VI_SUCCESS.

RULE 6.1.5

IF VI_ATTR_TERMCHAR_EN is VI_FALSE, THEN viRead() SHALL NOT return
VI_SUCCESS_TERM_CHAR.

RULE 6.1.6

IF vi is a session to an ASRL INSTR resource, AND VI_ATTR_ASRL_END_IN is VI_ASRL_END_NONE,
THEN viRead() SHALL NOT return VI_SUCCESS.

RULE 6.1.7
IF vi is a session to an ASRL INSTR resource, AND VI_ATTR_ASRL_END_IN is
VI_ASRL_END_TERMCHAR, THEN viRead() SHALL treat the value stored in VI_ATTR_TERMCHAR as
an END indicator, regardless of the value of VI_ATTR_TERMCHAR_EN.

OBSERVATION 6.1.3

RULES 6.1.4 and 6.1.6 state conditions under which viRead() will not terminate because of an END
condition. The operation can still complete successfully due to a termination character or reading the
maximum number of bytes requested.

OBSERVATION 6.1.4

RULE 6.1.5 states a condition under which viRead() will not terminate because of reading a termination
character. The operation can still complete successfully due to reading the maximum number of bytes
requested.

Section 6: VISA Resource-Specific Operations Page 6-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.1.2 viReadAsync(vi, buf, count, jobId)

Purpose
 Read data from device asynchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Represents the location of a buffer to receive
data from device.

count IN ViUInt32 Number of bytes to be read.

jobId OUT ViJobId Represents the location of a variable that
will be set to the job identifier of this
asynchronous read operation.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC Read operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

VI_ERROR_IN_PROGRESS Unable to start a new asynchronous operation while
another asynchronous operation is in progress.

Description
 The asynchronous read operation asynchronously transfers data. The data read is to be stored in the buffer

represented by buf. This operation normally returns before the transfer terminates. An I/O Completion
event will be posted when the transfer is actually completed.

 The operation returns jobId, which you can use with either viTerminate() to abort the operation or

with an I/O Completion event to identify which asynchronous read operation completed.

Page 6-6 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 6.1.2 Special Values for jobId Parameter

Value Action Description

VI_NULL Do not return a job identifier.

Related Items
 See the INSTR resource description. Also see viRead(), viTerminate(), viWrite(), and

viWriteAsync().

Implementation Requirements

RULE 6.1.8

IF the output parameter jobId is not VI_NULL, THEN the value in jobId SHALL be valid before
viReadAsync() begins the data transfer.

OBSERVATION 6.1.5

Since an asynchronous I/O request could complete before the viReadAsync() operation returns, and the
I/O completion event can be distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event could possibly occur. Setting the
output parameter jobId before the data transfer even begins ensures that an application can always match
the jobId parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

OBSERVATION 6.1.6

If you pass VI_NULL as the jobId parameter to the viReadAsync() operation, no jobId will be
returned. This option may be useful if only one asynchronous operation will be pending at a given time.

OBSERVATION 6.1.7

If multiple jobs are queued at the same time on the same session, an application can use the jobId to
distinguish the jobs, as they are unique within a session.

PERMISSION 6.1.1

The viReadAsync() operation MAY be implemented synchronously, which could be done by using the
viRead() operation.

RULE 6.1.9

IF the viReadAsync() operation is implemented synchronously, AND a given invocation of the
operation is valid, THEN the operation SHALL return VI_SUCCESS_SYNC, AND all status information
SHALL be returned in a VI_EVENT_IO_COMPLETION.

OBSERVATION 6.1.8

The intent of PERMISSION 6.1.1 and RULE 6.1.9 is that an application can use the asynchronous
operations transparently, even if the low-level driver used for a given VISA implementation supports only
synchronous data transfers.

RULE 6.1.10

The status codes returned in the VI_ATTR_STATUS field of a VI_EVENT_IO_COMPLETION event resulting
from a call to viReadAsync() SHALL be the same codes as those listed for viRead().

Section 6: VISA Resource-Specific Operations Page 6-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

OBSERVATION 6.1.9
The status code VI_ERROR_RSRC_LOCKED can be returned either immediately or from the
VI_EVENT_IO_COMPLETION event.

OBSERVATION 6.1.10

The contents of the output buffer pointed to by buf are not guaranteed to be valid until the
VI_EVENT_IO_COMPLETION event occurs.

RULE 6.1.11
For each successful call to viReadAsync(), there SHALL be one and only one
VI_EVENT_IO_COMPLETION event occurrence.

RULE 6.1.12
IF the jobId parameter returned from viReadAsync() is passed to viTerminate(), AND a
VI_EVENT_IO_COMPLETION event has not yet occurred for the specified jobId, THEN the
viTerminate() operation SHALL raise a VI_EVENT_IO_COMPLETION event on the given vi, AND the
VI_ATTR_STATUS field of that event SHALL be set to VI_ERROR_ABORT.

RULE 6.1.13
IF the output parameter jobId is not VI_NULL AND the return status from viReadAsync() is
successful, THEN the value in jobId SHALL NOT be VI_NULL.

OBSERVATION 6.1.11
The value VI_NULL is a reserved jobId and has a special meaning in viTerminate().

Page 6-8 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1.3 viReadToFile(vi, fileName, count, retCount)

Purpose
 Read data synchronously, and store the transferred data in a file.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

fileName IN ViConstString Name of file to which data will be written.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Number of bytes actually transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have END
indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during
transfer.

 (continues)

Section 6: VISA Resource-Specific Operations Page 6-9

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description
VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A character
was not read from the hardware before the next
character arrived.

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified
file. Possible reasons include an invalid path or lack
of access rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description
 This read operation synchronously transfers data. The file specified in fileName is opened in binary write-

only mode. If the value of VI_ATTR_FILE_APPEND_EN is VI_FALSE, any existing contents are destroyed;
otherwise, the file contents are preserved. The data read is written to the file. This operation returns only
when the transfer terminates.

 This operation is useful for storing raw data to be processed later.

Table 6.1.3 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Page 6-10 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Related Items
 See the INSTR resource description. Also see viRead() and viWriteFromFile().

Implementation Requirements

RULE 6.1.14

The operation viReadToFile() SHALL open the file specified by fileName in binary mode.

OBSERVATION 6.1.12

If a VISA implementation uses the ANSI C file operations, the mode used by viReadToFile() should be
“wb” or “ab” depending on the value of VI_ATTR_FILE_APPEND_EN.

RULE 6.1.15

The operation viReadToFile() SHALL return the success codes VI_SUCCESS,
VI_SUCCESS_MAX_CNT, and VI_SUCCESS_TERM_CHAR under the same conditions as viRead().

Section 6: VISA Resource-Specific Operations Page 6-11

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.1.4 viWrite(vi, buf, count, retCount)

Purpose
 Write data to device synchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to be
sent to device.

count IN ViUInt32 Specifies number of bytes to be written.

retCount OUT ViUInt32 Represents the location of an integer that will
be set to the number of bytes actually
transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

 (continues)

Page 6-12 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO An unknown I/O error occurred during transfer.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description
 The write operation synchronously transfers data. The data to be written is in the buffer represented by

buf. This operation returns only when the transfer terminates. Only one synchronous write operation can
occur at any one time.

Table 6.1.4 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INSTR resource description. Also see viRead().

Implementation Requirements

OBSERVATION 6.1.13

If you pass VI_NULL as the retCount parameter to the viWrite() operation, the number of bytes
transferred will not be returned. This may be useful if it is important to know only whether the operation
succeeded or failed.

Section 6: VISA Resource-Specific Operations Page 6-13

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.1.5 viWriteAsync(vi, buf, count, jobId)

Purpose
 Write data to device asynchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to be
sent to device.

count IN ViUInt32 Specifies number of bytes to be written.

jobId OUT ViJobId Represents the location of a variable that
will be set to the job identifier of this
asynchronous write operation.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous write operation successfully queued.

VI_SUCCESS_SYNC Write operation performed synchronously.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue write operation.

VI_ERROR_IN_PROGRESS Unable to start a new asynchronous operation while
another asynchronous operation is in progress.

Description
 The write operation asynchronously transfers data. The data to be written is in the buffer represented by

buf. This operation normally returns before the transfer terminates. An I/O Completion event will be
posted when the transfer is actually completed.

 The operation returns jobId, which you can use with either viTerminate() to abort the operation or

with an I/O Completion event to identify which asynchronous write operation completed.

Page 6-14 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 6.1.5 Special Values for jobId Parameter

Value Action Description

VI_NULL Do not return a job identifier.

Related Items
 See the INSTR resource description. Also see viRead(), viTerminate(), viReadAsync(), and

viWrite().

Implementation Requirements

RULE 6.1.16

IF the output parameter jobId is not VI_NULL, THEN the value in jobId SHALL be valid before
viWriteAsync() begins the data transfer.

OBSERVATION 6.1.14
Since an asynchronous I/O request could complete before the vWriteAsync() operation returns, and the
I/O completion event can be distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event could possibly occur. Setting the
output parameter jobId before the data transfer even begins ensures that an application can always match
the jobId parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

OBSERVATION 6.1.15

If you pass VI_NULL as the jobId parameter to the viWriteAsync() operation, no jobId will be
returned. This option may be useful if only one asynchronous operation will be pending at a given time.

OBSERVATION 6.1.16

If multiple jobs are queued at the same time on the same session, an application can use the jobId to
distinguish the jobs, as they are unique within a session.

PERMISSION 6.1.2

The viWriteAsync() operation MAY be implemented synchronously, which could be done by using the
viWrite() operation.

RULE 6.1.17

IF the viWriteAsync() operation is implemented synchronously, AND a given invocation of the
operation is valid, THEN the operation SHALL return VI_SUCCESS_SYNC, AND all status information
SHALL be returned in a VI_EVENT_IO_COMPLETION.

OBSERVATION 6.1.17

The intent of PERMISSION 6.1.2 and RULE 6.1.14 is that an application can use the asynchronous
operations transparently, even if the low-level driver used for a given VISA implementation supports only
synchronous data transfers.

RULE 6.1.18

The status codes returned in the VI_ATTR_STATUS field of a VI_EVENT_IO_COMPLETION event resulting
from a call to viWriteAsync() SHALL be the same codes as those listed for viWrite().

Section 6: VISA Resource-Specific Operations Page 6-15

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

OBSERVATION 6.1.18
The status code VI_ERROR_RSRC_LOCKED can be returned either immediately or from the
VI_EVENT_IO_COMPLETION event.

RULE 6.1.19

For each successful call to viWriteAsync(), there SHALL be one and only one
VI_EVENT_IO_COMPLETION event occurrence.

RULE 6.1.20

IF the jobId parameter returned from viWriteAsync() is passed to viTerminate(), AND a
VI_EVENT_IO_COMPLETION event has not yet occurred for the specified jobId, THEN the
viTerminate() operation SHALL raise a VI_EVENT_IO_COMPLETION event on the given vi, AND the
VI_ATTR_STATUS field of that event SHALL be set to VI_ERROR_ABORT.

RULE 6.1.21
IF the output parameter jobId is not VI_NULL AND the return status from viWriteAsync() is
successful, THEN the value in jobId SHALL NOT be VI_NULL.

OBSERVATION 6.1.19
The value VI_NULL is a reserved jobId and has a special meaning in viTerminate().

Page 6-16 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1.6 viWriteFromFile(vi, fileName, count, retCount)

Purpose
 Take data from a file and write it out synchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

fileName IN ViConstString Name of file from which data will be read.

count IN ViUInt32 Number of bytes to be written.

retCount OUT ViUInt32 Number of bytes actually transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Transfer completed.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are
the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during transfer.

VI_ERROR_BERR Bus error occurred during transfer.

(continues)

Section 6: VISA Resource-Specific Operations Page 6-17

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description
VI_ERROR_NCIC The interface associated with the given vi is not currently

the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC

are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.

Possible reasons include an invalid path or lack of access
rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description
 This write operation synchronously transfers data. The file specified in fileName is opened in binary read-

only mode, and the data (up to end-of-file or the number of bytes specified in count) is read. The data is
then written to the device. This operation returns only when the transfer terminates.

 This operation is useful for sending data that was already processed and/or formatted.

Table 6.1.6 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INSTR resource description. Also see viWrite() and viReadToFile().

Implementation Requirements

RULE 6.1.22

The operation viWriteFromFile() SHALL open the file specified by fileName in binary mode.

OBSERVATION 6.1.20

If a VISA implementation uses the ANSI C file operations, the mode used by viWriteFromFile()
should be “rb”.

OBSERVATION 6.1.21

If you pass VI_NULL as the retCount parameter to the viWriteFromFile() operation, the number of
bytes transferred will not be returned. This may be useful if it is important to know only whether the
operation succeeded or failed.

Page 6-18 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1.7 viAssertTrigger(vi, protocol)

Purpose

Assert software or hardware trigger.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to session.

protocol IN ViUInt16 Trigger protocol to use during assertion.
Valid values are: VI_TRIG_PROT_DEFAULT,
VI_TRIG_PROT_ON, VI_TRIG_PROT_OFF,
VI_TRIG_PROT_SYNC,
VI_TRIG_PROT_RESERVE, and
VI_TRIG_PROT_UNRESERVE.

Return Value

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The specified trigger was successfully asserted to the
device.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

(continued)

Section 6: VISA Resource-Specific Operations Page 6-19

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description

This operation will source a software or hardware trigger dependent on the interface type. For a GPIB
device, the device is addressed to listen, and then the GPIB GET command is sent. For a VXI device, if
VI_ATTR_TRIG_ID is VI_TRIG_SW, then the device is sent the Word Serial Trigger command; for any
other values of the attribute, a hardware trigger is sent on the line corresponding to the value of that
attribute. For a session to a Serial device or TCP/IP socket, if VI_ATTR_IO_PROT is
VI_PROT_4882_STRS, the device is sent the string “*TRG\n”; otherwise, this operation is not valid. For a
session to a USB instrument, this function sends the TRIGGER message ID on the Bulk-OUT pipe.

For GPIB, ASRL, USB, and VXI software triggers, VI_TRIG_PROT_DEFAULT is the only valid protocol.
For VXI hardware triggers, VI_TRIG_PROT_DEFAULT is equivalent to VI_TRIG_PROT_SYNC.

For a PXI resource, viAssertTrigger() will reserve a trigger line for assertion, or release such a
reservation. Instrument drivers should use viAssertTrigger() to ensure that they have ownership of a
trigger line before performing any operation that could drive a signal onto that trigger line. The
protocol parameter can be either VI_TRIG_PROT_RESERVE or VI_TRIG_PROT_UNRESERVE, which
reserve a trigger line and release the reservation, respectively.

Related Items

See the INSTR resource description.

Implementation Requirements

RULE 6.1.23
 For compatibility with earlier versions of this specification, VI_TRIG_PROT_DEFAULT SHALL be equal to

VI_NULL.

RULE 6.1.24

IF the attribute VI_ATTR_IO_PROT is set to VI_PROT_NORMAL for a session to an ASRL INSTR or TCPIP
SOCKET resource, THEN the operation viAssertTrigger() SHALL return VI_ERROR_INV_SETUP.

RULE 6.1.25

An INSTR resource implementation of viAssertTrigger() for a USB System SHALL return the error
VI_ERROR_INV_SETUP for a USBTMC base-class (non-488) device.

RULE 6.1.26

An INSTR resource implementation of viAssertTrigger() for a USB System SHALL return the error
VI_ERROR_INV_SETUP for a USBTMC 488-class device that does not implement the optional trigger
message ID.

Page 6-20 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1.8 viReadSTB(vi, status)

Purpose
 Read a status byte of the service request.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to the session.

status OUT ViUInt16 Service request status byte.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the session.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Section 6: VISA Resource-Specific Operations Page 6-21

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Description
This operation reads a service request status from a service requester (the message-based device). For
example, on the IEEE 488.2 interface, the message is read by polling devices; for other types of interfaces,
a message is sent in response to a service request to retrieve status information. For a session to a Serial
device or TCP/IP socket, if VI_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is sent the string
“*STB?\n”, and then the device’s status byte is read; otherwise, this operation is not valid. If the status
information is only one byte long, the most significant byte is returned with the zero value. If the service
requester does not respond in the actual timeout period, VI_ERROR_TMO is returned. For a session to a
USB instrument, this function sends the READ_STATUS_BYTE command on the control pipe.

Related Items

See the INSTR resource description.

Implementation Requirements

RULE 6.1.27

IF the attribute VI_ATTR_IO_PROT is set to VI_PROT_NORMAL for a session to an ASRL INSTR or TCPIP
SOCKET resource, THEN the operation viReadSTB() SHALL return VI_ERROR_INV_SETUP.

RULE 6.1.28

An INSTR resource implementation of viReadSTB() for a USB System SHALL return the error
VI_ERROR_INV_SETUP for a USBTMC base-class (non-488) device.

RULE 6.1.29

IF the interface associated with the USB INSTR session has previously sent a service request notification,
THEN viReadSTB() SHALL use the status byte from that notification rather than sending a new
READ_STATUS_BYTE request on the control pipe.

PERMISSION 6.1.3

Since the operation viReadSTB() for USB INSTR must retain knowledge of service request notifications,
a vendor MAY implement either a queue of status bytes from previous notifications or a single cached
status byte, where each received status byte is bit-ORed into the single cached status byte.

Page 6-22 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.1.9 viClear(vi)

Purpose
 Clear a device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Description
 This operation performs an IEEE 488.1-style clear of the device. For VXI INSTR sessions, VISA must

use the Word Serial Clear command. For GPIB INSTR sessions, VISA must use the Selected Device
Clear command. For Serial INSTR sessions, VISA must flush (discard) the I/O output buffer, send a break,
and then flush (discard) the I/O input buffer. For TCP/IP SOCKET sessions, VISA must flush (discard) the
I/O buffers. For USB INSTR sessions, VISA must send the INITIATE_CLEAR and
CHECK_CLEAR_STATUS commands on the control pipe.

Section 6: VISA Resource-Specific Operations Page 6-23

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Related Items
 See the INSTR resource description.

Implementation Requirements

OBSERVATION 6.1.22

An invocation of the viClear() operations on an INSTR Resource will discard the read and write buffers
used by the formatted I/O services for that session.

PERMISSION 6.1.4

An implementation of the viClear() operation for a Serial INSTR resource or a TCP/IP SOCKET
resource MAY also send the string “*CLS\n” to the device. This is allowed for backward compatibility
with earlier VISA specifications that required this behavior.

OBSERVATION 6.1.23

The viClear() operation will no longer return an error for a Serial INSTR resource or a TCP/IP
SOCKET resource when the attribute VI_ATTR_IO_PROT is set to VI_PROT_NORMAL.

Page 6-24 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2 Formatted I/O Services

6.2.1 viSetBuf(vi, mask, size)

Purpose
 Set the size for the formatted I/O and/or serial communication buffer(s).

