
MSP430 Optimizing C/C++ Compiler v 3.1

User's Guide

Literature Number: SLAU132C
November 2008

2 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Contents

Preface ... 9

1 Introduction to the Software Development Tools .. 13
1.1 Software Development Tools Overview ... 14
1.2 C/C++ Compiler Overview .. 16

1.2.1 ANSI/ISO Standard ... 16
1.2.2 Output Files .. 16
1.2.3 Utilities .. 16

2 Using the C/C++ Compiler ... 17
2.1 About the Compiler... 18
2.2 Invoking the C/C++ Compiler ... 18
2.3 Changing the Compiler's Behavior With Options .. 19

2.3.1 Frequently Used Options... 25
2.3.2 Machine-Specific Options .. 27
2.3.3 Symbolic Debugging Options .. 29
2.3.4 Specifying Filenames ... 29
2.3.5 Changing How the Compiler Interprets Filenames ... 30
2.3.6 Changing How the Compiler Processes C Files .. 30
2.3.7 Changing How the Compiler Interprets and Names Extensions .. 30
2.3.8 Specifying Directories... 31
2.3.9 Assembler Options .. 31
2.3.10 Deprecated Options.. 32

2.4 Controlling the Compiler Through Environment Variables .. 32
2.4.1 Setting Default Compiler Options (MSP430_C_OPTION) ... 32
2.4.2 Naming an Alternate Directory (MSP430_C_DIR) .. 33

2.5 Precompiled Header Support ... 34
2.5.1 Automatic Precompiled Header ... 34
2.5.2 Manual Precompiled Header .. 34
2.5.3 Additional Precompiled Header Options ... 34

2.6 Controlling the Preprocessor ... 35
2.6.1 Predefined Macro Names .. 35
2.6.2 The Search Path for #include Files ... 36
2.6.3 Generating a Preprocessed Listing File (--preproc_only Option) ... 37
2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option) 37
2.6.5 Generating a Preprocessed Listing File With Comments (--preproc_with_comments Option) 37
2.6.6 Generating a Preprocessed Listing File With Line-Control Information (--preproc_with_line Option).. 37
2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option) 38
2.6.8 Generating a List of Files Included With the #include Directive (--preproc_includes Option) 38
2.6.9 Generating a List of Macros in a File (--preproc_macros Option) .. 38

2.7 Understanding Diagnostic Messages.. 38
2.7.1 Controlling Diagnostics ... 39
2.7.2 How You Can Use Diagnostic Suppression Options ... 40

SLAU132C–November 2008 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com

2.8 Other Messages .. 41
2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)... 41
2.10 Generating a Raw Listing File (--gen_acp_raw Option)... 42
2.11 Using Inline Function Expansion ... 43

2.11.1 Inlining Intrinsic Operators .. 43
2.11.2 Using the inline Keyword, the --no_inlining Option, and Level 3 Optimization 43

2.12 Using Interlist ... 44
2.13 Enabling Entry Hook and Exit Hook Functions... 46

3 Optimizing Your Code ... 47
3.1 Invoking Optimization .. 48
3.2 Performing File-Level Optimization (--opt_level=3 option) .. 49

3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options) ... 49
3.2.2 Creating an Optimization Information File (--gen_opt_info Option)... 49

3.3 Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)................. 50
3.3.1 Controlling Program-Level Optimization (--call_assumptions Option)...................................... 50
3.3.2 Optimization Considerations When Mixing C/C++ and Assembly .. 51

3.4 Accessing Aliased Variables in Optimized Code... 52
3.5 Use Caution With asm Statements in Optimized Code ... 52
3.6 Automatic Inline Expansion (--auto_inline Option) ... 53
3.7 Using the Interlist Feature With Optimization... 53
3.8 Debugging Optimized Code... 55
3.9 What Kind of Optimization Is Being Performed? ... 55

3.9.1 Cost-Based Register Allocation ... 56
3.9.2 Alias Disambiguation.. 56
3.9.3 Branch Optimizations and Control-Flow Simplification ... 56
3.9.4 Data Flow Optimizations ... 56
3.9.5 Expression Simplification... 56
3.9.6 Inline Expansion of Functions ... 57
3.9.7 Induction Variables and Strength Reduction .. 57
3.9.8 Loop-Invariant Code Motion ... 57
3.9.9 Loop Rotation .. 57
3.9.10 Instruction Scheduling ... 57
3.9.11 Integer Division With Constant Divisor .. 57
3.9.12 Tail Merging... 57
3.9.13 _never_executed Intrinsic ... 57