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUInt16 Specifies the type of buffer.

size IN ViUInt32 The size to be set for the specified buffer(s).

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Buffer size set successfully.

VI_WARN_NSUP_BUF The specified buffer is not supported.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the
specified size because of insufficient system
resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the given mask.

Description
 This operation changes the buffer size of the read and/or write buffer for formatted I/O and/or serial

communication. The mask parameter specifies which buffer to set the size of. The mask parameter can
specify multiple buffers by bit-ORing any of the following values together.

Flag Interpretation

VI_READ_BUF Formatted I/O read buffer.

VI_WRITE_BUF Formatted I/O write buffer.
VI_IO_IN_BUF I/O communication receive buffer.

VI_IO_OUT_BUF I/O communication transmit buffer.

Section 6: VISA Resource-Specific Operations Page 6-25

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

For backward compatibility, VI_IO_IN_BUF is the same as VI_ASRL_IN_BUF, and VI_IO_OUT_BUF is the
same as VI_ASRL_OUT_BUF.

Related Items

See the INSTR resource description. Also see viFlush().

Implementation Requirements

RULE 6.2.1
 A call to viSetBuf() SHALL flush the session’s related buffer(s) (for input buffers discard until END;

for output buffers flush to device).

RULE 6.2.2
 The system-allocated buffer(s) for a given session SHALL be freed by the system on session termination.

OBSERVATION 6.2.1
 The size of the buffer(s) can have effects on the transfer performance for formatted I/O and/or low-level

communication.

RULE 6.2.3
 IF an ASRL INSTR or TCPIP INSTR or TCPIP SOCKET resource does not support setting the size of the

I/O receive buffer, THEN a call to viSetBuf() with the VI_IO_IN_BUF mask SHALL return
VI_WARN_NSUP_BUF.

RULE 6.2.4
 IF an ASRL INSTR or TCPIP INSTR or TCPIP SOCKET resource does not support setting the size of the

I/O transmit buffer, THEN a call to viSetBuf() with the VI_IO_OUT_BUF mask SHALL return
VI_WARN_NSUP_BUF.

OBSERVATION 6.2.2
 Since not all serial drivers support user-defined buffer sizes, it is possible that a specific implementation of

VISA may not be able to control this feature. If an application requires a specific buffer size for
performance reasons, but a specific implementation of VISA cannot guarantee that size, then it is
recommended to use some form of handshaking to prevent overflow conditions.

Page 6-26 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2.2 viFlush(vi, mask)

Purpose
 Manually flush the specified buffers associated with formatted I/O operations and/or serial communication.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mask IN ViUInt16 Specifies the action to be taken with flushing
the buffer.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Buffers flushed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O
error.

VI_ERROR_TMO The read/write operation was aborted because timeout
expired while operation was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush
operation on read/write resource.

Section 6: VISA Resource-Specific Operations Page 6-27

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Description
 The value of mask can be one of the following flags:

Flag Interpretation

VI_READ_BUF Discard the read buffer contents and if data was
present in the read buffer and no END-indicator was
present, read from the device until encountering an
END indicator (which causes the loss of data). This
action resynchronizes the next viScanf() call to read
a <TERMINATED RESPONSE MESSAGE>.
(Refer to the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not perform
any I/O to the device).

VI_WRITE_BUF Flush the write buffer by writing all buffered data to
the device.

VI_WRITE_BUF_DISCARD Discard the write buffer contents (does not perform
any I/O to the device).

VI_IO_IN_BUF Discards the receive buffer contents (same as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard the receive buffer contents (does not perform
any I/O to the device).

VI_IO_OUT_BUF Flush the transmit buffer by writing all buffered data
to the device.

VI_IO_OUT_BUF_DISCARD Discard the transmit buffer contents (does not perform
any I/O to the device).

 It is possible to combine any of these read flags and write flags for different buffers by ORing the flags.

However, combining two flags for the same buffer in the same call to viFlush() is illegal.

 Notice that when using formatted I/O operations with a serial device, a flush of the formatted I/O buffers

also causes the corresponding serial communication buffers to be flushed. For example, calling
viFlush() with VI_WRITE_BUF also flushes the VI_IO_OUT_BUF.

 For backward compatibility, VI_IO_IN_BUF is the same as VI_ASRL_IN_BUF, VI_IO_IN_BUF_DISCARD

is the same as VI_ASRL_IN_BUF_DISCARD, VI_IO_OUT_BUF is the same as VI_ASRL_OUT_BUF, and
VI_IO_OUT_BUF_DISCARD is the same as VI_ASRL_OUT_BUF_DISCARD.

Related Items
 See the INSTR resource description. Also see viSetBuf().

Implementation Requirements

RULE 6.2.5
 IF viFlush() is invoked on an empty buffer, THEN the VISA system SHALL NOT perform any

actions on the buffer.

Page 6-28 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2.3 viPrintf(vi, writeFmt, arg1, arg2,...)

Purpose
 Convert, format, and send the parameters arg1, arg2, ... to the device as specified by the format string.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString String describing the format for arguments.

arg1, arg2 IN N/A Parameters format string is applied to.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform write operation because of I/O
error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description
 This operation sends data to a device as specified by the format string. Before sending the data, the

operation formats the arg characters in the parameter list as specified in the writeFmt string. The
viWrite() operation performs the actual low-level I/O to the device. As a result, you should not use the
viWrite() and viPrintf() operations in the same session.

 The writeFmt string can include regular character sequences, special formatting characters, and special

format specifiers. The regular characters (including white spaces) are written to the device unchanged. The
special characters consist of ‘\’ (backslash) followed by a character. The format specifier sequence consists
of ‘%’ (percent) followed by an optional modifier (flag), followed by a format code.

Section 6: VISA Resource-Specific Operations Page 6-29

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Special Formatting Characters

Special formatting character sequences send special characters. The following table lists the special
characters and describes what they send to the device.

Formatting Character Character Sent to Device

\n Sends the ASCII LF character. The END identifier will also be
automatically sent.

\r Sends an ASCII CR character.

\t Sends an ASCII TAB character.

\### Sends the ASCII character specified by the octal value.

\" Sends the ASCII double-quote (") character.

\\ Sends a backslash (\) character.

Format Specifiers

The format specifiers convert the next parameter in the sequence according to the modifier and format
code, after which, the formatted data is written to the specified device. The format specifier takes the
following syntax:

%[modifiers]format code

where format code specifies the data type in which the argument is represented. Modifiers are optional
codes that describe the target data.

In the following tables, a ‘d’ format code refers to all conversion codes of type integer (‘d’, ‘i’, ‘o’, ‘u’, ‘x’,
‘X’), unless specified as %d only. Similarly, an ‘f’ format code refers to all conversion codes of type float
(‘f’, ‘e’, ‘E’, ‘g’, ‘G’), unless specified as %f only.

Every conversion command starts with the % character and ends with a conversion character (format
code). Between the % character and the format code, the following modifiers can appear in the sequence:

ANSI C Standard Modifiers

Modifier Supported with
Format Code

Description

An integer
specifying
field width.

d, f, s format codes This specifies the minimum field width of the
converted argument. If an argument is shorter than the
field width, it will be padded on the left (or on the right
if the - flag is present).

Special case:

 For the @H, @Q, and @B flags, the field width
 includes the #H, #!, and #B strings, respectively.

A * may be present in lieu of a field width modifier, in
which case an extra arg is used. This arg must be an
integer representing the field width.

 (continues)

Page 6-30 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Modifier Supported with
Format Code

Description

An integer
specifying
precision.

d, f, s format codes The precision string consists of a string of decimal
digits. A . (decimal point) must prefix the precision
string. The precision string specifies the following:

a. The minimum number of digits to appear for the
@1, @H, @Q, and @B flags and the i, o, u, x, and
X format codes.

b. The maximum number of digits after the decimal
point in case of f format codes.

c. The maximum numbers of characters for the string
(s) specifier.

d. Maximum significant digits for g format code.

An asterisk (*) may be present in lieu of a precision
modifier, in which case an extra arg is used. This arg
must be an integer representing the precision of a
numeric field.

An argument
length
modifier.

h, l, L, z, and
Z are legal
values. (z and
Z are not
ANSI C
standard
flags.)

h (d, b, B format
codes)

l (d, f, b, B format
codes)

L (f format code)

z, Z (b, B format
codes)

The argument length modifiers specify one of the
following:

a. The h modifier promotes the argument to a short or
unsigned short, depending on the format code type.

b. The l modifier promotes the argument to a long or
unsigned long.

c. The L modifier promotes the argument to a long
double parameter.

d. The z modifier promotes the argument to an array
of floats.

e. The Z modifier promotes the argument to an array
of doubles.

Section 6: VISA Resource-Specific Operations Page 6-31

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Enhanced Modifiers to ANSI C Standards

Modifier Supported with
Format Code

Description

A comma (‘,’)
followed by an
integer n,
where n
represents the
array size.

%d (plus variants)
and %f only

The corresponding argument is interpreted as a
reference to the first element of an array of size n. The
first n elements of this list are printed in the format
specified by the format code.

An asterisk (‘*’) may be present after the ‘,’ modifier, in
which case an extra arg is used. This arg must be an
integer representing the array size of the given type.

@1 %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined NR1 compatible
number, which is an integer without any decimal point
(for example, 123).

@2 %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined NR2 compatible
number. The NR2 number has at least one digit after the
decimal point (for example, 123.45).

@3 %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined NR3 compatible
number. An NR3 number is a floating point number
represented in an exponential form (for example,
1.2345E-67).

@H %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <HEXADECIMAL
NUMERIC RESPONSE DATA>. The number is
represented in a base of 16 form. Only capital letters
should represent numbers. The number is of form
"#HXXX..," where XXX.. is a hexadecimal number (for
example, #HAF35B).

@Q %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <OCTAL
NUMERIC RESPONSE DATA>. The number is
represented in a base of eight form. The number is of
the form "#QYYY..," where YYY.. is an octal number (for
example, #Q71234).

@B %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <BINARY
NUMERIC RESPONSE DATA>. The number is
represented in a base two form. The number is of the
form "#BZZZ..," where ZZZ.. is a binary number (for
example, #B011101001).

The following are the allowed format code characters. A format specifier sequence should include one and
only one format code.

Page 6-32 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Standard ANSI C Format Codes

% Send the ASCII percent (%) character.

c Argument type: A character to be sent.

d Argument type: An integer.

Modifier Interpretation

Default functionality Print an integer in NR1 format (an integer without a decimal point).

@2 or @3 The integer is converted into a floating point number and output in
the correct format.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a long integer.

Length modifier h arg is a short integer.

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The elements of
this array are separated by array size - 1 commas and output in the
specified format.

f Argument type: A floating point number.

Modifier Interpretation

Default functionality Print a floating point number in NR2 format (a number with at least
one digit after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific notation).
Precision can also be specified.

field width Minimum field width of the output number. Any of the six
IEEE 488.2 modifiers can also be specified with field width.

Length modifier l arg is a double float.

Length modifier L arg is a long double.

, array size arg points to an array of floats (or doubles or long doubles),
depending on the length modifier) of size array size. The elements of
this array are separated by array size – 1 commas and output in the
specified format.

s Argument type: A reference to a NULL-terminated string that is sent to the device without

change.

Section 6: VISA Resource-Specific Operations Page 6-33

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Enhanced Format Codes

b Argument type: A location of a block of data.

Flag or Modifier Interpretation

Default functionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. A count (long integer)
must appear as a flag that specifies the number of elements (by
default, bytes) in the block. A field width or precision modifier is not
allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two
args are used, the first of which is a long integer specifying the
count of the number of elements in the data block. The second arg
is a reference to the data block. The size of an element is determined
by the optional length modifier (see below), default being byte
width.

Length modifier h The data block is assumed to be an array of unsigned short integers
(16 bits). The count corresponds to the number of words rather than
bytes. The data is swapped and padded into standard IEEE 488.2
format, if native computer representation is different.

Length modifier l The data block is assumed to be an array of unsigned long integers.
The count corresponds to the number of longwords (32 bits). Each
longword data is swapped and padded into standard IEEE 488.2
format, if native computer representation is different.

Length modifier z The data block is assumed to be an array of floats. The count
corresponds to the number of floating point numbers (32 bits). The
numbers are represented in IEEE 754 format, if native computer
representation is different.

Length modifier Z The data block is assumed to be an array of doubles. The count
corresponds to the number of double floats (64 bits). The numbers
will be represented in IEEE 754 format, if native computer
representation is different.

B Argument type: A location of a block of data. The functionality is similar to b, except the data

block is sent as an IEEE 488.2 <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA>. This format involves sending an ASCII LF character with the END indicator set after the
last byte of the block.

Page 6-34 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

y Argument type: A location of a block of binary data.

Flags or Modifiers Interpretation

Default functionality The data block is sent as raw binary data. A count (long integer)
must appear as a flag that specifies the number of elements (by
default, bytes) in the block. A field width or precision modifier is
not allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case, two
args are used, the first of which is a long integer specifying the
count of the number of elements in the data block. The second arg
is a reference to the data block. The size of an element is
determined by the optional length modifier (see below), default
being byte width.

Length modifier h The data block is an array of unsigned short integers (16 bits). The
count corresponds to the number of words rather than bytes. If the
optional “!ol” byte order modifier is present, the data is sent in
little endian format; otherwise, the data is sent in standard IEEE
488.2 format. Data will be byte swapped and padded as appropriate
if native computer representation is different.

Length modifier l The data block is an array of unsigned long integers (32 bits). The
count corresponds to the number of longwords rather than bytes. If
the optional “!ol” byte order modifier is present, the data is sent in
little endian format; otherwise, the data is sent in standard IEEE
488.2 format. Data will be byte swapped and padded as appropriate
if native computer representation is different.

Byte order modifier !ob Data is sent in standard IEEE 488.2 (big endian) format. This is the
default behavior if neither “!ob” nor “!ol” is present.

Byte order modifier !ol Data is sent in little endian format.

OBSERVATION 6.2.3
 The END indicator is not appended when LF(\n) is part of a binary data block, as with %b or %B.

BNF Format for viPrintf()

The following is the BNF format for the viPrintf() writeFmt string:

<print_fmt> := {<slashed_special> | <conversion> | <ascii_char> }*

<slashed_special> := "\n" | "\r" | "\\" | "\t" | <oct_esc> | "\"

<oct_esc> := "\"<oct_digit> [<oct_digit> [<oct_digit>]]

<ascii_char> := ASCII characters (other than backslash (\), percent (%), and NULL).

<conversion> := <fmt_cod_d> | <fmt_cod_f> | <fmt_cod_c> | <fmt_cod_b> |
 <fmt_cod_B> | <fmt_cod_s> | <fmt_cod_e> | <fmt_cod_y> | "%%"

<fmt_cod_d> := "%" [<numeric_mod>] [<field width>]
 ["." <precision>] [","<array_size>] ["l" | "h"] "d"

Section 6: VISA Resource-Specific Operations Page 6-35

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

<fmt_cod_f> := "%" [<numeric_mod>] [<field_width>]
 ["." <precision>] [","<array_size>] ["l" |"L"] "f"

<fmt_cod_e> := "%" [<numeric_mod>] [<field_width>]
 ["." <precision>] [","<array_size>] ["l" |"L"] "e"

<fmt_cod_b> := "%" <array_size> ["h" | "l" | "z" |"Z"] "b"

<fmt_cod_B> := "%" <array_size> ["h" | "l" | "z" | "Z"] "B"

<fmt_cod_c> := "%c"

<fmt_cod_s> := "%" [<just_mod>] [<field_width>] ["."<precision>] "s"

<fmt_cod_y> := "%" <array_size> [<swap_mod>] ["h" | "l"] "y"

<swap_mod> := "!ob" | "!ol"

<numeric_mod> := "-" | "+" | " " | "@1" | "@2" | "@3" | "@H" | "@Q" | "@B"

<just_mod> := "-"

<field_width> := <positive_integer> | "*"

<precision> := <positive_integer> | "*"

<array_size> := <positive_integer> | "*"

Related Items

 See the INSTR resource description. Also see viVPrintf().

Implementation Requirements

RULE 6.2.6
 There SHALL be a one-to-one correspondence between % format conversion and arg parameters, except

under the following circumstances:

1. If a * is present for the field width modifier, then another arg parameter is used. This parameter is an
integer.

2. If a * is present for the precision modifier, then another arg parameter is used. This parameter is an

integer.

3. If a * is present for the array_size in the %b, %B, or %y conversion, then another arg parameter is

used. This parameter is a long integer.

4. If a * is present for the array_size in the %d or %f conversion, then another arg parameter is used.

This parameter is an integer.

Page 6-36 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

OBSERVATION 6.2.4
 Up to four arg parameters may be required to satisfy a % format conversion request. In the case where

multiple args are required, they appear in the following order:

- field width (* with %d, %f, or %s) if used
- precision (* with %d, %f, or %s) if used
- array_size (* with %b, %B, %y, %d, or %f) if used
- value to convert

OBSERVATION 6.2.5

This assumes that a * is provided for both the field width and the precision modifiers in a %s, %d, or %f.
The third arg parameter is used to satisfy a ",*" comma operator. The fourth arg parameter is the value to
be converted itself.

RULE 6.2.7

 For ANSI C compatibility the following conversion codes SHALL also be supported for output codes.
These codes are ‘i,’ ‘o,’ ‘u,’ ‘n,’ ‘x,’ ‘X,’ ‘e,’ ‘E,’ ‘g,’ ‘G,’ and ‘p.’ For further explanation of these
conversion codes, see the ANSI C Standard.

Section 6: VISA Resource-Specific Operations Page 6-37

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.4 viVPrintf(vi, writeFmt, params)

Purpose
 Convert, format, and send params to the device as specified by the format string.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string to apply to parameters in
ViVAList.

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data is written to the
specified device.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform write operation because of I/O
error.

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description
 This operation is similar to viPrintf(), except that the ViVAList parameters list provides the

parameters rather than separate arg parameters.

Related Items
 See the INSTR resource description. Also see viPrintf().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 6-38 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2.5 viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)

Purpose
 Same as viPrintf(), except the data is written to a user-specified buffer rather than the device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Buffer where data is to be written.

writeFmt IN ViString The format string to apply to parameters in
ViVAList.

arg1, arg2 IN N/A A list containing the variable number of
parameters on which the format string is
applied. The formatted data is written to the
specified device.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description
 This operation is similar to viPrintf(), except that the output is not written to the device; it is written to

the user-specified buffer. This output buffer will be NULL terminated.
Related Items
 See the INSTR resource description. Also see viPrintf().

Implementation Requirements

RULE 6.2.8
 IF the viSPrintf() operations outputs an END indicator before all the arguments are satisfied, THEN

the rest of the writeFmt string SHALL be ignored and the buffer string will still be terminated by a
NULL.

Section 6: VISA Resource-Specific Operations Page 6-39

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.6 viVSPrintf(vi, buf, writeFmt, params)

Purpose
 Same as viVPrintf(), except that the data is written to a user-specified buffer rather than a device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Buffer where data is to be written.

writeFmt IN ViString The format string to apply to parameters in
ViVAList.

params IN ViVAList A list containing the variable number of
parameters on which the format string is
applied. The formatted data is written to the
specified device.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Parameters were successfully formatted.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description
 This operation is similar to viVPrintf(), except that the output is not written to the device; it is written

to the user-specified buffer. This output buffer will be NULL terminated.

Page 6-40 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Related Items
 See the INSTR resource description. Also see viSPrintf() and viVPrintf().

Implementation Requirements

RULE 6.2.9
 IF the viVSPrintf() operations outputs an END indicator before all the arguments are satisfied, THEN

the rest of the writeFmt string SHALL be ignored and the buffer string will still be terminated by a
NULL.

Section 6: VISA Resource-Specific Operations Page 6-41

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.7 viBufWrite(vi, buf, count, retCount)

Purpose
 Similar to viWrite(), except the data is written to the formatted I/O write

buffer rather than directly to the device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to be
sent to device.

count IN ViUInt32 Specifies number of bytes to be written.

retCount OUT ViUInt32 Represents the location of an integer that will
be set to the number of bytes actually
transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid
(due to attributes being set to an inconsistent state).

VI_ERROR_IO An unknown I/O error occurred during transfer.

Description
 This operation is similar to viWrite() and does not perform any kind of data formatting. It differs from

viWrite() in that the data is written to the formatted I/O write buffer (the same buffer as used by
viPrintf() and related operations) rather than directly to the device. This operation can intermix with
the viPrintf() operation, but mixing it with the viWrite() operation is discouraged.

Page 6-42 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 6.2.1 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INSTR resource description. Also see viWrite() and viBufRead().

Implementation Requirements

RULE 6.2.10

IF the viBufWrite() operation returns VI_ERROR_TMO, THEN the write buffer for the specified session
SHALL be cleared.

OBSERVATION 6.2.6

If you pass VI_NULL as the retCount parameter to the viBufWrite() operation, the number of bytes
transferred will not be returned. This may be useful if it is important to know only whether the operation
succeeded or failed.

Section 6: VISA Resource-Specific Operations Page 6-43

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.8 viScanf(vi, readFmt, arg1, arg2,...)

Purpose
 Read, convert, and format data using the format specifier. Store the formatted data in the arg1, arg2

parameters.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readFmt IN ViString String describing the format for arguments.

arg1, arg2 OUT N/A A list with the variable number of parameters
into which the data is read and the format
string is applied.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Page 6-44 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
This operation receives data from a device, formats it by using the format string, and stores the resultant
data in the arg parameter list. The format string can have format specifier sequences, white characters, and
ordinary characters. The white characters—blank, vertical tabs, horizontal tabs, form feeds, new
line/linefeed, and carriage return—are ignored except in the case of %c and %[]. All other ordinary
characters except % should match the next character read from the device.

The format string consists of a %, followed by optional modifier flags, followed by one of the format codes
in that sequence. It is of the form

%[modifier]format code

where the optional modifier describes the data format, while format code indicates the nature of data (data
type). One and only one format code should be performed at the specifier sequence. A format specification
directs the conversion to the next input arg. The results of the conversion are placed in the variable that
the corresponding argument points to, unless the * assignment-suppressing character is given. In such a
case, no arg is used and the results are ignored.

The viScanf() operation accepts input until an END indicator is read or all the format specifiers in the
readFmt string are satisfied. Thus, detecting an END indicator before the readFmt string is fully
consumed will result in ignoring the rest of the format string. Also, if some data remains in the buffer after
all format specifiers in the readFmt string are satisfied, the data will be kept in the buffer and will be used
by the next viScanf operation.

OBSERVATION 6.2.7
The viRead() operation is used for the actual low-level read from the device. Therefore, viRead()
should not be used in the same session with formatted I/O operations. Also, if multiple sessions using
formatted I/O resources are connected to the same device, the actual low-level reads must be synchronized
between themselves.

OBSERVATION 6.2.8

Notice that when an END indicator is received, not all arguments in the format string may be consumed.
However, the operation still returns a successful completion code.

RULE 6.2.11
The formatted I/O read operations SHALL honor the state of the VI_ATTR_TERMCHAR_EN attribute.

OBSERVATION 6.2.9
Although formatted I/O operations generally read until an END indicator is received, RULE 6.2.11 allows
the user to also specify a termination character that, if read, will cause the formatted I/O operations to stop
reading from the device.

The following two tables describe optional modifiers that can be used in a format specifier sequence.

Section 6: VISA Resource-Specific Operations Page 6-45

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

ANSI C Standard Modifiers

Modifier Supported with
Format Codes

Description

An integer
representing
the field width

%s, %c, %[]
format codes

It specifies the maximum field width that the argument will
take. A ‘#’ may also appear instead of the integer field width,
in which case the next arg is a reference to the field width.
This arg is a reference to an integer for %c and %s. The
field width is not allowed for %d or %f.

A length
modifier (‘l,’
‘h,’ ‘z,’ or
‘Z’).
z and Z are
not ANSI C
standard
modifiers.

h (d, b format
codes)

l (d, f, b format
codes)

L (f format code)

z, Z (b format code)

The argument length modifiers specify one of the following:

a. The h modifier promotes the argument to be a reference
to a short integer or unsigned short integer, depending
on the format code.

b. The l modifier promotes the argument to point to a long
integer or unsigned long integer.

c. The L modifier promotes the argument to point to a long
double floats parameter.

d. The z modifier promotes the argument to point to an
array of floats.

e. The Z modifier promotes the argument to point to an
array of double floats.

* (asterisk) All format codes An asterisk acts as the assignment suppression character.
The input is not assigned to any parameters and is discarded.

Enhanced Modifiers to ANSI C Standards

Modifier Supported with
Format Codes

Description

A comma (‘,’)
followed by
an integer n,
where n
represents the
array size.

%d (plus variants)
and %f only

The corresponding argument is interpreted as a reference to
the first element of an array of size n. The first n elements of
this list are printed in the format specified by the format
code.

A number sign (‘#’) may be present after the ‘,’ modifier, in
which case an extra arg is used. This arg must be an integer
representing the array size of the given type.

@1 %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined NR1 compatible number,
which is an integer without any decimal point (for example,
123).

@2 %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined NR2 compatible number.
The NR2 number has at least one digit after the decimal
point (for example, 123.45).

(continues)

Page 6-46 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Modifier Supported with

Format Codes
Description

@H %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <HEXADECIMAL
NUMERIC RESPONSE DATA>. The number is
represented in a base of sixteen form. Only capital letters
should represent numbers. The number is of form
"#HXXX..," where XXX.. is a hexadecimal number (for
example, #HAF35B).

@Q %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base
of eight form. The number is of the form "#QYYY..," where
YYY.. is an octal number (for example, #Q71234).

@B %d (plus variants)
and %f only

Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base
two form. The number is of the form "#BZZZ..," where ZZZ..
is a binary number (for example, #B011101001).

Format Codes

ANSI C Format Codes

c Argument type: A reference to a character.

Flags or Modifiers Interpretation

Default functionality A character is read from the device and stored in the parameter.

field width field width number of characters are read and stored at the
reference location (the default field width is 1). No NULL
character is added at the end of the data block.

Note: White space in the device input stream is not ignored.

d Argument type: A reference to an integer.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read.
The number read may be in either IEEE 488.2 formats
<DECIMAL NUMERIC PROGRAM DATA>, also known as
NRf; flexible numeric representation (NR1, NR2, NR3...); or
<NON-DECIMAL NUMERIC PROGRAM DATA> (#H, #Q, and
#B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed
according to IEEE 488.2 rules (0.5 and up).

Section 6: VISA Resource-Specific Operations Page 6-47

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The elements
of this array should be separated by commas. Elements will be read
until either array size number of elements are consumed or they are
no longer separated by commas.

f Argument type: A reference to a floating point number.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read.
The number read may be in either IEEE 488.2 formats
<DECIMAL NUMERIC PROGRAM DATA> (NRf) or <NON-
DECIMAL NUMERIC PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier l arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.

, array size arg points to an array of floats (or double or long double,
depending on the length modifier) of size array size. The elements
of this array should be separated by commas. Elements will be read
until either array size number of elements are consumed or they are
no longer separated by commas.

s Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality All leading white space characters are ignored. Characters are read
from the device into the string until a white space character is read.

field width This flag gives the maximum string size. If the field width contains
a # sign, two arguments are used. The first argument read is a
pointer to an integer specifying the maximum array size. The
second should be a reference to an array. In case of field width
characters already read before encountering a white space,
additional characters are read and discarded until a white space
character is found. In case of # field width, the actual number of
characters that were copied into the user array, not counting the
trailing NULL character, are stored back in the integer pointed to
by the first argument.

Page 6-48 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Enhanced Format Codes

b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK
PROGRAM DATA> format. The format specifier sequence should
have a flag describing the array size, which will give a maximum
count of the number of bytes (or words or longwords, depending
on length modifiers) to be read from the device. If the array size
contains a # sign, two arguments are used. The first argument read
is a pointer to a long integer specifying the maximum number of
elements that the array can hold. The second one should be a
reference to an array. Also, in this case the actual number of
elements read is stored back in the first argument. In absence of
length modifiers, the data is assumed to be of byte-size elements.
In some cases, data might be read until an END indicator is read.

Length modifier h The array is assumed to be an array of 16-bit words, and count
refers to the number of words. The data read from the interface is
assumed to be in IEEE 488.2 byte ordering. It will be byte swapped
and padded as appropriate to native computer format.

Length modifier l The array is assumed to be a block of 32-bit longwords rather than
bytes, and count now refers to the number of longwords. The data
read from the interface is assumed to be in IEEE 488.2 byte
ordering. It will be byte swapped and padded as appropriate to
native computer format.

Length modifier z The data block is assumed to be a reference to an array of floats,
and count now refers to the number of floating point numbers. The
data block received from the device is an array of 32-bit IEEE 754
format floating point numbers.

Length modifier Z The data block is assumed to be a reference to an array of doubles,
and the count now refers to the number of floating point numbers.
The data block received from the device is an array of 64-bit IEEE
754 format floating point numbers.

t Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first END indicator is
received. The character on which the END indicator was received
is included in the buffer.

field width This flag gives the maximum string size. If an END indicator is not
received before field width number of characters, additional
characters are read and discarded until an END indicator arrives.
#field width has the same meaning as in %s.

Section 6: VISA Resource-Specific Operations Page 6-49

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

T Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until the first linefeed character
(\n) is received. The linefeed character is included in the buffer.

field width This flag gives the maximum string size. If a linefeed character is
not received before field width number of characters, additional
characters are read and discarded until a linefeed character arrives.
#field width has the same meaning as in %s.

y Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data block is read as raw binary data. The format specifier
sequence should have a flag describing the array size, which will
give a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the array size contains a # sign, two arguments are used.
The first argument read is a pointer to a long integer specifying the
maximum number of elements that the array can hold. The second
one should be a reference to an array. Also, in this case the actual
number of elements read is stored back in the first argument. In
absence of length modifiers, the data is assumed to be of byte-size
elements. In some cases, data might be read until an END indicator
is read.

Length modifier h The data block is assumed to be a reference to an array of unsigned
short integers (16 bits). The count corresponds to the number of
words rather than bytes. If the optional “!ol” byte order modifier is
present, the data being read is assumed to be in little endian format;
otherwise, the data being read is assumed to be in standard IEEE
488.2 format. Data will be byte swapped and padded as appropriate
to native computer format

Length modifier l The data block is assumed to be a reference to an array of unsigned
long integers (32 bits). The count corresponds to the number of
longwords rather than bytes. If the optional “!ol” byte order
modifier is present, the data being read is assumed to be in little
endian format; otherwise, the data being read is assumed to be in
standard IEEE 488.2 format. Data will be byte swapped and
padded as appropriate to native computer format

Byte order modifier !ob The data being read is assumed to be in standard IEEE 488.2
format. This is the default behavior if neither “!ob” nor “!ol” is
present.

Byte order modifier !ol The data being read is assumed to be in little endian format.

Page 6-50 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

BNF Format for viScanf() readFmt String

The following is the BNF format for the viScanf() readFmt string:

<scan_fmt> := {<slashed_special> | <conversion> | <ascii_char> } *

<slashed _special> := "\n" | "\r" | "\t" | "\\" | <oct _esc> | "\"

<oct_esc> := "\"<oct_digit> [<oct_digit> [<oct_digit>]]

<ascii_char> := Any ASCII character except slash (\) or percent (%).

<conversion> := <fmt_cod_c> | <fmt_cod_d> | <fmt_cod_e> | <fmt_cod_b> |
 <fmt_cod_f> | <fmt_cod_s> | <fmt_cod_t> | <fmt_cod_T> |
 <fmt_cod_y> | "%%"

<fmt_cod_b> := "%" ["*"] [<array_size >] ["h" | "l" | "z" | "Z"] "b"

<fmt_cod_c> := "%" ["*"] [<field_width>] "c"

<fmt_cod_d> := "%" ["*"] [","<array_size>] ["l" | "h"] "d"

<fmt_cod_e> := "%" ["*"] [","<array_size>] ["l" | "L"] "e"

<fmt_cod_f> := "%" ["*"] [","<array_size>] ["l" | "L"] "f"

<fmt_cod_s> := "%" ["*"] [<field_width>] "s"

<fmt_cod_t> := "%" ["*"] [<field_width>] "t"

<fmt_cod_T> := "%" ["*"] [<field_width>] "T"

<fmt_cod_y> := "%" ["*"] <array_size> [<swap_mod>] ["h" | "l"] "y"

<swap_mod> := "!ob" | "!ol"

<field_width> := <positive_integer> | "#"

<array_size> := <positive_integer> | "#"

Related Items
See the INSTR resource description. Also see viVScanf().

Section 6: VISA Resource-Specific Operations Page 6-51

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

RULE 6.2.12
 There SHALL be a one-to-one correspondence between % format conversions and arg parameters in

formatted I/O read operations except under the following circumstances:

• If a * is present, no arg parameters are used.

• If a # is present instead of field width, two arg parameters are used. The first arg is a reference to an

integer (%c, %s, %t, %T). This arg defines the maximum size of the string being read. The second
arg points to the buffer that will store the read data.

• If a # is present instead of array_size, two arg parameters are used. The first arg is a reference to an

integer (%d, %f) or a reference to a long integer (%b, %y). This arg defines the number of elements
in the array. The second arg points to the array that will store the read data.

RULE 6.2.13
 IF a size is present in field width for the %s, %t, and %T format conversions in formatted I/O read

operations either as an integer or a # with a corresponding arg, THEN the size SHALL define the
maximum number of characters to be stored in the resulting string.

OBSERVATION 6.2.10
 The size of the string defined in RULE 6.2.9 includes the trailing NULL character.

RULE 6.2.14
For ANSI C compatibility the following conversion codes SHALL also be supported for input codes.
These codes are ‘i,’ ‘o,’ ‘u,’ ‘n,’ ‘x,’ ‘X,’ ‘e,’ ‘E,’ ‘g,’ ‘G,’ ‘p,’ ‘[...],’ and ‘[^...].’ For further explanation of
these conversion codes, see the ANSI C Standard.

RULE 6.2.15
 IF viScanf() times out, THEN the read buffer SHALL be cleared before viScanf() returns.

OBSERVATION 6.2.11
 When viScanf() times out, the next call to viScanf() will read from an empty buffer and force a read

from the device.

RULE 6.2.16
IF there is no remaining data to be parsed in the internal buffer, AND a new call to viScanf is issued,
THEN VISA SHALL attempt to read more data from the instrument.

OBSERVATION 6.2.12

Note that if an instrument returns a single piece of data such as “123\n” with an END indicator, the
behavior is different if a user makes one call to viScanf with two numeric arguments versus two calls to
viScanf each with one numeric argument. In the first case, OBSERVATION 6.2.8 points out that the
single call will return VI_SUCCESS even though argument #2 is ignored. In the second case, RULE 6.2.16
points out that call #2 will not be ignored but will in fact read more data (or time out trying to do so).

OBSERVATION 6.2.13

When there is data in the internal buffer, whether that data can be parsed depends on the format modifier.
For example, assume that only a newline character remains in the internal buffer. If a user calls viScanf
with a numeric argument such as %d, then the newline is treated as whitespace and is ignored. Thus, VISA
will read more data. However, if a user calls viScanf with %c, then the newline is character data that can
be parsed that will satisfy the argument. Thus, VISA will not read more data at that time.

Page 6-52 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2.9 viVScanf(vi, readFmt, params)

Purpose
 Read, convert, and format data using the format specifier. Store the formatted data in params.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

readFmt IN ViString The format string to apply to parameters in
ViVAList.

params OUT ViVAList A list with the variable number of parameters
into which the data is read and the format
string is applied.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read operation because of I/O error.

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description

This operation is similar to viScanf(), except that the ViVAList parameters list provides the parameters
rather than separate arg parameters.

Related Items

See the INSTR resource description. Also see viScanf().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-53

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.10 viSScanf(vi, buf, readFmt, arg1, arg2, ...)

Purpose
 Same as viScanf(), except that the data is read from a user-specified buffer instead of a device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Buffer from which data is read and formatted.

readFmt IN ViString The format string to apply to parameters in
ViVAList.

arg1, arg2 OUT N/A A list with the variable number of parameters
into which the data is read and the format
string is applied.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description

This operation is similar to viScanf(), except that the data is read from a user-specified buffer rather than
a device.

Related Items

See the INSTR resource description. Also see viScanf().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 6-54 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.2.11 viVSScanf(vi, buf, readFmt, params)

Purpose
 Same as viVScanf(), except that the data is read from a user-specified buffer instead of a device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Buffer from which data is read and formatted.

readFmt IN ViString The format string to apply to parameters in
ViVAList.

params OUT ViVAList A list with the variable number of parameters
into which the data is read and the format
string is applied.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not
supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Description

This operation is similar to viVScanf(), except that the data is read from a user-specified buffer rather
than a device.

Related Items

See the INSTR resource description. Also see viSScanf() and viVScanf().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-55

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.12 viBufRead(vi, buf, count, retCount)

Purpose
 Similar to viRead(), except that the operation uses the formatted I/O read buffer for holding data read

from the device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf OUT ViBuf Represents the location of a buffer to receive
data from device.

count IN ViUInt32 Number of bytes to be read.

retCount OUT ViUInt32 Represents the location of an integer that will
be set to the number of bytes actually
transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have END
indicators).

VI_SUCCESS_TERM_CHAR The specified termination character was read.