4 Linking C/C++ Code .. 59
4.1 Invoking the Linker Through the Compiler (-z Option) .. 60

4.1.1 Invoking the Linker Separately .. 60
4.1.2 Invoking the Linker as Part of the Compile Step .. 61
4.1.3 Disabling the Linker (--compile_only Compiler Option) .. 61

4.2 Linker Options .. 62
4.3 Linker Code Optimizations .. 65

4.3.1 Generate List of Dead Functions (--generate_dead_funcs_list Option).................................... 65
4.3.2 Generating Function Subsections (--gen_func_subsections Compiler Option) 65

4.4 Controlling the Linking Process .. 66
4.4.1 Including the Run-Time-Support Library ... 66
4.4.2 Run-Time Initialization .. 67
4.4.3 Initialization by the Interrupt Vector ... 67

4 Contents SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com

4.4.4 Global Object Constructors .. 68
4.4.5 Specifying the Type of Global Variable Initialization.. 68
4.4.6 Specifying Where to Allocate Sections in Memory ... 69
4.4.7 A Sample Linker Command File .. 69

5 MSP430 C/C++ Language Implementation ... 71
5.1 Characteristics of MSP430 C ... 72
5.2 Characteristics of MSP430 C++.. 72
5.3 Data Types .. 73
5.4 Keywords .. 74

5.4.1 The const Keyword.. 74
5.4.2 The interrupt Keyword .. 74
5.4.3 The restrict Keyword .. 75
5.4.4 The volatile Keyword.. 75

5.5 C++ Exception Handling... 76
5.6 Register Variables and Parameters.. 76
5.7 The asm Statement .. 77
5.8 Pragma Directives.. 78

5.8.1 The BIS_IE1_INTERRUPT .. 78
5.8.2 The CODE_SECTION Pragma.. 79
5.8.3 The DATA_ALIGN Pragma .. 80
5.8.4 The DATA_SECTION Pragma .. 81
5.8.5 The FUNC_CANNOT_INLINE Pragma .. 82
5.8.6 The FUNC_EXT_CALLED Pragma... 82
5.8.7 The FUNC_IS_PURE Pragma... 83
5.8.8 The FUNC_NEVER_RETURNS Pragma .. 83
5.8.9 The FUNC_NO_GLOBAL_ASG Pragma... 83
5.8.10 The FUNC_NO_IND_ASG Pragma.. 84
5.8.11 The INTERRUPT Pragma... 84
5.8.12 The NO_HOOKS Pragma... 85
5.8.13 The vector Pragma... 85

5.9 The _Pragma Operator .. 86
5.10 Generating Linknames... 86
5.11 Initializing Static and Global Variables .. 87

5.11.1 Initializing Static and Global Variables With the Linker ... 87
5.11.2 Initializing Static and Global Variables With the const Type Qualifier..................................... 87

5.12 Changing the ANSI/ISO C Language Mode .. 88
5.12.1 Compatibility With K&R C (--kr_compatible Option) ... 88
5.12.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --relaxed_ansi

Options)... 89
5.12.3 Enabling Embedded C++ Mode (--embedded_cpp Option) .. 89

5.13 GNU C Compiler Extensions ... 90
5.13.1 Function Attributes ... 91
5.13.2 Built-In Functions... 91

5.14 Compiler Limits ... 91

6 Run-Time Environment ... 93
6.1 Memory Model .. 94

6.1.1 Large-Code Memory Model ... 94
6.1.2 Large-Data Memory Model .. 94

SLAU132C–November 2008 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com

6.1.3 Sections .. 95
6.1.4 C/C++ Software Stack .. 96
6.1.5 Dynamic Memory Allocation ... 96
6.1.6 Initialization of Variables.. 97

6.2 Object Representation ... 97
6.2.1 Data Type Storage .. 97
6.2.2 Character String Constants .. 99

6.3 Register Conventions .. 100
6.4 Function Structure and Calling Conventions .. 101

6.4.1 How a Function Makes a Call .. 102
6.4.2 How a Called Function Responds ... 102
6.4.3 Accessing Arguments and Local Variables... 103

6.5 Interfacing C and C++ With Assembly Language .. 103
6.5.1 Using Assembly Language Modules With C/C++ Code .. 103
6.5.2 Accessing Assembly Language Variables From C/C++ .. 104
6.5.3 Sharing C/C++ Header Files With Assembly Source ... 105
6.5.4 Using Inline Assembly Language.. 106