VI_SUCCESS_MAX_CNT The number of bytes read is equal to count.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_IO An unknown I/O error occurred during transfer.

Description
 This operation is similar to viRead() and does not perform any kind of data formatting. It differs from

viRead() in that the data is read from the formatted I/O read buffer (the same buffer as used by
viScanf() and related operations) rather than directly from the device. This operation can intermix with
the viScanf() operation, but use with the viRead() operation is discouraged.

Page 6-56 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table 6.2.2 Special Values for retCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INSTR resource description. Also see viWrite().

Implementation Requirements

RULE 6.2.17

The operation viBufRead() SHALL return the success codes VI_SUCCESS, VI_SUCCESS_MAX_CNT,
and VI_SUCCESS_TERM_CHAR under the same conditions as viRead().

Section 6: VISA Resource-Specific Operations Page 6-57

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.13 viQueryf(vi, writeFmt, readFmt, arg1, arg2,...)

Purpose
 Perform a formatted write and read through a single operation invocation.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString ViString describing the format of write
arguments.

readFmt IN ViString ViString describing the format of read
arguments.

arg1, arg2 IN OUT N/A Parameters on which write and read format
strings are applied.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O
error.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string
is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Page 6-58 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
This operation provides a mechanism of "Send, then receive" typical to a command sequence from a
commander device. In this manner, the response generated from the command can be read immediately.

This operation is a combination of the viPrintf() and viScanf() operations. The first n arguments
corresponding to the first format string are formatted by using the writeFmt string and then sent to the
device. The write buffer is flushed immediately after the write portion of the operation completes. After
these actions, the response data is read from the device into the remaining parameters (starting from
parameter n+1) using the readFmt string.

This operation returns the same VISA status codes as viPrintf(), viScanf(), and viFlush().

Related Items

See the INSTR resource description. Also see ViVQueryf().

Implementation Requirements

RULE 6.2.18
 When ViQueryf() executes, the read buffer SHALL be flushed before viPrintf() (write portion)

executes. After this sequence, the write buffer SHALL be flushed before viScanf() executes. Depending
on the state of the session, one or both of the flushes may be a no-operation.

Section 6: VISA Resource-Specific Operations Page 6-59

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.2.14 viVQueryf(vi, writeFmt, readFmt, params)

Purpose
 Perform a formatted write and read through a single operation invocation.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

writeFmt IN ViString The format string is applied to write
parameters in ViVAList.

readFmt IN ViString The format string to applied to read
parameters in ViVAList.

params IN OUT ViVAList A list containing the variable number of write
and read parameters. The write parameters are
formatted and written to the specified device.
The read parameters store the data read from
the device after the format string is applied to
the data.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Successfully completed the Query operation.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of I/O
error.

VI_ERROR_TMO Timeout occurred before read/write operation
completed.

VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string
is invalid.

VI_ERROR_NSUP_FMT The format specifier is not supported for current
argument type.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer
because of insufficient system resources.

Page 6-60 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
This operation is similar to ViQueryf(), except that the ViVAList parameters list provides the parameters
rather than the separate arg parameter list.

Related Items

See the INSTR resource description. Also see ViQueryf().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-61

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3 Memory I/O Services

6.3.1 viIn8(vi, space, offset, val8)
6.3.2 viIn16(vi, space, offset, val16)
6.3.3 viIn32(vi, space, offset, val32)
6.3.4 viIn64(vi, space, offset, val64)

Purpose
 Read in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See table.)

offset IN ViBusAddress Offset (in bytes) of the address or register from
which to read.

val8, val16,
val32, or
val64

OUT ViUInt8,
ViUInt16
ViUInt32, or
ViUInt64

Data read from bus (8 bits for viIn8(),16 bits
for viIn16(),32 bits for viIn32(), and 64
bits for ViIn64()).

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Page 6-62 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation, by using the specified address space, reads in 8, 16, 32, or 64 bits of data from the specified

offset. This operation does not require viMapAddress() or viMapAddressEx() to be called prior to its
invocation.

The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.
VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.

VI_A64_SPACE Address the A64 address space of VXI/MXI bus.

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viOut8(), viOut16(), viOut32(), and

viOut64().

Implementation Requirements

RULE 6.3.1
 The viInXX() operations SHALL NOT fail due to the configured state of the hardware used by the low-

level memory access operations viMapAddressXX(), viPeekXX(), and viPokeXX().

OBSERVATION 6.3.1
The high-level operations viInXX() operate successfully independently from the low-level operations
(viMapAddressXX(), viPeekXX(), and viPokeXX()). The high-level and low-level operations should
operate independently regardless of the configured state of the hardware that is used to perform memory
accesses.

RULE 6.3.2
The viInXX() operations SHALL detect and return VI_ERROR_BERR on VXI transfers that are
acknowledged by the VXI BERR* (bus error) signal.

RULE 6.3.3
All VXI accesses performed by the viIn8() operation SHALL be D08 reads.

RULE 6.3.4
All VXI accesses performed by the viIn16() operation SHALL be D16 reads.

RULE 6.3.5
All VXI accesses performed by the viIn32() operation SHALL be D32 reads.

RULE 6.3.6
All VXI accesses performed by the viIn64() operation SHALL be D64 reads.

RULE 6.3.7
 All VXI accesses performed by the viIn16(), viIn32(), and viIn64() operations SHALL be in the

byte order specified by VI_ATTR_SRC_BYTE_ORDER.

Section 6: VISA Resource-Specific Operations Page 6-63

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

INSTR Specific

The offset is a relative address of the device associated with the given INSTR resource.

OBSERVATION 6.3.2
Notice that offset specified in the viInXX() operations for an INSTR resource is the offset address
relative to the device’s allocated address base for the corresponding address space specified. For example,
if space specifies VI_A16_SPACE, then offset specifies the offset from the logical address base address
of the VXI device specified. If space specifies VI_A24_SPACE or VI_A32_SPACE or VI_A64_SPACE,
then offset specifies the offset from the base address of the VXI device’s memory space allocated by the
VXI Resource Manager within VXI A24, A32. or A64 space.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

MEMACC Specific

The offset parameter specifies an absolute address.

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

Page 6-64 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.3.5 viOut8(vi, space, offset, val8)
6.3.6 viOut16(vi, space, offset, val16)
6.3.7 viOut32(vi, space, offset, val32)
6.3.8 viOut64(vi, space, offset, val64)

Purpose
 Write an 8-bit, 16-bit, 32-bit, or 64-bit value to the specified memory space and offset.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See table.)

offset IN ViBusAddress Offset (in bytes) of the address or register to
which to write.

val8, val16,
val32, or
val64

IN ViUInt8,
ViUInt16,
ViUInt32, or
ViUInt64

Data to write to bus (8 bits for viOut8(),
16 bits for viOut16(), 32 bits for viOut32(),
and 64 bits for ViOut64()).

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Section 6: VISA Resource-Specific Operations Page 6-65

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Description
 This operation, by using the specified address space, writes 8, 16, 32, or 64 bits of data to the specified

offset. This operation does not require viMapAddress() to be called prior to its invocation.

 The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.
VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.

VI_A64_SPACE Address the A64 address space of VXI/MXI bus.

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

Related Items
See the INSTR and MEMACC resource descriptions. Also see viIn8(), viIn16(), viIn32(), and
viIn64().

Implementation Requirements

RULE 6.3.8
The viOutXX() operations SHALL NOT fail due to the configured state of the hardware used by the low-
level memory access operations viMapAddressXX(),viPeekXX(), and viPokeXX().

OBSERVATION 6.3.3
The high-level operations viOutXX() operate successfully independently from the low-level operations
(viMapAddressXX(), viPeekXX(), and viPokeXX()). The high-level and low-level operations should
operate independently regardless of the configured state of the hardware that is used to perform memory
accesses.

RULE 6.3.9
The viOutXX() operations SHALL detect and return VI_ERROR_BERR on VXI transfers that are
acknowledged by the VXI BERR* (bus error) signal.

RULE 6.3.10
All VXI accesses performed by the viOut8() operation SHALL be D08 writes.

RULE 6.3.11
All VXI accesses performed by the viOut16() operation SHALL be D16 writes.

RULE 6.3.12
All VXI accesses performed by the viOut32() operation SHALL be D32 writes.

RULE 6.3.13
All VXI accesses performed by the viOut64() operation SHALL be D64 writes.

RULE 6.3.14
 All VXI accesses performed by the viOut16() and viOut32() and viOut64() operations SHALL be in

the byte order specified by VI_ATTR_DEST_BYTE_ORDER.

Page 6-66 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

INSTR Specific

The offset is a relative address of the device associated with the given INSTR resource.

OBSERVATION 6.3.4
Notice that offset specified in the viOutXX() operations for an INSTR resource is the offset address
relative to the device’s allocated address base for the corresponding address space specified. For example,
if space specifies VI_A16_SPACE, then offset specifies the offset from the logical address base address
of the VXI device specified. If space specifies VI_A24_SPACE or VI_A32_SPACE or VI_A64_SPACE,
then offset specifies the offset from the base address of the VXI device’s memory space allocated by the
VXI Resource Manager within VXI A24 or A32 or A64 space.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

MEMACC Specific

The offset parameter specifies an absolute address.

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

Section 6: VISA Resource-Specific Operations Page 6-67

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.9 viMoveIn8(vi, space, offset, length, buf8)
6.3.10 viMoveIn16(vi, space, offset, length, buf16)
6.3.11 viMoveIn32(vi, space, offset, length, buf32)
6.3.12 viMoveIn64(vi, space, offset, length, buf64)
6.3.13 viMoveIn8Ex(vi, space, offset64, length, buf8)
6.3.14 viMoveIn16Ex(vi, space, offset64, length, buf16)
6.3.15 viMoveIn32Ex(vi, space, offset64, length, buf32)
6.3.16 viMoveIn64Ex(vi, space, offset64, length, buf64)

Purpose
 Move a block of data from the specified address space and offset to local memory in increments of 8, 16,

32, or 64 bits.

Parameters

Name Direction Type Description

Vi IN ViSession Unique logical identifier to a session.

Space IN ViUInt16 Specifies the address space. (See table.)

offset or
offset64

IN ViBusAddress or
ViBusAddress64

Offset (in bytes) of the starting address or
register from which to read.

length IN ViBusSize Number of elements to transfer, where the
data width of the elements to transfer is
identical to data width (8, 16, 32, or 64 bits).

buf8, buf16,
buf32, or
buf64

OUT ViAUInt8,
ViAUInt16,
ViAUInt32, or
ViAUInt64

Data read from bus.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

(continues)

Error Codes Description

Page 6-68 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Description
 This operation, by using the specified address space, reads in blocks of 8, 16, 32, or 64 bit data from the

specified offset. This operation does not require viMapAddress() or viMapAddressEx() to be called
prior to its invocation.

 The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.
VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.

VI_A64_SPACE Address the A64 address space of VXI/MXI bus.

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viMoveOut8(), viMoveOut16(),

viMoveOut32(), and viMoveOut64().

Implementation Requirements

RULE 6.3.15
 The viMoveInXX() operations SHALL NOT fail due to the configured state of the hardware used by the

low-level memory access operations viMapAddressXX(), viPeekXX(), or viPokeXX().

OBSERVATION 6.3.5

The high-level operations viMoveInXX() operate successfully independently from the low-level
operations (viMapAddressXX(), viPeekXX(), and viPokeXX()). The high-level and low-level
operations should operate independently regardless of the configured state of the hardware that is used to
perform memory accesses.

RULE 6.3.16
 The viMoveInXX(), operations SHALL detect and return VI_ERROR_BERR on VXI transfers that are

acknowledged by the VXI BERR* (bus error) signal.

Section 6: VISA Resource-Specific Operations Page 6-69

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 6.3.17
All VXI accesses performed by the viMoveIn8() and viMoveIn8Ex() operations SHALL be D08 reads.

RULE 6.3.18

All VXI accesses performed by the viMoveIn16() and viMoveIn16Ex() operations SHALL be D16
reads.

RULE 6.3.19

All VXI accesses performed by the viMoveIn32() and viMoveIn32Ex() operations SHALL be D32
reads.

RULE 6.3.20

All VXI accesses performed by the viMoveIn64() and viMoveIn64() operations SHALL be D64 reads.

RULE 6.3.21
 All VXI accesses performed by the viMoveIn16(), viMoveIn32(), and viMoveIn64() operations

SHALL be in the byte order specified by VI_ATTR_SRC_BYTE_ORDER.

RULE 6.3.22
 All VISA implementations of the viMoveInXX() operations SHALL ignore the attribute

VI_ATTR_DEST_INCREMENT AND SHALL increment the local buffer address for each element.

OBSERVATION 6.3.6
 It is valid for the VISA driver to copy the data into the user buffer at any width it wishes. In other words,

even if the width is a byte (8-bit), the VISA driver is allowed to perform 32-bit PCI burst accesses since it
is just memory, in order to improve throughput. It is also valid for other utilities to dereference the user
buffer more than once, since it is not considered volatile.

INSTR Specific

The offset is a relative address of the device associated with the given INSTR resource.

OBSERVATION 6.3.7
Notice that offset specified in the viMoveInXX() operations for an INSTR resource is the offset
address relative to the device’s allocated address base for the corresponding address space specified. For
example, if space specifies VI_A16_SPACE, then offset specifies the offset from the logical address
base address of the VXI device specified. If space specifies VI_A24_SPACE or VI_A32_SPACE or
VI_A64_SPACE, then offset specifies the offset from the base address of the VXI device’s memory
space allocated by the VXI Resource Manager within VXI A24, A32, or A64 space.

OBSERVATION 6.3.8
 Notice that length specified in the viMoveInXX() operations is the number of elements (of the size

corresponding to the operation) to transfer, beginning at the specified offset. Therefore, offset +
length*size cannot exceed the amount of memory exported by the device in the given space.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

Page 6-70 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

MEMACC Specific

The offset parameter specifies an absolute address.

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

OBSERVATION 6.3.9

Notice that length specified in the viMoveInXX() operations is the number of elements (of the size
corresponding to the operation) to transfer, beginning at the specified offset. Therefore, offset +
length*size cannot exceed the total amount of memory available in the given space.

Section 6: VISA Resource-Specific Operations Page 6-71

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.17 viMoveOut8(vi, space, offset, length, buf8)
6.3.18 viMoveOut16(vi, space, offset, length, buf16)
6.3.19 viMoveOut32(vi, space, offset, length, buf32)
6.3.20 viMoveOut64(vi, space, offset, length, buf64)
6.3.21 viMoveOut8Ex(vi, space, offset64, length, buf8)
6.3.22 viMoveOut16Ex(vi, space, offset64, length, buf16)
6.3.23 viMoveOut32Ex(vi, space, offset64, length, buf32)
6.3.24 viMoveOut64Ex(vi, space, offset64, length, buf64)

Purpose
 Move a block of data from local memory to the specified address space and offset in increments of 8, 16,

32, or 64 bits.

Parameters

Name Direction Type Description

Vi IN ViSession Unique logical identifier to a session.

space IN ViUInt16 Specifies the address space. (See table.)

offset or
offset64

IN ViBusAddress or
ViBusAddress64

Offset (in bytes) of the starting address or
register to which to write.

length IN ViBusSize Number of elements to transfer, where the
data width of the elements to transfer is
identical to data width (8, 16, 32, or 64 bits).

buf8, buf16,
buf32, or
buf64

IN ViAUInt8,
ViAUInt16,
ViAUInt32, or
ViAUInt64

Data to write to bus.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

(continues)

Error Codes Description

Page 6-72 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP_OFFSET Specified offset is not accessible from this hardware.

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH Invalid length specified.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Description
 This operation, by using the specified address space, writes blocks of 8, 16, 32, or 64 bit data to the

specified offset. This operation does not require viMapAddress() or viMapAddressEx() to be called
prior to its invocation.

 The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Address the A16 address space of VXI/MXI bus.
VI_A24_SPACE Address the A24 address space of VXI/MXI bus.

VI_A32_SPACE Address the A32 address space of VXI/MXI bus.

VI_A64_SPACE Address the A64 address space of VXI/MXI bus.

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viMoveIn8(), viMoveIn16(),

viMoveIn32(), and viMoveIn64().

Implementation Requirements

RULE 6.3.23
 The viMoveOutXX() operations SHALL NOT fail due to the configured state of the hardware used by

the low-level memory access operations viMapAddressXX(), viPeekXX(), and viPokeXX().

OBSERVATION 6.3.10

The high-level operations viMoveOutXX() operate successfully independently from the low-level
operations (viMapAddressXX(), viPeekXX(), and viPokeXX()). The high-level and low-level
operations should operate independently regardless of the configured state of the hardware that is used to
perform memory accesses.

RULE 6.3.24
 The viMoveOutXX() operations SHALL detect and return VI_ERROR_BERR on VXI transfers that are

acknowledged by the VXI BERR* (bus error) signal.

Section 6: VISA Resource-Specific Operations Page 6-73

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

RULE 6.3.25
 All VXI accesses performed by the viMoveOut8() and viMoveOut8Ex() operations SHALL be D08

writes.

RULE 6.3.26
 All VXI accesses performed by the viMoveOut16() and viMoveOut16Ex() operations SHALL be D16

writes.

RULE 6.3.27
 All VXI accesses performed by the viMoveOut32() and viMoveOut32Ex() operations SHALL be D32

writes.

RULE 6.3.28
 All VXI accesses performed by the viMoveOut64() and viMoveOut64Ex() operations SHALL be D64

writes.

RULE 6.3.29
 All VXI accesses performed by the viMoveOut16() and viMoveOut32() and viMoveOut64()

operations SHALL be in the byte order specified by VI_ATTR_DEST_BYTE_ORDER.

RULE 6.3.30
 All VISA implementations of the viMoveOutXX() operations SHALL ignore the attribute

VI_ATTR_SRC_INCREMENT AND SHALL increment the local buffer address for each element.

OBSERVATION 6.3.11
 It is valid for the VISA driver to copy the data out of the user buffer at any width it wishes. In other words,

even if the width is a byte (8-bit), the VISA driver is allowed to perform 32-bit PCI burst accesses since it
is just memory, in order to improve throughput. It is also valid for other utilities to dereference the user
buffer more than once, since it is not considered volatile.

INSTR Specific

The offset is a relative address of the device associated with the given INSTR resource.

OBSERVATION 6.3.12
Notice that offset specified in the viMoveOutXX() operations for an INSTR resource is the offset
address relative to the device’s allocated address base for the corresponding address space specified. For
example, if space specifies VI_A16_SPACE, then offset specifies the offset from the logical address
base address of the VXI device specified. If space specifies VI_A24_SPACE or VI_A32_SPACE or
VI_A64_SPACE, then offset specifies the offset from the base address of the VXI device’s memory
space allocated by the VXI Resource Manager within VXI A24, A32, or A64 space.

OBSERVATION 6.3.13
 Notice that length specified in the viMoveOutXX() operations is the number of elements (of the size

corresponding to the operation) to transfer, beginning at the specified offset. Therefore, offset +
length*size cannot exceed the amount of memory exported by the device in the given space.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

Page 6-74 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

MEMACC Specific

The offset parameter specifies an absolute address.

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

OBSERVATION 6.3.14
Notice that length specified in the viMoveOutXX() operations is the number of elements (of the size
corresponding to the operation) to transfer, beginning at the specified offset. Therefore, offset +
length*size cannot exceed the total amount of memory available in the given space.

Section 6: VISA Resource-Specific Operations Page 6-75

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.25 viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length)

6.3.26 viMoveEx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, length)

Purpose

Move a block of data.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

srcSpace IN ViUInt16 Specifies the address space of the source.

srcOffset or
srcOffset64

IN ViBusAddress or
ViBusAddres64

Offset of the starting address or register
from which to read.

srcWidth IN ViUInt16 Specifies the data width of the source.

destSpace IN ViUInt16 Specifies the address space of the
destination.

destOffset or
destOffset64

IN ViBusAddress or
ViBusAddress64

Offset of the starting address or register to
which to write.

destWidth IN ViUInt16 Specifies the data width of the destination.

length IN ViBusSize Number of elements to transfer, where the
data width of the elements to transfer is
identical to source data width.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid source or destination address space specified.

VI_ERROR_INV_OFFSET Invalid source or destination offset specified.

VI_ERROR_INV_WIDTH Invalid source or destination width specified.

 (continues)

Page 6-76 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_NSUP_OFFSET Specified source or destination offset is not accessible
from this hardware.

VI_ERROR_NSUP_VAR_WIDTH Cannot support source and destination widths that are
different.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The specified offset is not properly aligned for the
access width of the operation.

VI_ERROR_INV_LENGTH Invalid length specified.

Description

This operation moves data from the specified source to the specified destination. The source and the
destination can either be local memory or the offset of the interface with which this MEMACC Resource is
associated. This operation uses the specified data width and address space. In some systems, such as VXI,
users can specify additional settings for the transfer, like byte order and access privilege, by manipulating
the appropriate attributes.

The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Addresses the A16 address space of the VXI/MXI bus.
VI_A24_SPACE Addresses the A24 address space of the VXI/MXI bus.

VI_A32_SPACE Addresses the A32 address space of the VXI/MXI bus.

VI_A64_SPACE Addresses the A64 address space of the VXI/MXI bus.

VI_LOCAL_SPACE Addresses process-local memory (using a virtual address).

VI_OPAQUE_SPACE Addresses potentially volatile data (using a virtual address).

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

The following table lists the valid entries for specifying widths.

Value Description

VI_WIDTH_8 Performs 8-bit (D08) transfers.
VI_WIDTH_16 Performs 16-bit (D16) transfers.

VI_WIDTH_32 Performs 32-bit (D32) transfers.

VI_WIDTH_64 Performs 64-bit (D64) transfers.

Related Items

See the INSTR and MEMACC resource descriptions. Also see viMoveAsync() and viMoveAsyncEx().

Section 6: VISA Resource-Specific Operations Page 6-77

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Implementation Requirements

RULE 6.3.31

The viMove() and viMoveEx() operations SHALL NOT fail due to the configured state of the hardware
used by the low-level memory access operations viMapAddressXX(), viPeekXX(), and viPokeXX().

OBSERVATION 6.3.15

The high-level operations viMove() and viMoveEx() operate successfully independently from the low-
level operations (viMapAddressXX(), viPeekXX(), and viPokeXX()). The high-level and low-level
operations should operate independently regardless of the configured state of the hardware that is used to
perform memory accesses.

RULE 6.3.32
The viMove() and viMoveEx() operations SHALL detect and return VI_ERROR_BERR on VXI transfers
that are acknowledged by the VXI BERR* (bus error) signal.

RULE 6.3.33

All VXI accesses performed by the viMove() and viMoveEx() operations SHALL be in the byte order
specified by VI_ATTR_SRC_BYTE_ORDER and VI_ATTR_DEST_BYTE_ORDER.

OBSERVATION 6.3.16

Notice that length specified in the viMove() and viMoveEx() operations is the number of elements (of
the size corresponding to the operation) to transfer, beginning at the specified offset. Therefore,
offset + length*size cannot exceed the amount of memory exported by the device in the given
space.

RULE 6.3.34
IF srcSpace is VI_LOCAL_SPACE, THEN viMove() and viMoveEx() SHALL ignore
VI_ATTR_SRC_BYTE_ORDER.

RULE 6.3.35
IF destSpace is VI_LOCAL_SPACE, THEN viMove() and viMoveEx() SHALL ignore
VI_ATTR_DEST_BYTE_ORDER.

OBSERVATION 6.3.17

Local accesses use the native byte order rather than the byte order specified by the attributes.

RULE 6.3.36

All VXI accesses performed by the viMove() and viMoveEx() operations SHALL use either the same or
successive offsets, depending on the increment value specified by VI_ATTR_SRC_INCREMENT and
VI_ATTR_DEST_INCREMENT.

RULE 6.3.37

IF srcSpace is VI_LOCAL_SPACE, THEN viMove() and viMoveEx() SHALL ignore
VI_ATTR_SRC_INCREMENT.

RULE 6.3.38
IF destSpace is VI_LOCAL_SPACE, THEN viMove() and viMoveEx() SHALL ignore
VI_ATTR_DEST_INCREMENT.

Page 6-78 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

OBSERVATION 6.3.18
Local accesses always increment the offset for each index in a multi-element transfer, rather than using the
increment specified by the attributes.

RULE 6.3.39

IF srcSpace is any value other than VI_LOCAL_SPACE, including VI_OPAQUE_SPACE, THEN
viMove() and viMoveEx() SHALL honor VI_ATTR_SRC_INCREMENT.

RULE 6.3.40
IF destSpace is any value other than VI_LOCAL_SPACE, including VI_OPAQUE_SPACE, THEN
viMove() and viMoveEx() SHALL honor VI_ATTR_DEST_INCREMENT.

OBSERVATION 6.3.19

While VI_OPAQUE_SPACE uses a process-local virtual address, it is not necessarily pointing to system
memory, so it may be a FIFO. Therefore, VI_ATTR_SRC/DEST_INCREMENT do indeed apply. The
VISA driver must copy the data using the specified width. Other utilities may not dereference the pointer
since it should be considered volatile.

INSTR Specific

If srcSpace is neither VI_LOCAL_SPACE nor VI_OPAQUE_SPACE, then srcOffset is a relative address
of the device associated with the given INSTR resource. Similarly, if destspace is neither
VI_LOCAL_SPACE nor VI_OPAQUE_SPACE, then destOffset is a relative address of the device
associated with the given INSTR resource.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

MEMACC Specific

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

OBSERVATION 6.3.20

Notice that srcOffset, destOffset, srcOffset64, and destOffset64 specified in the viMove()
and viMoveEx() operations for a MEMACC resource are absolute addresses.

Section 6: VISA Resource-Specific Operations Page 6-79

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.27 viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace,
destOffset, destWidth, length, jobId)

6.3.28 viMoveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, length, jobId)

Purpose

Move a block of data asynchronously.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

srcSpace IN ViUInt16 Specifies the address space of the source.

srcOffset or
srcOffset64

IN ViBusAddress or
ViBusAddress64

Offset of the starting address or register
from which to read.

srcWidth IN ViUInt16 Specifies the data width of the source.

destSpace IN ViUInt16 Specifies the address space of the
destination.

destOffset or
destOffset64

IN ViBusAddress or
ViBusAddress64

Offset of the starting address or register to
which to write.

destWidth IN ViUInt16 Specifies the data width of the destination.

length IN ViBusSize Number of elements to transfer, where the
data width of the elements to transfer is
identical to source data width.

jobId OUT ViJobId Represents the location of an integer that
will be set to the job identifier of this
asynchronous move operation. Each time an
asynchronous move operation is called, it is
assigned a unique job identifier.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous operation successfully queued.

VI_SUCCESS_SYNC Operation performed synchronously.

Page 6-80 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_QUEUE Unable to queue move operation.

VI_ERROR_IN_PROGRESS Unable to start a new asynchronous operation while
another asynchronous operation is in progress.

Description
This operation asynchronously moves data from the specified source to the specified destination. This
operation queues up the transfer in the system, then it returns immediately without waiting for the transfer
to carry out or complete. When the transfer terminates, a VI_EVENT_IO_COMPLETION event indicates the
status of the transfer.

The operation returns jobId, which you can use either with viTerminate() to abort the operation or
with VI_EVENT_IO_COMPLETION events to identify which asynchronous move operations completed.

The source and the destination can be either local memory or the offset of the device/interface with which
this INSTR or MEMACC Resource is associated. This operation uses the specified data width and address
space. In some systems, such as VXI, users can specify additional settings for the transfer, like byte order
and access privilege, by manipulating the appropriate attributes.

The following table lists the valid entries for specifying address space.

Value Description

VI_A16_SPACE Addresses the A16 address space of the VXI/MXI bus.
VI_A24_SPACE Addresses the A24 address space of the VXI/MXI bus.

VI_A32_SPACE Addresses the A32 address space of the VXI/MXI bus.

VI_LOCAL_SPACE Addresses process-local memory (using a virtual address).

VI_OPAQUE_SPACE Addresses potentially volatile data (using a virtual address).

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

The following table lists the valid entries for specifying widths.

Value Description

VI_WIDTH_8 Performs 8-bit (D08) transfers.
VI_WIDTH_16 Performs 16-bit (D16) transfers.

VI_WIDTH_32 Performs 32-bit (D32) transfers.

VI_WIDTH_64 Performs 64-bit (D64) transfers.

Section 6: VISA Resource-Specific Operations Page 6-81

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 6.3.1 Special Values for jobId Parameter

Value Action Description

VI_NULL Do not return a job identifier.

Related Items

See the INSTR and MEMACC resource descriptions. Also see viMove().

Implementation Requirements

RULE 6.3.41

IF the output parameter jobId is not VI_NULL, THEN the value in jobId SHALL be valid before
viMoveAsync() begins the data transfer.

OBSERVATION 6.3.21

Since an asynchronous I/O request could complete before the viMoveAsync() operation returns, and the
I/O completion event can be distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event could possibly occur. Setting the
output parameter jobId before the data transfer even begins ensures that an application can always match
the jobId parameter with the VI_ATTR_JOB_ID attribute of the I/O completion event.

OBSERVATION 6.3.22
If you pass VI_NULL as the jobId parameter to the viMoveAsync() operation, no jobId will be
returned. This option may be useful if only one asynchronous operation will be pending at a given time.

OBSERVATION 6.3.23

If multiple jobs are queued at the same time on the same session, an application can use the jobId to
distinguish the jobs, as they are unique within a session.

PERMISSION 6.3.1

The viMoveAsync() operation MAY be implemented synchronously, which could be done by using the
viMove() operation.

RULE 6.3.42

IF the viMoveAsync() operation is implemented synchronously, AND a given invocation of the
operation is valid, THEN the operation SHALL return VI_SUCCESS_SYNC, AND all status information
SHALL be returned in a VI_EVENT_IO_COMPLETION.

OBSERVATION 6.3.24

The intent of PERMISSION 6.3.1 and RULE 6.3.42 is that an application can use the asynchronous
operations transparently, even if the low-level driver used for a given VISA implementation supports only
synchronous data transfers.

RULE 6.3.43

The status codes returned in the VI_ATTR_STATUS field of a VI_EVENT_IO_COMPLETION event resulting
from a call to viMoveAsync() SHALL be the same codes as those listed for viMove().

OBSERVATION 6.3.25

The status code VI_ERROR_RSRC_LOCKED can be returned either immediately or from the
VI_EVENT_IO_COMPLETION event.

Page 6-82 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

RULE 6.3.44
For each successful call to viMoveAsync(), there SHALL be one and only one
VI_EVENT_IO_COMPLETION event occurrence.

RULE 6.3.45
IF the jobId parameter returned from viMoveAsync() is passed to viTerminate(), AND a
VI_EVENT_IO_COMPLETION event has not yet occurred for the specified jobId, THEN the
viTerminate() operation SHALL raise a VI_EVENT_IO_COMPLETION event on the given vi, AND the
VI_ATTR_STATUS field of that event SHALL be set to VI_ERROR_ABORT.

RULE 6.3.46
IF the output parameter jobId is not VI_NULL AND the return status from viMoveAsync() is
successful, THEN the value in jobId SHALL NOT be VI_NULL.

OBSERVATION 6.3.26

The value VI_NULL is a reserved jobId and has a special meaning in viTerminate().

INSTR Specific

If srcSpace is neither VI_LOCAL_SPACE nor VI_OPAQUE_SPACE, then srcOffset is a relative address
of the device associated with the given INSTR resource. Similarly, if destspace is neither
VI_LOCAL_SPACE nor VI_OPAQUE_SPACE, then destOffset is a relative address of the device
associated with the given INSTR resource.

OBSERVATION 6.3.27
The primary intended use of this operation with an INSTR session is to asynchronously move data to or
from the device. Therefore, either the srcSpace or destSpace parameter will usually be
VI_LOCAL_SPACE.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for
bus access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

MEMACC Specific

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

Section 6: VISA Resource-Specific Operations Page 6-83

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.29 viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested,
address)

6.3.30 viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access,
suggested, address)

Purpose
 Map the specified memory space into the process’s address space.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mapSpace IN ViUInt16 Specifies the address space to map.

mapBase or
mapBase64

IN ViBusAddress or
ViBusAddress64

Offset (in bytes) of the memory to be
mapped.

mapSize IN ViBusSize Amount of memory to map (in bytes).

access IN ViBoolean VI_FALSE.

suggested IN ViAddr If suggested parameter is not VI_NULL,
the operating system attempts to map the
memory to the address specified in
suggested. There is no guarantee,
however, that the memory will be mapped to
that address. This operation may map the
memory into an address region different
from suggested.

address OUT ViAddr Address in your process space where the
memory was mapped.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Map successful.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR_INV_OFFSET Invalid offset specified.

 (continues)

Page 6-84 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Error Codes Description

VI_ERROR_NSUP_OFFSET Specified region is not accessible from this hardware.

VI_ERROR_INV_SIZE Invalid size of window specified.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_TMO viMapAddress() could not acquire resource or
perform mapping before the timer expired.

VI_ERROR_ALLOC Unable to allocate window of at least the requested
size.

VI_ERROR_WINDOW_MAPPED The specified session already contains a mapped
window.

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Description
 This operation maps in a specified memory space. The memory space that is mapped is dependent on the

type of interface specified by the vi parameter and the mapSpace (refer to the following table) parameter.
The address parameter returns the address in your process space where memory is mapped.

 The following table lists the valid entries for the mapSpace parameter.

Value Description

VI_A16_SPACE Map the A16 address space of VXI/MXI bus.
VI_A24_SPACE Map the A24 address space of VXI/MXI bus.

VI_A32_SPACE Map the A32 address space of VXI/MXI bus.

VI_A64_SPACE Map the A64 address space of VXI/MXI bus.

VI_PXI_CFG_SPACE Address the PCI configuration space.

VI_PXI_BAR0_SPACE �
VI_PXI_BAR5_SPACE

Address the specified PCI memory or I/O space.

VI_PXI_ALLOC_SPACE Access physical locally allocated memory.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viUnmapAddress().

Implementation Requirements

RULE 6.3.47

IF a call to viMapAddress() or viMapAddressEx() succeeds, THEN the value of
VI_ATTR_WIN_ACCESS for the given vi SHALL be set to either VI_USE_OPERS or VI_DEREF_ADDR.

RULE 6.3.48
IF the value of VI_ATTR_RSRC_SPEC_VERSION is greater than or equal to 0x00100100, AND a call to
viMapAddress() or viMapAddressEx() succeeds, AND the value of the address parameter
cannot be directly dereferenced such that all VXI accesses are in the byte order specified by
VI_ATTR_WIN_BYTE_ORDER, THEN the value of VI_ATTR_WIN_ACCESS for the given vi SHALL be set
to VI_USE_OPERS.

Section 6: VISA Resource-Specific Operations Page 6-85

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

INSTR Specific

The mapBase or mapBase64 is a relative address of the device associated with the given INSTR resource.

OBSERVATION 6.3.28
Notice that mapBaseXX specified in the viMapAddressXX() operation for an INSTR resource is the
offset address relative to the device’s allocated address base for the corresponding address space specified.
For example, if mapSpace specifies VI_A16_SPACE, then mapBase specifies the offset from the logical
address base address of the VXI device specified. If mapSpace specifies VI_A24_SPACE or
VI_A32_SPACE or VI_A64_SPACE, then mapBase specifies the offset from the base address of the VXI
device’s memory space allocated by the VXI Resource Manager within VXI A24 or A32 or A64 space.

All operations on a PXI INSTR resource that accept a space parameter to indicate the address space for bus
access SHALL accept the following values for the space parameter: VI_PXI_CFG_SPACE,
VI_PXI_BAR0_SPACE, VI_PXI_BAR1_SPACE, VI_PXI_BAR2_SPACE, VI_PXI_BAR3_SPACE,
VI_PXI_BAR4_SPACE, and VI_PXI_BAR5_SPACE.

MEMACC Specific

The mapBaseXX parameter specifies an absolute address.

All operations on a PXI MEMACC resource that accept a space parameter to indicate the address space
for bus access SHALL accept the following value for the space parameter: VI_PXI_ALLOC_SPACE.

Page 6-86 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.3.31 viUnmapAddress(vi)

Purpose
 Unmap memory space previously mapped by viMapAddress() or viMapAddressEx().

Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_WINDOW_NMAPPED The specified session is not currently mapped.

Description
 This operation unmaps the region previously mapped by the viMapAddress() operation.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viMapAddress().

Implementation Requirements

RULE 6.3.49

IF a call to viUnmapAddress() succeeds, THEN the value of VI_ATTR_WIN_ACCESS for the given vi
SHALL be set to VI_NMAPPED.

Section 6: VISA Resource-Specific Operations Page 6-87

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.3.32 viPeek8(vi, addr, val8)
6.3.33 viPeek16(vi, addr, val16)
6.3.34 viPeek32(vi, addr, val32)
6.3.35 viPeek64(vi, addr, val64)

Purpose
 Read an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified address.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the source address to read the value.

val8, val16,
val32, or
val64

OUT ViUInt8,
ViUInt16,
ViUInt32, or
ViUInt64

Data read from bus (8 bits for viPeek8(),
16 bits for viPeek16(),32 bits for
viPeek32(), and 64 bits for viPeek64()).

Return Values
 None

Description
 This operation reads an 8-bit, 16-bit, 32-bit, or 64-bit value from the address location specified in addr.