6.6 Interrupt Handling... 106
6.6.1 Saving Registers During Interrupts .. 106
6.6.2 Using C/C++ Interrupt Routines ... 106
6.6.3 Using Assembly Language Interrupt Routines... 107
6.6.4 Interrupt Vectors ... 107
6.6.5 Other Interrupt Information ... 107

6.7 Intrinsic Run-Time-Support Arithmetic and Conversion Routines .. 107
6.8 Using Intrinsics to Access Assembly Language Statements.. 108

6.8.1 MSP430 Intrinsics ... 108
6.8.2 The __delay_cycle Intrinsic... 109
6.8.3 The _never_executed Intrinsic ... 109

6.9 System Initialization .. 111
6.9.1 System Pre-Initialization .. 111
6.9.2 Run-Time Stack .. 111
6.9.3 Automatic Initialization of Variables ... 112
6.9.4 Global Constructors ... 112
6.9.5 Initialization Tables .. 112
6.9.6 Autoinitialization of Variables at Run Time ... 114
6.9.7 Initialization of Variables at Load Time ... 114

6.10 Compiling for 20-Bit MSP430X Devices ... 115

7 Using Run-Time-Support Functions and Building Libraries ... 117
7.1 C and C++ Run-Time Support Libraries ... 118

7.1.1 Linking Code With the Object Library ... 119
7.1.2 Header Files .. 120
7.1.3 Modifying a Library Function ... 120
7.1.4 Changes to the Run-Time-Support Libraries... 120

7.2 The C I/O Functions .. 121
7.2.1 Overview of Low-Level I/O Implementation .. 121
7.2.2 Adding a Device for C I/O .. 128

7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions).. 129
7.4 Library-Build Process... 129

6 Contents SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com

7.4.1 Required Non-Texas Instruments Software .. 130
7.4.2 Using the Library-Build Process ... 130
7.4.3 Library Naming Conventions ... 130

8 C++ Name Demangler .. 131
8.1 Invoking the C++ Name Demangler.. 132
8.2 C++ Name Demangler Options ... 132
8.3 Sample Usage of the C++ Name Demangler ... 132

A Glossary .. 135

Index ... 140

SLAU132C–November 2008 Contents 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com

List of Figures
1-1 MSP430 Software Development Flow... 14
6-1 Memory Layout of var ... 99
6-2 Use of the Stack During a Function Call... 101
6-3 Format of Initialization Records in the .cinit Section ... 112
6-4 Format of Initialization Records in the .pinit Section ... 113
6-5 Autoinitialization at Run Time ... 114
6-6 Initialization at Load Time ... 115
7-1 Interaction of Data Structures in I/O Functions ... 122
7-2 The First Three Streams in the Stream Table .. 122

List of Tables
2-1 Options That Control the Compiler .. 19
2-2 Options That Control Symbolic Debugging and Profiling ... 20
2-3 Options That Change the Default File Extensions ... 20
2-4 Options That Specify Files .. 20
2-5 Options That Specify Directories ... 20
2-6 Options That Are Machine-Specific .. 21
2-7 Options That Control Hooks .. 21
2-8 Options That Control Parsing... 21
2-9 Parser Options That Control Preprocessing .. 22
2-10 Parser Options That Control Diagnostics ... 22
2-11 Options That Control Optimization ... 23
2-12 Options That Control the Assembler... 23
2-13 Options That Control the Linker .. 24
2-14 Compiler Backwards-Compatibility Options Summary .. 32
2-15 Predefined Macro Names ... 35
2-16 Raw Listing File Identifiers .. 42
2-17 Raw Listing File Diagnostic Identifiers... 42
3-1 Options That You Can Use With --opt_level=3... 49
3-2 Selecting a File-Level Optimization Option ... 49
3-3 Selecting a Level for the --gen_opt_info Option.. 49
3-4 Selecting a Level for the --call_assumptions Option... 50
3-5 Special Considerations When Using the --call_assumptions Option .. 51
4-1 Initialized Sections Created by the Compiler .. 69
4-2 Uninitialized Sections Created by the Compiler .. 69
5-1 MSP430 C/C++ Data Types .. 73
5-2 GCC Extensions Supported... 90
5-3 TI-Supported GCC Function Attributes .. 91
5-4 TI-Supported GCC Built-In Functions.. 91
6-1 Summary of Sections and Memory Placement... 95
6-2 Data Representation in Registers and Memory ... 97
6-3 How Register Types Are Affected by the Conventions .. 100
6-4 Register Usage and Preservation Conventions... 100
6-5 MSP430 Intrinsics .. 108
7-1 C++ Standard Library Outline ... 118