The address must be a valid memory address in the current process mapped by a previous
viMapAddress() or viMapAddressEx() call.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viPoke8(), viPoke16(), viPoke32(),

and viPoke64().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 6-88 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.3.36 viPoke8(vi, addr, val8)
6.3.37 viPoke16(vi, addr, val16)
6.3.38 viPoke32(vi, addr, val32)
6.3.39 viPoke64(vi, addr, val64)

Purpose
 Write an 8-bit, 16-bit, 32-bit, or 64-bit value to the specified address.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

addr IN ViAddr Specifies the destination address to store the
value.

val8, val16,
val32, or
val64

IN ViUInt8,

ViUInt16,
ViUInt32, or
ViUInt64

Data to write to bus (8 bits for viPoke8(),
16 bits for viPoke16(), 32 bits for
viPoke32(), and 64 bits for viPoke64()).

Return Values
 None

Description
 This operation takes an 8-bit, 16-bit, 32-bit, or 64-bit value and stores its content to the address pointed to

by addr. The address must be a valid memory address in the current process mapped by a previous
viMapAddress() or viMapAddressEx() call.

Related Items
 See the INSTR and MEMACC resource descriptions. Also see viPeek8(), viPeek16(), viPeek32(),

and viPeek64().

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-89

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.4 Shared Memory Services

6.4.1 viMemAlloc(vi, size, offset)
6.4.2 viMemAllocEx(vi, size, offset64)

Purpose
 Allocate memory from a device’s memory region.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

size IN ViBusSize Specifies the size of the allocation.

offset or
offset64

OUT ViBusAddress or
ViBusAddress64

Returns the offset of the allocated device
memory.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_SIZE Invalid size specified.

VI_ERROR_ALLOC Unable to allocate shared memory block of the
requested size.

VI_ERROR_MEM_NSHARED The device does not export any memory.

Description
 This operation returns an offset into a device’s memory region that has been allocated for use by this

session. If the device to which the given vi refers is located on the local interface card, the memory can be
allocated either on the device itself or on the computer’s system memory.

Related Items
 See the INSTR resource description. Also see viMemFree() and viMemFreeEx().

Page 6-90 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Implementation Requirements

OBSERVATION 6.4.1

Notice that offset returned from the viMemAlloc() and viMemAllocEx() operations is the offset
address relative to the device’s allocated address base for whichever address space into which the given
device exports memory.

OBSERVATION 6.4.2

No device is required to have memory that can be shared or managed by the local controller. In this case, a
VISA implementation may always return VI_ERROR_NSUP_OPER.

RULE 6.4.1

The offset parameter in the viMemAlloc(), viMemAllocEx(), viMemFree(), and viMemFreeEx()
operations on a PXI MEMACC resource SHALL be an absolute physical PCI address.

Section 6: VISA Resource-Specific Operations Page 6-91

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.4.3 viMemFree(vi, offset)
6.4.4 viMemFreeEx(vi, offset64)

Purpose
 Free memory previously allocated using viMemAlloc() or viMemAllocEx().

Parameters

Name Direction Type Description

Vi IN ViSession Unique logical identifier to a session.

offset or
offset64

IN ViBusAddress or
ViBusAddress64

Specifies the memory previously allocated
with viMemAlloc() or viMemAllocEx().

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_INV_OFFSET Invalid offset specified.

VI_ERROR_WINDOW_MAPPED The specified offset is currently in use by
viMapAddress().

Description
 This operation frees the memory previously allocated using viMemAlloc() or viMemAllocEx().

Related Items
 See the INSTR resource description. Also see viMemAlloc(), and viMemAllocEx().

Implementation Requirements

RULE 6.4.2
 IF the offset parameter specifies a valid address that was previously allocated using the viMemAlloc()

or viMemAllocEx() operation, AND it has not already been freed, THEN the viMemFree() or
viMemFreeEx() operation SHALL return the corresponding buffer to the device’s memory pool.

OBSERVATION 6.4.3
No device is required to have memory that can be shared or managed by the local controller. In this case, a
VISA implementation may always return VI_ERROR_NSUP_OPER.

RULE 6.4.3
 IF the offset is currently mapped through the viMapAddress() or viMapAddressEx() operation on the

given vi, THEN the viMemFree() or viMemFreeEx() operation SHALL return
VI_ERROR_WINDOW_MAPPED.

Page 6-92 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5 Interface Specific Services

6.5.1 viGpibControlREN(vi, mode)

Purpose
 Controls the state of the GPIB REN interface line, and optionally the remote/local state of the device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Mode IN ViUInt16 Specifies the state of the REN line and
optionally the device remote/local state. See
the Description section for actual values.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_NCIC The interface associated with this session is not
currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the
system controller.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

Description
 This operation asserts or deasserts the GPIB REN interface line according to the specified mode. The

mode can also specify whether the device associated with this session should be placed in local state
(before deasserting REN) or remote state (after asserting REN). This operation is valid only if the GPIB
interface associated with the session specified by vi is currently the system controller.

Section 6: VISA Resource-Specific Operations Page 6-93

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 6.5.1 Special Values for mode Parameter

Mode Action Description

VI_GPIB_REN_DEASSERT Deassert REN line.

VI_GPIB_REN_ASSERT Assert REN line.

VI_GPIB_REN_DEASSERT_GTL Send the Go To Local command (GTL) to this device and
deassert REN line.

VI_GPIB_REN_ASSERT_ADDRESS Assert REN line and address this device.

VI_GPIB_REN_ASSERT_LLO Send LLO to any devices that are addressed to listen.

VI_GPIB_REN_ASSERT_ADDRESS_LL
O

Address this device and send it LLO, putting it in RWLS.

VI_GPIB_REN_ADDRESS_GTL Send the Go To Local command (GTL) to this device.

Related Items
 See the INSTR resource description.

Implementation Requirements

RULE 6.5.1
An INSTR resource implementation of viGpibControlREN() for a GPIB System SHALL support all
documented modes.

RULE 6.5.2

An INTFC resource implementation of viGpibControlREN() for a GPIB System SHALL support the
modes VI_GPIB_REN_DEASSERT, VI_GPIB_REN_ASSERT, and VI_GPIB_REN_ASSERT_LLO.

RULE 6.5.3

An INSTR resource implementation of viGpibControlREN() for a USB System SHALL support all
documented modes. The references to addressing the device will have no effect for a USB device.

RULE 6.5.4

An INSTR resource implementation of viGpibControlREN() for a USB System SHALL return the error
VI_ERROR_NSUP_OPER for a USBTMC base-class (non-488) device.

RULE 6.5.5

An INSTR resource implementation of viGpibControlREN() for a USB System SHALL return the error
VI_ERROR_NSUP_OPER for a USBTMC 488-class device that does not implement the optional
remote/local state machine.

Page 6-94 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5.2 viGpibControlATN(vi, mode)

Purpose
 Controls the state of the GPIB ATN interface line, and optionally the active controller state of the local

interface board.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mode IN ViUInt16 Specifies the state of the ATN line and
optionally the local active controller state. See
the Description section for actual values.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_NCIC The interface associated with this session is not
currently the controller in charge.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.
VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA

implementation.

Description
 This operation asserts or deasserts the GPIB ATN interface line according to the specified mode. The

mode can also specify whether the local interface board should acquire or release Controller Active status.
This operation is valid only on GPIB INTFC (interface) sessions.

 It is generally not necessary to use the viGpibControlATN() operation in most applications. Other

operations such as viGpibCommand() and viGpibPassControl() modify the ATN and/or CIC state
automatically.

Section 6: VISA Resource-Specific Operations Page 6-95

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Table 6.5.2 Special Values for mode Parameter

Mode Action Description
VI_GPIB_ATN_DEASSERT Deassert ATN line.
VI_GPIB_ATN_ASSERT Assert ATN line synchronously (in 488 terminology). If a

data handshake is in progress, ATN will not be asserted
until the handshake is complete.

VI_GPIB_ATN_DEASSERT_HANDSHAKE Deassert ATN line, and enter shadow handshake mode.
The local board will participate in data handshakes as an
Acceptor without actually reading the data.

VI_GPIB_ATN_ASSERT_IMMEDIATE Assert ATN line asynchronously (in 488 terminology).
This should generally be used only under error conditions.

Related Items
 See the INTFC resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 6-96 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5.3 viGpibSendIFC(vi)

Purpose
 Pulse the interface clear line (IFC) for at least 100 μs.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_NSYS_CNTLR The interface associated with this session is not the
system controller.

Description
 This operation asserts the IFC line and becomes controller in charge (CIC). The local board must be the

system controller. This operation is valid only on GPIB INTFC (interface) sessions.

Related Items
 See the INTFC resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-97

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.4 viGpibCommand(vi, buf, count, retCount)

Purpose
 Write GPIB command bytes on the bus.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
buf IN ViBuf Buffer containing valid GPIB commands.
count IN ViUInt32 Number of bytes to be written.
retCount OUT ViUInt32 Number of bytes actually transferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid

(due to attributes being set to an inconsistent state).
VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and

NDAC are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.

Page 6-98 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation attempts to write count number of bytes of GPIB commands to the interface bus specified

by vi. This operation is valid only on GPIB INTFC (interface) sessions. This operation returns only when
the transfer terminates.

Table 6.5.3 Special Values for retCount Parameter

Value Action Description
VI_NULL Do not return the number of bytes transferred.

Related Items
 See the INTFC resource description.

Implementation Requirements

OBSERVATION 6.5.1

If you pass VI_NULL as the retCount parameter to the viGpibCommand() operation, the number of
bytes transferred will not be returned. This may be useful if it is important to know only whether the
operation succeeded or failed.

Section 6: VISA Resource-Specific Operations Page 6-99

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.5 viGpibPassControl(vi, primAddr, secAddr)

Purpose
 Tell the GPIB device at the specified address to become controller in charge (CIC).

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
primAddr IN ViUInt16 Primary address of the GPIB device to which

you want to pass control.
secAddr IN ViUInt16 Secondary address of the targeted GPIB

device. If the targeted device does not have a
secondary address, this parameter should
contain the value VI_NO_SEC_ADDR.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_NCIC The interface associated with the given vi is not

currently the controller in charge.
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and

NDAC are deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.

Description
 This operation passes controller in charge status to the device indicated by primAddr and secAddr, and

then deasserts the ATN line. This operation assumes that the targeted device has controller capability.
This operation is valid only on GPIB INTFC (interface) sessions.

Related Items
 See the INTFC resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Page 6-100 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5.6 viVxiCommandQuery(vi, mode, cmd, response)

Purpose
 Send the device a miscellaneous command or query and/or retrieve the response to a previous query.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mode IN ViUInt16 Specifies whether to issue a command and/or
retrieve a response. See the Description
section for actual values.

cmd IN ViUInt32 The miscellaneous command to send.

response OUT ViUInt32 The response retrieved from the device. If the
mode specifies just sending a command, this
parameter may be VI_NULL.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS The operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device reported an output protocol error during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during
transfer.

Section 6: VISA Resource-Specific Operations Page 6-101

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Error Codes Description

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_RESP_PENDING A previous response is still pending, causing a
multiple query error.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

Description
 This operation can send a command or query, or receive a response to a query previously sent to the

device. The mode parameter specifies whether to issue a command and/or retrieve a response, and what
type or size of command and/or response to use.

Table 6.5.4 Special Values for mode Parameter

Mode Action Description

VI_VXI_CMD16 Send 16-bit Word Serial command.

VI_VXI_CMD16_RESP16 Send 16-bit Word Serial query, get 16-bit response.

VI_VXI_RESP16 Get 16-bit response from previous query.

VI_VXI_CMD32 Send 32-bit Word Serial command.

VI_VXI_CMD32_RESP16 Send 32-bit Word Serial query, get 16-bit response.

VI_VXI_CMD32_RESP32 Send 32-bit Word Serial query, get 32-bit response.

VI_VXI_RESP32 Get 32-bit response from previous query.

If the mode parameter specifies sending a 16-bit command, the upper half of the cmd parameter is ignored.
If the mode parameter specifies just retrieving a response, then the cmd parameter is ignored.

If the mode parameter specifies sending a command only, the response parameter is ignored and may be
VI_NULL. If a response is retrieved but is only a 16-bit value, the upper half of the response parameter
will be set to 0.

Related Items
 See the INSTR resource description.

Implementation Requirements

RULE 6.5.6
 All VISA implementations SHALL support all defined mode values for viVxiCommandQuery().

OBSERVATION 6.6.1

Refer to the VXI Specification for defined word serial commands. The command values Byte Available,
Byte Request, Clear, and Trigger are not valid for this operation.

Page 6-102 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5.7 viAssertIntrSignal(vi, mode, statusID)

Purpose
 Asserts the specified device interrupt or signal.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

mode IN ViInt16 This specifies how to assert the interrupt. See
the Description section for actual values.

statusID IN ViUInt32 This is the status value to be presented during
an interrupt acknowledge cycle.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Operation completed successfully.

Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INTR_PENDING An interrupt is still pending from a previous call.

VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.

VI_ERROR_NSUP_INTR The interface cannot generate an interrupt on the
requested level or with the requested statusID value.

VI_ERROR_NSUP_MODE The specified mode is not supported by this VISA
implementation.

Section 6: VISA Resource-Specific Operations Page 6-103

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Description
 This operation can be used to assert a device interrupt condition. In VXI, for example, this can be done

with either a VXI signal or a VXI interrupt. On certain bus types, the statusID parameter may be ignored.

Table 6.5.5 Special Values for mode Parameter

Mode Action Description

VI_ASSERT_USE_ASSIGNED Use whatever notification method that has been
assigned to the local device.

VI_ASSERT_SIGNAL Send the notification via a VXI signal.

VI_ASSERT_IRQ1 - VI_ASSERT_IRQ7 Send the interrupt via the specified VXI/VME IRQ
line. This uses the standard VXI/VME ROAK
(release on acknowledge) interrupt mechanism rather
than the older VME RORA (release on register
access) mechanism.

Related Items
 See the BACKPLANE and VXI SERVANT resource descriptions.

Implementation Requirements

RULE 6.5.7

IF the mode parameter is VI_ASSERT_USE_ASSIGNED, AND vi is a session to a VXI SERVANT
resource, THEN the operation viAssertIntrSignal() SHALL use the mechanism specified in the
response of Asynchronous Mode Control command.

RULE 6.5.8

IF the mode parameter is VI_ASSERT_USE_ASSIGNED, AND vi is a session to a BACKPLANE resource,
THEN the operation viAssertIntrSignal() SHALL return the status code VI_ERROR_INV_MODE.

Page 6-104 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

6.5.8 viAssertUtilSignal(vi, line)

Purpose
 Asserts the specified utility bus signal.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
line IN ViUInt16 Specifies the utility bus signal to assert. This

can be the value
VI_UTIL_ASSERT_SYSRESET,
VI_UTIL_ASSERT_SYSFAIL, or
VI_UTIL_DEASSERT_SYSFAIL.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_INV_LINE The value specified by the line parameter is invalid.

Description
 This operation can be used to assert either the SYSFAIL or SYSRESET utility bus interrupts on the

VXIbus backplane. This operation is valid only on VXI BACKPLANE and SERVANT sessions.

 Asserting SYSRESET (also known as HARD RESET in the VXI specification) should be used only when

it is necessary to promptly terminate operation of all devices in a VXIbus system. This is a serious action
that always affects the entire VXIbus system.

Related Items
 See the BACKPLANE and SERVANT resource descriptions.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-105

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.9 viMapTrigger(vi, trigSrc, trigDest, mode)

Purpose
 Map the specified trigger source line to the specified destination line.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
trigSrc IN ViInt16 Source line from which to map. See the

Description section for actual values.
trigDest IN ViInt16 Destination line to which to map. See the

Description section for actual values.
mode IN ViUInt16 Specifies the trigger mapping mode. This

should always be VI_NULL for this version
of the specification.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.
VI_SUCCESS_TRIG_MAPPED The path from trigSrc to trigDest is already

mapped.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_INV_MODE The value specified by the mode parameter is invalid.
VI_ERROR_LINE_IN_USE One of the specified lines (trigSrc or trigDest) is

currently in use.
VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is

invalid.
VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is

not supported by this VISA implementation.

Page 6-106 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation can be used to map one trigger line to another. This operation is valid only on

BACKPLANE (mainframe) sessions.

Table 6.5.6 Special Values for trigSrc and trigDest Parameters

Value Action Description

VI_TRIG_TTL0 - VI_TRIG_TTL7 Map the specified VXI TTL trigger line.

VI_TRIG_ECL0 - VI_TRIG_ECL1 Map the specified VXI ECL trigger line.
VI_TRIG_PANEL_IN Map the controller’s front panel trigger input line.
VI_TRIG_PANEL_OUT Map the controller’s front panel trigger output line.

 If this operation is called multiple times on the same BACKPLANE resource with the same source trigger

line and different destination trigger lines, the result should be that when the source trigger line is asserted,
all of the specified destination trigger lines should also be asserted. If this operation is called multiple
times on the same BACKPLANE resource with different source trigger lines and the same destination
trigger line, the result should be that when any of the specified source trigger lines is asserted, the
destination trigger line should also be asserted. However, mapping a trigger line (as either source or
destination) multiple times requires special hardware capabilities and is not guaranteed to be implemented.

Related Items
 See the BACKPLANE resource description.

Implementation Requirements

RULE 6.5.9
IF a VISA implementation does not support mapping the same trigger line multiple times, AND either trigSrc or
trigDest specifies a line that is already mapped, THEN viMapTrigger() SHALL return the status code
VI_ERROR_LINE_IN_USE.

RULE 6.5.10
IF a path already exists from trigSrc to trigDest, THEN viMapTrigger() SHALL NOT create a new
hardware trigger mapping and SHALL return the status code VI_SUCCESS_TRIG_MAPPED.

Section 6: VISA Resource-Specific Operations Page 6-107

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.10 viUnmapTrigger(vi, trigSrc, trigDest)

Purpose
 Undo a previous map from the specified trigger source line to the specified destination line.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
trigSrc IN ViInt16 Source line used in previous map. See the

Description section for actual values.
trigDest IN ViInt16 Destination line used in previous map. See

the Description section for actual values.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_LINE One of the specified lines (trigSrc or trigDest) is
invalid.

VI_ERROR_TRIG_NMAPPED The path from trigSrc to trigDest is not currently
mapped.

VI_ERROR_NSUP_LINE One of the specified lines (trigSrc or trigDest) is
not supported by this VISA implementation.

Page 6-108 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation can be used to undo a previous mapping of one trigger line to another. This operation is

valid only on BACKPLANE (mainframe) sessions.

Table 6.5.7 Special Values for trigSrc Parameters

Value Action Description

VI_TRIG_TTL0 - VI_TRIG_TTL7 Unmap the specified VXI TTL trigger line.

VI_TRIG_ECL0 - VI_TRIG_ECL1 Unmap the specified VXI ECL trigger line.
VI_TRIG_PANEL_IN Unmap the controller’s front panel trigger input line.
VI_TRIG_PANEL_OUT Unmap the controller’s front panel trigger output line.

Table 6.5.8 Special Values for trigDest Parameters

Value Action Description

VI_TRIG_TTL0 - VI_TRIG_TTL7 Unmap the specified VXI TTL trigger line.

VI_TRIG_ECL0 - VI_TRIG_ECL1 Unmap the specified VXI ECL trigger line.
VI_TRIG_PANEL_IN Unmap the controller’s front panel trigger input line.
VI_TRIG_PANEL_OUT Unmap the controller’s front panel trigger output line.

VI_TRIG_ALL Unmap all trigger lines to which trigSrc is currently connected.

 This operation unmaps only one trigger mapping per call. In other words, if viMapTrigger() was called

multiple times on the same BACKPLANE resource and created multiple mappings for either trigSrc or
trigDest, trigger mappings other than the one specified by trigSrc and trigDest should remain in
effect after this call completes.

Related Items
 See the BACKPLANE resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-109

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.11 viUsbControlOut (vi, bmRequestType, bRequest, wValue, wIndex,
wLength, buf)

Purpose
 Send arbitrary data to the USB device on the control port.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
bmRequestType IN ViInt16 Bitmap field for defining the USB control port

request. The bitmap fields are as defined by the USB
specification. The direction bit must be host-to-
device.

bRequest IN ViInt16 Request ID for this transfer. The meaning of this
value depends on bmRequestType.

wValue IN ViUInt16 Request value for this transfer.

wIndex IN ViUInt16 Specifies the interface or endpoint index number,
depending on bmRequestType.

wLength IN ViUInt16 Length of the data in bytes to send to the device
during the Data stage. If this value is 0, then buf is
ignored.

buf IN ViBuf Actual data to send to the device during the Data
stage. If wLength is 0, then this parameter is ignored.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because

the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_MASK The value in bmRequestType does not have the
direction bit set to the correct value.

VI_ERROR_IO Could not perform operation because of I/O error.

VI_ERROR_INV_PARAMETER The high byte of bmRequestType or bRequest is not
zero.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Page 6-110 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation can be used to send arbitrary data to a USB device on the default control port. The user

must be aware of how to use each parameter based on the relevant USB base or class specification, or
based on a vendor-specific request definition.

 Since the USBTMC specification does not currently define any standard control port requests in the

direction of host-to-device, this function is intended for use with only vendor-defined requests. However,
this function implementation should not check the bmRequestType parameter for this aspect.

Related Items
 See the USB INSTR resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Section 6: VISA Resource-Specific Operations Page 6-111

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

6.5.12 viUsbControlIn (vi, bmRequestType, bRequest, wValue, wIndex,
wLength, buf, retCnt)

Purpose
 Request arbitrary data from the USB device on the control port.

Parameters

Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
bmRequestType IN ViInt16 Bitmap field for defining the USB control port

request. The bitmap fields are as defined by the USB
specification. The direction bit must be device-to-
host.

bRequest IN ViInt16 Request ID for this transfer. The meaning of this
value depends on bmRequestType.

wValue IN ViUInt16 Request value for this transfer.

wIndex IN ViUInt16 Specifies the interface or endpoint index number,
depending on bmRequestType.

wLength IN ViUInt16 Length of the data in bytes to request from the device
during the Data stage. If this value is 0, then buf is
ignored.

buf OUT ViBuf Actual data received from the device during the Data
stage. If wLength is 0, then this parameter is ignored.

retCnt OUT ViUInt16 Actual number of bytes received from the device
during the Data stage.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed because the resource

identified by vi has been locked for this kind of access.
VI_ERROR_INV_MASK The value in bmRequestType does not have the direction bit set

to the correct value.
VI_ERROR_IO Could not perform operation because of I/O error.

VI_ERROR_INV_PARAMETER The high byte of bmRequestType or bRequest is not zero.

VI_ERROR_CONN_LOST The I/O connection for the given session has been lost.

Page 6-112 Section 6: VISA Resource-Specific Operations

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Description
 This operation can be used to request arbitrary data from a USB device on the default control port. The

user must be aware of how to use each parameter based on the relevant USB base or class specification, or
based on a vendor-specific request definition.

Table 6.5.9 Special Values for retCnt Parameter

Value Action Description

VI_NULL Do not return the actual number of bytes read from
the control pipe.

Related Items
 See the USB INSTR resource description.

Implementation Requirements
 There are no additional implementation requirements other than those specified above.

Appendix A: Required Attributes Page A-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Appendix A Required Attributes

This appendix lists the required attributes along with the range and default value of every resource
described in this document.

The set of required attributes varies from interface to interface, and the range and default values for
individual attributes may also vary from interface to interface. The set of required attributes for a write
operation for the VXI interface, for example, is different from that of a write operation for the GPIB
interface. In this appendix, such resources will have several tables of required attributes, one for each type
of interface that the resource must be capable of supporting.

A.1 Required Attribute Tables

Resource Template Attributes

Symbolic Name Range Default

VI_ATTR_RSRC_NAME N/A N/A

VI_ATTR_RSRC_SPEC_VERSION 00400000h 00400000h

VI_ATTR_RSRC_IMPL_VERSION 0h to FFFFFFFFh N/A

VI_ATTR_RSRC_MANF_ID 0h to 3FFFh N/A

VI_ATTR_RSRC_MANF_NAME N/A N/A

VI_ATTR_USER_DATA N/A N/A

VI_ATTR_MAX_QUEUE_LENGTH 1h to FFFFFFFFh 50

VI_ATTR_RM_SESSION N/A N/A

VI_ATTR_RSRC_CLASS N/A N/A

VI_ATTR_RSRC_LOCK_STATE VI_NO_LOCK
VI_EXCLUSIVE_LOCK
VI_SHARED_LOCK

VI_NO_LOCK

INSTR Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_TYPE VI_INTF_VXI
VI_INTF_GPIB

VI_INTF_GPIB_VXI
VI_INTF_ASRL
VI_INTF_PXI
VI_INTF_TCPIP
VI_INTF_USB

N/A

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

2000

VI_ATTR_INTF_NUM 0 to FFFFh 0

(continues)

Page A-2 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

INSTR Resource Attributes (Generic) (Continued)

Symbolic Name Range Default

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_TRIG_ID VI_TRIG_SW;
VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

VI_TRIG_SW

VI_ATTR_DMA_ALLOW_EN VI_TRUE
VI_FALSE

N/A

INSTR Resource Attributes (Message Based)

Symbolic Name Range Default

VI_ATTR_IO_PROT VI_PROT_NORMAL
VI_PROT_FDC
VI_PROT_HS488

VI_PROT_4882_STRS
VI_PROT_USBTMC_VENDOR

VI_PROT_NORMAL

VI_ATTR_SEND_END_EN VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_SUPPRESS_END_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TERMCHAR 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_FILE_APPEND_EN VI_TRUE
VI_FALSE

VI_FALSE

INSTR Resource Attributes (GPIB and GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_GPIB_PRIMARY_ADDR 0 to 30 N/A

VI_ATTR_GPIB_SECONDARY_ADDR 0 to 31,
VI_NO_SEC_ADDR

N/A

VI_ATTR_GPIB_READDR_EN VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_GPIB_UNADDR_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_GPIB_REN_STATE VI_STATE_ASSERTED

VI_STATE_UNASSERTED

VI_STATE_UNKNOWN

N/A

Appendix A: Required Attributes Page A-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

INSTR Resource Attributes (VXI, GPIB-VXI, and PXI Specific)

Symbolic Name Range Default

VI_ATTR_SLOT 0 to 18;
VI_UNKNOWN_SLOT

N/A

VI_ATTR_WIN_BASE_ADDR_32

VI_ATTR_WIN_BASE_ADDR_64
N/A N/A

VI_ATTR_WIN_SIZE_32

VI_ATTR_WIN_SIZE_64
N/A N/A

VI_ATTR_WIN_ACCESS VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_NMAPPED

VI_ATTR_SRC_INCREMENT 0 to 1 1

VI_ATTR_DEST_INCREMENT 0 to 1 1

INSTR Resource Attributes (VXI and GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_FDC_CHNL 0 to 7 N/A

VI_ATTR_FDC_MODE VI_FDC_NORMAL
VI_FDC_STREAM

VI_FDC_NORMAL

VI_ATTR_FDC_USE_PAIR VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_FDC_GEN_SIGNAL_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_MEM_BASE_32

VI_ATTR_MEM_BASE_64
N/A N/A

VI_ATTR_MEM_SIZE_32

VI_ATTR_MEM_SIZE_64
N/A N/A

VI_ATTR_MEM_SPACE VI_A16_SPACE
VI_A24_SPACE
VI_A32_SPACE
VI_A64_SPACE

VI_A16_SPACE

VI_ATTR_VXI_LA 0 to 511 N/A

VI_ATTR_CMDR_LA 0 to 255;
VI_UNKNOWN_LA

N/A

VI_ATTR_IMMEDIATE_SERV VI_TRUE
VI_FALSE

N/A

VI_ATTR_MAINFRAME_LA 0 to 255;
VI_UNKNOWN_LA

N/A

VI_ATTR_SRC_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_DEST_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_WIN_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

 (continues)

Page A-4 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

INSTR Resource Attributes (VXI and GPIB-VXI Specific) (Continued)

Symbolic Name Range Default

VI_ATTR_SRC_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_DEST_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_WIN_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI_DATA_PRIV

VI_ATTR_VXI_DEV_CLASS VI_VXI_CLASS_MEMORY
VI_VXI_CLASS_EXTENDED
VI_VXI_CLASS_MESSAGE
VI_VXI_CLASS_REGISTER
VI_VXI_CLASS_OTHER

N/A

VI_ATTR_VXI_TRIG_SUPPORT N/A N/A

INSTR Resource Attributes (GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_INTF_PARENT_NUM 0 to FFFFh N/A

Appendix A: Required Attributes Page A-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

INSTR Resource Attributes (ASRL Specific)

Symbolic Name Range Default

VI_ATTR_ASRL_AVAIL_NUM 0 to FFFFFFFFh 0

VI_ATTR_ASRL_BAUD 0 to FFFFFFFFh 9600

VI_ATTR_ASRL_DATA_BITS 5 to 8 8

VI_ATTR_ASRL_PARITY VI_ASRL_PAR_NONE
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

VI_ASRL_PAR_NONE

VI_ATTR_ASRL_STOP_BITS VI_ASRL_STOP_ONE
VI_ASRL_STOP_ONE5
VI_ASRL_STOP_TWO

VI_ASRL_STOP_ONE

VI_ATTR_ASRL_END_IN VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR

VI_ASRL_END_TERMCHAR

VI_ATTR_ASRL_END_OUT VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
VI_ASRL_END_BREAK

VI_ASRL_END_NONE

VI_ATTR_ASRL_FLOW_CNTRL VI_ASRL_FLOW_NONE
VI_ASRL_FLOW_XON_XOFF
VI_ASRL_FLOW_RTS_CTS
VI_ASRL_FLOW_DTR_DSR

VI_ASRL_FLOW_NONE

VI_ATTR_ASRL_CTS_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DCD_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DSR_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DTR_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_RI_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_RTS_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_REPLACE_CHAR 0 to FFh 0

VI_ATTR_ASRL_XON_CHAR 0 to FFh <Ctrl-Q> (11h)

VI_ATTR_ASRL_XOFF_CHAR 0 to FFh <Ctrl-S> (13h)

Page A-6 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

INSTR Resource Attributes (TCPIP Specific)

Symbolic Name Range Default

VI_ATTR_TCPIP_ADDR N/A N/A
VI_ATTR_TCPIP_HOSTNAME N/A N/A
VI_ATTR_TCPIP_DEVICE_NAME N/A N/A

INSTR Resource Attributes (VXI, GPIB-VXI, USB, and PXI Specific)

Symbolic Name Range Default

VI_ATTR_MANF_ID 0 to FFFFh 0

VI_ATTR_MODEL_CODE 0 to FFFFh 0

VI_ATTR_MANF_NAME N/A N/A

VI_ATTR_MODEL_NAME N/A N/A

INSTR Resource Attributes (VXI, GPIB-VXI, and USB Specific)

Symbolic Name Range Default

VI_ATTR_4882_COMPLIANT VI_TRUE

VI_FALSE
N/A

INSTR Resource Attributes (USB Specific)

Symbolic Name Range Default

VI_ATTR_USB_SERIAL_NUM N/A N/A

VI_ATTR_USB_INTFC_NUM 0 to 254 0

VI_ATTR_USB_MAX_INTR_SIZE 0 to FFFFh N/A

VI_ATTR_USB_PROTOCOL 0 to 255 N/A

INSTR Resource Attributes (PXI Specific)

Symbolic Name Range Default

VI_ATTR_PXI_DEV_NUM 0 to 31 N/A

VI_ATTR_PXI_FUNC_NUM 0 to 7 N/A

VI_ATTR_PXI_BUS_NUM 0 to 255 N/A

VI_ATTR_PXI_CHASSIS 0 to 255
VI_UNKNOWN_CHASSIS

N/A

(continues)

Appendix A: Required Attributes Page A-7

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

INSTR Resource Attributes (PXI Specific) (Continued)

Symbolic Name Range Default

VI_ATTR_PXI_SLOTPATH N/A N/A

VI_ATTR_PXI_SLOT_LBUS_LEFT 0 to 32767
VI_UNKNOWN_SLOT

N/A

VI_ATTR_PXI_SLOT_LBUS_RIGHT 0 to 32767
VI_UNKNOWN_SLOT

N/A

VI_ATTR_PXI_TRIG_BUS 0 to 32767
VI_UNKNOWN_TRIG

N/A

VI_ATTR_PXI_STAR_TRIG_BUS 0 to 32767
VI_UNKNOWN_TRIG

N/A

VI_ATTR_PXI_STAR_TRIG_LINE 0 to 32767
VI_UNKNOWN_TRIG

N/A

VI_ATTR_PXI_MEM_TYPE_BARn (where n
is 0,1,2,3,4,5)

VI_PXI_ADDR_MEM,
VI_PXI_ADDR_IO,
VI_PXI_ADDR_NONE

N/A

VI_ATTR_PXI_MEM_BASE_BARn (where n
is 0,1,2,3,4,5)

N/A N/A

VI_ATTR_PXI_MEM_SIZE_BARn (where n
is 0,1,2,3,4,5)

N/A N/A

MEMACC Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_NUM 0 to FFFFh 0

VI_ATTR_INTF_TYPE VI_INTF_VXI
 VI_INTF_GPIB_VXI

N/A

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

2000

VI_ATTR_DMA_ALLOW_EN VI_TRUE
VI_FALSE

N/A

Page A-8 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

MEMACC Resource Attributes (VXI, GPIB-VXI, and PXI Specific)

Symbolic Name Range Default

VI_ATTR_SRC_INCREMENT 0 to 1 1

VI_ATTR_DEST_INCREMENT 0 to 1 1

VI_ATTR_WIN_BASE_ADDR_32

VI_ATTR_WIN_BASE_ADDR_64
N/A N/A

VI_ATTR_WIN_SIZE_32

VI_ATTR_WIN_SIZE_64
N/A N/A

VI_ATTR_WIN_ACCESS VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_NMAPPED

MEMACC Resource Attributes (VXI and GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_VXI_LA 0 to 255 N/A

VI_ATTR_SRC_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_DEST_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_WIN_BYTE_ORDER VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_SRC_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_DEST_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_WIN_ACCESS_PRIV VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI_DATA_PRIV

Appendix A: Required Attributes Page A-9

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

MEMACC Resource Attributes (GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_INTF_PARENT_NUM 0 to FFFFh N/A

VI_ATTR_GPIB_PRIMARY_ADDR 0 to 30 N/A

VI_ATTR_GPIB_SECONDARY_ADDR 0 to 31,
VI_NO_SEC_ADDR

N/A

INTFC Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_NUM 0 to FFFFh 0

VI_ATTR_INTF_TYPE VI_INTF_GPIB VI_INTF_GPIB

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_SEND_END_EN VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_TERMCHAR 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE
1 to FFFFFFFEh

2000

VI_ATTR_DEV_STATUS_BYTE 0 to FFh N/A

VI_ATTR_WR_BUF_OPER_MODE VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN VI_TRUE
VI_FALSE

N/A

VI_ATTR_RD_BUF_OPER_MODE VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN VI_TRUE
VI_FALSE

VI_FALSE

Page A-10 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

INTFC Resource Attributes (GPIB Specific)

Symbolic Name Range Default

VI_ATTR_GPIB_PRIMARY_ADDR 0 to 30 N/A

VI_ATTR_GPIB_SECONDARY_ADDR 0 to 31
VI_NO_SEC_ADDR

VI_NO_SEC_ADDR

VI_ATTR_GPIB_REN_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_ATN_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_NDAC_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_SRQ_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_CIC_STATE VI_TRUE
VI_FALSE

N/A

VI_ATTR_GPIB_SYS_CNTRL_STATE VI_TRUE
VI_FALSE

N/A

VI_ATTR_GPIB_HS488_CBL_LEN 1 to 15
VI_GPIB_HS488_DISABLED
VI_GPIB_HS488_NIMPL

N/A

BACKPLANE Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_NUM 0 to FFFFh 0

VI_ATTR_INTF_TYPE VI_INTF_VXI
 VI_INTF_GPIB_VXI

N/A

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE
1 to FFFFFFFEh

VI_TMO_INFINITE

2000

Appendix A: Required Attributes Page A-11

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

BACKPLANE Resource Attributes (VXI and GPIB-VXI Specific)

Symbolic Name Range Default

VI_ATTR_TRIG_ID VI_TRIG_TTL0 to
VI_TRIG_TTL7;
VI_TRIG_ECL0 to
VI_TRIG_ECL1

N/A

VI_ATTR_MAINFRAME_LA 0 to 255
VI_UNKNOWN_LA

N/A

VI_ATTR_VXI_VME_SYSFAIL_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_VXI_VME_INTR_STATUS N/A N/A

VI_ATTR_VXI_TRIG_STATUS N/A N/A

VI_ATTR_VXI_TRIG_SUPPORT N/A N/A

SERVANT Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_NUM 0 to FFFFh 0

VI_ATTR_INTF_TYPE VI_INTF_VXI
VI_INTF_GPIB
VI_INTF_TCPIP

N/A

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_SEND_END_EN VI_TRUE
VI_FALSE

VI_TRUE

VI_ATTR_TERMCHAR 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_EN VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE
1 to FFFFFFFEh

2000

VI_ATTR_DEV_STATUS_BYTE 0 to FFh N/A

VI_ATTR_WR_BUF_OPER_MODE VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN VI_TRUE
VI_FALSE