8 List of Figures SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Preface
SLAU132C–November 2008

Read This First

About This Manual
The MSP430 Optimizing C/C++ Compiler User's Guide explains how to use these compiler tools:
• Compiler
• Library-build process
• C++ name demangler

The C/C++ compiler accepts C and C++ code conforming to the International Organization for
Standardization (ISO) standards for these languages. The compiler supports the 1989 version of the C
language and the 1998 version of the C++ language.

This user's guide discusses the characteristics of the C/C++ compiler. It assumes that you already know
how to write C programs. The C Programming Language (second edition), by Brian W. Kernighan and
Dennis M. Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie
(hereafter referred to as K&R) book as a supplement to this manual. References to K&R C (as opposed to
ISO C) in this manual refer to the C language as defined in the first edition of Kernighan and Ritchie's The
C Programming Language.

Notational Conventions
This document uses the following conventions:
• Program listings, program examples, and interactive displays are shown in a special typeface.

Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).
Here is a sample of C code:
#include <stdio.h>
main()
{ printf("hello, cruel world\n");
}

• In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

cl430 [options] [filenames] [--run_linker [link_options] [object files]]

• Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

cl430 --run_linker {--rom_model | --ram_model} filenames [--output_file=name.out]
--library= libraryname

SLAU132C–November 2008 Read This First 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Related Documentation www.ti.com

• In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes[, alignment]

• Some directives can have a varying number of parameters. For example, the .byte directive can have
up to 100 parameters. This syntax is shown as [, ..., parameter].

Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by
Prentice Hall, Englewood Cliffs, New Jersey

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup,
Free Standards Group, 2005 (http://dwarfstd.org)

ISO/IEC 14882-1998, International Standard - Programming Languages - C++ (The C++ Standard),
International Organization for Standardization

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The C Standard),
International Organization for Standardization

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjame Stroustrup, published by
Addison-Wesley Publishing Company, Reading, Massachusetts, 1990

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The C++ Programming Language (second edition), Bjame Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0,
TIS Committee, 1995

10 Read This First SLAU132C–November 2008
Submit Documentation Feedback

http://dwarfstd.org
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments
You can use the following books to supplement this user's guide:

SLAU012 —MSP430x3xx Family User's Guide. Describes the MSP430x3xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU049 —MSP430x1xx Family User's Guide. Describes the MSP430x1xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU056 —MSP430x4xx Family User's Guide. Describes the MSP430x4xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU132 —MSP430 Assembly Language Tools User's Guide. Describes the assembly language tools
(the assembler, linker, and other tools used to develop assembly language code), assembler
directives, macros, object file format, and symbolic debugging directives for the MSP430 devices.

SLAU134 —MSP430FE42x ESP30CE1 Peripheral Module User's Guide. Describes common
peripherals available on the MSP430FE42x and ESP430CE1 ultra-low power microcontrollers. This
book includes information on the setup, operation, and registers of the ESP430CE1.

SLAU208 —MSP430x5xx Family User's Guide. Describes the MSP430x5xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU144 —MSP430x2xx Family User's Guide. Describes the MSP430x2xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

Trademarks
MSP430x3xx, MSP430x1xx, MSP430x4xx, MSP430x5xx, MSP430x2xx are trademarks of Texas
Instruments.

Windows is a registered trademark of Microsoft Corporation.

UNIX is a registered trademark of licensed exclusively through X/Open Company Limited.

All other trademarks are the property of their respective owners.

SLAU132C–November 2008 Read This First 11
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/slau012
http://www-s.ti.com/sc/techlit/slau131
http://www-s.ti.com/sc/techlit/slau134
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Read This First12 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 1
SLAU132C–November 2008

Introduction to the Software Development Tools

This chapter provides an overview of the optimizing C/C++ compiler, the assembler, the linker, and
assorted utilities, and introduces the features of the optimizing C/C++ compiler. The assembler and linker
are discussed in detail in the MSP430 Assembly Language Tools User's Guide.

Topic .. Page

1.1 Software Development Tools Overview.. 14
1.2 C/C++ Compiler Overview .. 16

SLAU132C–November 2008 Introduction to the Software Development Tools 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

1.1 Software Development Tools Overview

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
tools

Library-build
process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

MSP430

Linker

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

C/C++ name
demangling

utility

Software Development Tools Overview www.ti.com

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral
functions that enhance the development process.

Figure 1-1. MSP430 Software Development Flow

Introduction to the Software Development Tools14 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Software Development Tools Overview

The following list describes the tools that are shown in Figure 1-1:
• The compiler accepts C/C++ source code and produces MSP430 assembly language source code.

See Chapter 2.
• The assembler translates assembly language source files into machine language object files. The

MSP430 Assembly Language Tools User's Guide explains how to use the assembler.
• The linker combines object files into a single executable object module. As it creates the executable

module, it performs relocation and resolves external references. The linker accepts relocatable object
files and object libraries as input. See Chapter 4. The MSP430 Assembly Language Tools User's
Guide provides a complete description of the linker.

• The archiver allows you to collect a group of files into a single archive file, called a library.
Additionally, the archiver allows you to modify a library by deleting, replacing, extracting, or adding
members. One of the most useful applications of the archiver is building a library of object modules.
The MSP430 Assembly Language Tools User's Guide explains how to use the archiver.

• You can use the library-build process to build your own customized run-time-support library. See
Section 7.4. Standard run-time-support library functions for C and C++ are provided in the
self-contained rtssrc.zip file.
The run-time-support libraries contain the standard ISO run-time-support functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler.
See Chapter 7.

• The hex conversion utility converts an object file into other object formats. You can download the
converted file to an EPROM programmer. The MSP430 Assembly Language Tools User's Guide
explains how to use the hex conversion utility and describes all supported formats.

• The absolute lister accepts linked object files as input and creates .abs files as output. You can
assemble these .abs files to produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and would require many manual
operations. The MSP430 Assembly Language Tools User's Guide explains how to use the absolute
lister.

• The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definitions, and their references in the linked source files. The MSP430 Assembly Language Tools
User's Guide explains how to use the cross-reference utility.

• The C++ name demangler is a debugging aid that converts names mangled by the compiler back to
their original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++
name demangler on the assembly file that is output by the compiler; you can also use this utility on the
assembler listing file and the linker map file. See Chapter 8.

• The main product of this development process is a module that can be executed in a MSP430 device.

SLAU132C–November 2008 Introduction to the Software Development Tools 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

1.2 C/C++ Compiler Overview

1.2.1 ANSI/ISO Standard

1.2.2 Output Files

1.2.3 Utilities

C/C++ Compiler Overview www.ti.com

The following subsections describe the key features of the compiler.

The following features pertain to ISO standards:
• ISO-standard C

The C/C++ compiler fully conforms to the ISO C standard as defined by the ISO specification and
described in the second edition of Kernighan and Ritchie's The C Programming Language (K&R). The
ISO C standard supercedes and is the same as the ANSI C standard.

• ISO-standard C++
The C/C++ compiler supports C++ as defined by the ISO C++ Standard and described in Ellis and
Stroustrup's The Annotated C++ Reference Manual (ARM). The compiler also supports embedded
C++. For a description of unsupported C++ features, see Section 5.2.

• ISO-standard run-time support
The compiler tools come with a complete run-time library. All library functions conform to the ISO
C/C++ library standard. The library includes functions for standard input and output, string
manipulation, dynamic memory allocation, data conversion, timekeeping, trigonometry, and exponential
and hyperbolic functions. Functions for signal handling are not included, because these are
target-system specific. The library includes the ISO C subset as well as those components necessary
for language support. For more information, see Chapter 7.

The following features pertain to output files created by the compiler:
• COFF object files

Common object file format (COFF) allows you to define your system's memory map at link time. This
maximizes performance by enabling you to link C/C++ code and data objects into specific memory
areas. COFF also supports source-level debugging.

• EPROM programmer data files
For stand-alone embedded applications, the compiler has the ability to place all code and initialization
data into ROM, allowing C/C++ code to run from reset. The COFF files output by the compiler can be
converted to EPROM programmer data files by using the hex conversion utility, as described in the
MSP430 Assembly Language Tools User's Guide.

The following features pertain to the compiler utilities:
• Library-build process

The library-build process lets you custom-build object libraries from source for any combination of
run-time models. For more information, see Section 7.4.

• C++ name demangler
The C++ name demangler (dem430) is a debugging aid that translates each mangled name it detects
to its original name found in the C++ source code. For more information, see Chapter 8.