N/A

VI_ATTR_RD_BUF_OPER_MODE VI_FLUSH_ON_ACCESS
VI_FLUSH_DIABLE

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN VI_TRUE
VI_FALSE

VI_FALSE

Page A-12 Appendix A: Required Attributes

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

SERVANT Resource Attributes (GPIB Specific)

Symbolic Name Range Default

VI_ATTR_GPIB_PRIMARY_ADDR 0 to 30 N/A

VI_ATTR_GPIB_SECONDARY_ADDR 0 to 31,
VI_NO_SEC_ADDR

VI_NO_SEC_ADDR

VI_ATTR_GPIB_REN_STATE VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_ADDR_STATE VI_GIPB_UNADDRESSED
VI_GPIB_TALKER
VI_GPIB_LISTENER

N/A

SERVANT Resource Attributes (VXI Specific)

Symbolic Name Range Default

VI_ATTR_VXI_LA 0 to 511 N/A

VI_ATTR_CMDR_LA 0 to 255
VI_UNKNOWN_LA

N/A

SERVANT Resource Attributes (TCPIP Specific)

Symbolic Name Range Default

VI_ATTR_TCPIP_DEVICE_NAME N/A N/A

Appendix A: Required Attributes Page A-13

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

SOCKET Resource Attributes (Generic)

Symbolic Name Range Default

VI_ATTR_INTF_NUM 0 to FFFFh 0

VI_ATTR_INTF_TYPE VI_INTF_TCPIP VI_INTF_TCPIP

VI_ATTR_INTF_INST_NAME N/A N/A

VI_ATTR_SEND_END_EN VI_TRUE

VI_FALSE
VI_TRUE

VI_ATTR_TERMCHAR 0 to FFh 0Ah (linefeed)

VI_ATTR_TERMCHAR_EN VI_TRUE

VI_FALSE
VI_FALSE

VI_ATTR_TMO_VALUE VI_TMO_IMMEDIATE
1 to FFFFFFFEh

VI_TMO_INFINITE

2000

VI_ATTR_WR_BUF_OPER_MODE VI_FLUSH_ACCESS
VI_FLUSH_WHEN_FULL

VI_FLUSH_WHEN_FULL

VI_ATTR_DMA_ALLOW_EN VI_TRUE

VI_FALSE
VI_FALSE

VI_ATTR_RD_BUF_OPER_MODE VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_DISABLE

VI_ATTR_FILE_APPEND_EN VI_TRUE

VI_FALSE
VI_FALSE

SOCKET Resource Attributes (TCPIP Specific)

Symbolic Name Range Default

VI_ATTR_TCPIP_ADDR N/A N/A

VI_ATTR_TCPIP_HOSTNAME N/A N/A

VI_ATTR_TCPIP_PORT 0 to FFFFh N/A

VI_ATTR_TCPIP_NODELAY VI_TRUE

VI_FALSE
VI_TRUE

VI_ATTR_TCPIP_KEEPALIVE VI_TRUE

VI_FALSE
VI_FALSE

Appendix B: Resource Summary Information Page B-1

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Appendix B Resource Summary Information

B.1 Summary of Attributes

VISA Resource Template
(These attributes are based on the VISA Resource Template and are available to all other resources.)

VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_RM_SESSION
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE
VI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAME
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION
VI_ATTR_USER_DATA

INSTR Resource

VI_ATTR_ASRL_AVAIL_NUM VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_CTS_STATE VI_ATTR_ASRL_DATA_BITS
VI_ATTR_ASRL_DCD_STATE VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE VI_ATTR_ASRL_END_IN
VI_ATTR_ASRL_END_OUT VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_PARITY VI_ATTR_ASRL_REPLACE_CHAR
VI_ATTR_ASRL_RI_STATE VI_ATTR_ASRL_RTS_STATE
VI_ATTR_ASRL_STOP_BITS VI_ATTR_ASRL_XON_CHAR
VI_ATTR_ASRL_XOFF_CHAR VI_ATTR_GPIB_REN_STATE
VI_ATTR_CMDR_LA VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_DEST_BYTE_ORDER VI_ATTR_DEST_INCREMENT
VI_ATTR_FDC_CHNL VI_ATTR_FDC_GEN_SIGNAL_EN
VI_ATTR_FDC_MODE VI_ATTR_FDC_USE_PAIR
VI_ATTR_GPIB_PRIMARY_ADDR VI_ATTR_GPIB_READDR_EN
VI_ATTR_GPIB_SECONDARY_ADDR VI_ATTR_GPIB_UNADDR_EN
VI_ATTR_IMMEDIATE_SERV VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM VI_ATTR_INTF_PARENT_NUM
VI_ATTR_INTF_TYPE VI_ATTR_IO_PROT
VI_ATTR_MAINFRAME_LA VI_ATTR_MANF_ID
VI_ATTR_MEM_BASE_32 VI_ATTR_MEM_SIZE_32
VI_ATTR_MEM_SPACE VI_ATTR_MODEL_CODE
VI_ATTR_RD_BUF_OPER_MODE VI_ATTR_SEND_END_EN
VI_ATTR_SLOT VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER VI_ATTR_SRC_INCREMENT
VI_ATTR_SUPPRESS_END_EN VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID VI_ATTR_VXI_LA
VI_ATTR_WIN_ACCESS VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR_32 VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE_32 VI_ATTR_WR_BUF_OPER_MODE
VI_ATTR_DMA_ALLOW_EN VI_ATTR_VXI_TRIG_SUPPORT
VI_ATTR_VXI_DEV_CLASS VI_ATTR_TCPIP_ADDR
VI_ATTR_MANF_NAME VI_ATTR_TCPIP_HOSTNAME
VI_ATTR_FILE_APPEND_EN VI_ATTR_TCPIP_PORT
VI_ATTR_MODEL_NAME VI_ATTR_4882_COMPLIANT
VI_ATTR_USB_SERIAL_NUM VI_ATTR_USB_INTFC_NUM
VI_ATTR_USB_MAX_INTR_SIZE VI_ATTR_USB_PROTOCOL
VI_ATTR_RD_BUF_SIZE VI_ATTR_WR_BUF_SIZE
VI_ATTR_PXI_BUS_NUM VI_ATTR_PXI_CHASSIS
VI_ATTR_PXI_DEV_NUM VI_ATTR_PXI_FUNC_NUM
VI_ATTR_PXI_MEM_BASE_BAR0 �
VI_ATTR_PXI_MEM_BASE_BAR5

VI_ATTR_PXI_MEM_SIZE_BAR0 �
VI_ATTR_PXI_MEM_SIZE_BAR5

VI_ATTR_PXI_MEM_TYPE_BAR0 �
VI_ATTR_PXI_MEM_TYPE_BAR5

VI_ATTR_PXI_SLOT_LBUS_LEFT

VI_ATTR_PXI_SLOT_LBUS_RIGHT VI_ATTR_PXI_SLOTPATH

Page B-2 Appendix B: Resource Summary Information

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

VI_ATTR_PXI_STAR_TRIG_BUS VI_ATTR_PXI_STAR_TRIG_LINE
VI_ATTR_PXI_TRIG_BUS VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_SIZE_64 VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_SIZE_64

MEMACC Resource
VI_ATTR_DEST_ACCESS_PRIV VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_DEST_INCREMENT VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_GPIB_SECONDARY_ADDR VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM VI_ATTR_INTF_PARENT_NUM
VI_ATTR_INTF_TYPE VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER VI_ATTR_SRC_INCREMENT
VI_ATTR_TMO_VALUE VI_ATTR_VXI_LA
VI_ATTR_WIN_ACCESS VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR_32 VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE_32 VI_ATTR_DMA_ALLOW_EN
VI_ATTR_WIN_BASE_ADDR_64 VI_ATTR_WIN_SIZE_64

INTFC Resource
VI_ATTR_INTF_NUM VI_ATTR_FILE_APPEND_EN
VI_ATTR_INTF_TYPE VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_INTF_INST_NAME VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_SEND_END_EN VI_ATTR_GPIB_REN_STATE
VI_ATTR_TERMCHAR VI_ATTR_GPIB_ATN_STATE
VI_ATTR_TERMCHAR_EN VI_ATTR_GPIB_NDAC_STATE
VI_ATTR_TMO_VALUE VI_ATTR_GPIB_SRQ_STATE
VI_ATTR_DEV_STATUS_BYTE VI_ATTR_GPIB_CIC_STATE
VI_ATTR_WR_BUF_OPER_MODE VI_ATTR_GPIB_SYS_CNTRL_STATE
VI_ATTR_DMA_ALLOW_EN VI_ATTR_GPIB_HS488_CBL_LEN
VI_ATTR_RD_BUF_OPER_MODE VI_ATTR_GPIB_ADDR_STATE
VI_ATTR_RD_BUF_SIZE VI_ATTR_WR_BUF_SIZE

BACKPLANE Resource
VI_ATTR_INTF_NUM VI_ATTR_MAINFRAME_LA
VI_ATTR_INTF_TYPE VI_ATTR_VXI_VME_SYSFAIL_STATE
VI_ATTR_INTF_INST_NAME VI_ATTR_VXI_VME_INTR_STATUS
VI_ATTR_TMO_VALUE VI_ATTR_VXI_TRIG_STATUS
VI_ATTR_TRIG_ID VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_VXI_TRIG_SUPPORT VI_ATTR_GPIB_SECONDARY_ADDR
 VI_ATTR_INTF_PARENT_NUM

SERVANT Resource
VI_ATTR_INTF_NUM VI_ATTR_DMA_ALLOW_EN
VI_ATTR_INTF_TYPE VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_INTF_INST_NAME VI_ATTR_FILE_APPEND_EN
VI_ATTR_SEND_END_EN VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_TERMCHAR VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_TERMCHAR_EN VI_ATTR_GPIB_REN_STATE
VI_ATTR_TMO_VALUE VI_ATTR_GPIB_ADDR_STATE
VI_ATTR_DEV_STATUS_BYTE VI_ATTR_CMDR_LA
VI_ATTR_WR_BUF_OPER_MODE VI_ATTR_IO_PROT
VI_ATTR_VXI_LA VI_ATTR_TRIG_ID

SOCKET Resource
VI_ATTR_INTF_NUM VI_ATTR_WR_BUF_OPER_MODE
VI_ATTR_INTF_TYPE VI_ATTR_DMA_ALLOW_EN
VI_ATTR_INTF_INST_NAME VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_SEND_END_EN VI_ATTR_FILE_APPEND_EN
VI_ATTR_TERMCHAR VI_ATTR_TCPIP_ADDR
VI_ATTR_TERMCHAR_EN VI_ATTR_TCPIP_HOSTNAME
VI_ATTR_TMO_VALUE VI_ATTR_TCPIP_PROT
VI_ATTR_TCPIP_NODELAY VI_ATTR_IO_PORT
VI_ATTR_TCPIP_KEEPALIVE
VI_ATTR_RD_BUF_SIZE VI_ATTR_WR_BUF_SIZE

Appendix B: Resource Summary Information Page B-3

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

B.2 Summary of Events

VISA Resource Template
(These events are based on the VISA Resource Template and are available to all other resources.)

VI_EVENT_EXCEPTION

INSTR Resource

VI_EVENT_IO_COMPLETION
VI_EVENT_SERVICE_REQ
VI_EVENT_TRIG
VI_EVENT_VXI_SIGP
VI_EVENT_VXI_VME_INTR
VI_EVENT_USB_INTR
VI_EVENT_PXI_INTR

MEMACC Resource

VI_EVENT_IO_COMPLETION

INTFC Resource
VI_EVENT_GPIB_CIC
VI_EVENT_GPIB_TALK
VI_EVENT_GPIB_LISTEN
VI_EVENT_CLEAR
VI_EVENT_TRIG
VI_EVENT_IO_COMPLETION
VI_EVENT_SERVICE_REQ

BACKPLANE Resource

VI_EVENT_TRIG
VI_EVENT_VXI_VME_SYSFAIL
VI_EVENT_VXI_VME_SYSRESET

SERVANT Resource

VI_EVENT_CLEAR
VI_EVENT_IO_COMPLETION
VI_EVENT_GPIB_TALK
VI_EVENT_GPIB_LISTEN
VI_EVENT_TRIG
VI_EVENT_VXI_VME_SYSRESET
VI_EVENT_TCPIP_CONNECT

SOCKET Resource

VI_EVENT_IO_COMPLETION

Page B-4 Appendix B: Resource Summary Information

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

B.3 Summary of Operations

VISA Resource Template
(These operations are based on the VISA Resource Template and are available to all other resources.)

viClose(vi)
viGetAttribute(vi,attribute,attrState)
viSetAttribute(vi,attribute,attrState)
viStatusDesc(vi,status,desc)
viTerminate(vi,degree,jobId)
viLock(vi,lockType,timeout,requestedKey,accessKey)
viUnlock(vi)
viEnableEvent(vi,eventType,mechanism,context)
viDisableEvent(vi,eventType,mechanism)
viDiscardEvents(vi,eventType,mechanism)
viWaitOnEvent(vi,ineventType,timeout,outEventType,outContext)
viInstallHandler(vi,eventType,handler,userHandle)
viUninstallHandler(vi,eventType,handler,userHandle)

VISA Resource Manager

viOpenDefaultRM(sesn)
viOpen(sesn,rsrcName,accessMode,timeout,vi)
viFindRsrc(sesn,expr,findList,retcnt,instrDesc)
viFindNext(findList,instrDesc)
viParseRsrc(sesn, rsrcName, intfType, intfNum)
viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,

unaliasedExpandedRsrcName, aliasIfExists)
INSTR Resource

viRead(vi,buf,count,retCount)
viReadAsync(vi,buf,count,jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi,buf,count,retCount)
viWriteAsync(vi,buf,count,jobId)
viWriteFromFile(vi, fileName, count, retCount)
viAssertTrigger(vi,protocol)
viReadSTB(vi,status)
viClear(vi)
viSetBuf(vi,mask,size)
viFlush(vi,mask)
viPrintf(vi,writeFmt,arg1,arg2,...)
viVPrintf(vi,writeFmt,params)
viSPrintf(vi,buf,writeFmt,arg1,arg2,...)
viVSPrintf(vi,buf,writeFmt,params)
viBufWrite(vi,buf,count,retCount)
viScanf(vi,readFmt,arg1,arg2,...)
viVScanf(vi,readFmt,params)
viSScanf(vi,buf,readFmt,arg1,arg2,...)
viVSScanf(vi,buf,readFmt,params)
viBufRead(vi,buf,count,retCount)
viQueryf(vi,writeFmt,readFmt,arg1,arg2,...)
viVQueryf(vi,writeFmt,readFmt,params)
viIn8(vi,space,offset,val8)
viIn16(vi,space,offset,val16)
viIn32(vi,space,offset,val32)
viOut8(vi,space,offset,val8)
viOut16(vi,space,offset,val16)
viOut32(vi,space,offset,val32)
viMoveIn8(vi,space,offset,length,buf8)
viMoveIn16(vi,space,offset,length,buf16)
viMoveIn32(vi,space,offset,length,buf32)
viMoveOut8(vi,space,offset,length,buf8)
viMoveOut16(vi,space,offset,length,buf16)
viMoveOut32(vi,space,offset,length,buf32)
viMove(vi,srcSpace,srcOffset,srcWidth,destSpace,destOffset,destWidth,length)

Appendix B: Resource Summary Information Page B-5

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

viMoveAsync(vi,srcSpace,srcOffset,srcWidth,destSpace,destOffset,destWidth,
length,jobId)

viMapAddress(vi,mapSpace,mapBase,mapSize,access,suggested,address)
viUnmapAddress(vi)
viPeek8(vi,addr,val8)
viPeek16(vi,addr,val16)
viPeek32(vi,addr,val32)
viPoke8(vi,addr,val8)
viPoke16(vi,addr,val16)
viPoke32(vi,addr,val32)
viMemAlloc(vi,size,offset)
viMemFree(vi,offset)
viGpibControlREN(vi,mode)
viVxiCommandQuery(vi,mode,cmd,response)
viUsbControlOut(vi, bmRequestType, bRequest, wValue, wIndex, wLength, buf)
viUsbControlIn(vi, bmRequestType, bRequest, wValue, wIndex, wLength, buf,

retCnt)

MEMACC Resource

viIn8(vi,space,offset,val8)
viIn16(vi,space,offset,val16)
viIn32(vi,space,offset,val32)
viOut8(vi,space,offset,val8)
viOut16(vi,space,offset,val16)
viOut32(vi,space,offset,val32)
viMoveIn8(vi,space,offset,length,buf8)
viMoveIn16(vi,space,offset,length,buf16)
viMoveIn32(vi,space,offset,length,buf32)
viMoveOut8(vi,space,offset,length,buf8)
viMoveOut16(vi,space,offset,length,buf16)
viMoveOut32(vi,space,offset,length,buf32)
viMove(vi,srcSpace,srcOffset,srcWidth,destSpace,destOffset,destWidth,length)
viMoveAsync(vi,srcSpace,srcOffset,srcWidth,destSpace,destOffset,destWidth,

length,jobId)
viMapAddress(vi,mapSpace,mapBase,mapSize,access,suggested,address)
viUnmapAddress(vi)
viPeek8(vi,addr,val8)
viPeek16(vi,addr,val16)
viPeek32(vi,addr,val32)
viPoke8(vi,addr,val8)
viPoke16(vi,addr,val16)
viPoke32(vi,addr,val32)
viMemAlloc(vi,size,offset)
viMemFree(vi,offset)

INTFC Resources
viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
viAssertTrigger(vi, protocol)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viBufRead(vi, buf, count, retCount)
viGpibControlREN(vi, mode)
viGpibControlATN (vi, mode)

Page B-6 Appendix B: Resource Summary Information

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

viGpibPassControl(vi, primAddr, secAddr)

viGpibCommand(vi, buf, count, retCount)
viGpibSendIFC(vi)

BACKPLANE Resources

viAssertTrigger(vi, protocol)
viAssertUtilSignal(vi, line)
viAssertIntrSignal(vi, mode, statusID)
viMapTrigger(vi, trigSrc, trigDest, mode)
viUnmapTrigger(vi, trigSrc, trigDest)

SERVANT Resources

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, fileName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, fileName, count, retCount)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params
viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)

viAssertIntrSignal(vi, mode, statusID)
viAssertUtilSignal(vi, line)

SOCKET Resource

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobId)
viReadToFile(vi, filename, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobId)
viWriteFromFile(vi, filename, count, retCount)
viAssertTrigger(vi,protocol)
viReadSTB(vi,status)
viClear(vi)
viSetBuf(vi, mask, size)
viFlush(vi, mask)
viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, arg1, arg2, ...)
viVScanf(vi, readFmt, params)
viPrintf(vi, writeFmt, arg1, arg2, ...)
viVPrintf(vi, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt, arg1, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
viVSPrintf(vi, buf, writeFmt, params)