Introduction to the Software Development Tools16 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 2
SLAU132C–November 2008

Using the C/C++ Compiler

The compiler translates your source program into code that the MSP430 can execute. Source code must
be compiled, assembled, and linked to create an executable object file. All of these steps are executed at
once by using the compiler.

Topic .. Page

2.1 About the Compiler ... 18
2.2 Invoking the C/C++ Compiler .. 18
2.3 Changing the Compiler's Behavior With Options 19
2.4 Controlling the Compiler Through Environment Variables 32
2.5 Precompiled Header Support.. 34
2.6 Controlling the Preprocessor ... 35
2.7 Understanding Diagnostic Messages .. 38
2.8 Other Messages .. 41
2.9 Generating Cross-Reference Listing Information (--gen_acp_xref

Option) .. 41
2.10 Generating a Raw Listing File (--gen_acp_raw Option) 42
2.11 Using Inline Function Expansion .. 43
2.12 Using Interlist ... 44
2.13 Enabling Entry Hook and Exit Hook Functions 46

SLAU132C–November 2008 Using the C/C++ Compiler 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.1 About the Compiler

2.2 Invoking the C/C++ Compiler

About the Compiler www.ti.com

The compiler lets you compile, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:
• The compiler accepts C/C++ source code and assembly code, and produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.7 for more information.

• The linker combines object files to create an executable object file. The linker is optional, so you can
compile and assemble many modules independently and link them later. See Chapter 4 for information
about linking the files.

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker
compiler option.

For a complete description of the assembler and the linker, see the MSP430 Assembly Language Tools
User's Guide.

To invoke the compiler, enter:

cl430 [options] [filenames] [--run_linker [link_options] object files]]

cl430 Command that runs the compiler and the assembler.
options Options that affect the way the compiler processes input files. The options are

listed in Table 2-1 through Table 2-13.
filenames One or more C/C++ source files, assembly language source files, linear

assembly files, or object files.
--run_linker Option that invokes the linker. The --run_linker option's short form is -z. See

Chapter 4 for more information.
link_options Options that control the linking process.
object files Name of the additional object files for the linking process.

The arguments to the compiler are of three types:
• Compiler options
• Link options
• Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all other link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can
be placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named
seek.asm, and link to create an executable program called myprogram.out, you will enter:
cl430 symtab.c file.c seek.asm --run_linker --library=lnk.cmd

--library=rts430.lib --output_file=myprogram.out

Using the C/C++ Compiler18 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3 Changing the Compiler's Behavior With Options
www.ti.com Changing the Compiler's Behavior With Options

Options control the operation of the compiler. This section provides a description of option conventions
and an option summary table. It also provides detailed descriptions of the most frequently used options,
including options used for type-checking and assembling.

For an online summary of the options, enter cl430 with no parameters on the command line.

The following apply to the compiler options:
• Options are preceded by one or two hyphens.
• Options are case sensitive.
• Options are either single letters or sequences of characters.
• Individual options cannot be combined.
• An option with a required parameter should be specified with an equal sign before the parameter to

clearly associate the parameter with the option. For example, the option to undefine a constant can be
expressed as --undefine_name=name. Although not recommended, you can separate the option and
the parameter with or without a space, as in --undefine_name name or -undefine_namename.

• An option with an optional parameter should be specified with an equal sign before the parameter to
clearly associate the parameter with the option. For example, the option to specify the maximum
amount of optimization can be expressed as -O=3. Although not recommended, you can specify the
parameter directly after the option, as in -O3. No space is allowed between the option and the optional
parameter, so -O 3 is not accepted.

• Files and options except the --run_linker option can occur in any order. The --run_linker option must
follow all other compile options and precede any link options.

You can define default options for the compiler by using the MSP430_C_OPTION environment variable.
For a detailed description of the environment variable, see Section 2.4.1.

Table 2-1 through Table 2-13 summarize all options (including link options). Use the references in the
tables for more complete descriptions of the options.

Table 2-1. Options That Control the Compiler
Option Alias Effect Section
--c_src_interlist -ss Interlists C source and assembly statements Section 2.12

Section 3.7
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Section 2.3.1

Multiple -@ instances can be used.
--compile_only -c Disables linking (negates --run_linker) Section 2.3.1

Section 4.1.3
--compiler_revision Prints out the compiler release revision and exits –
--define=name[=def] -D Predefines name Section 2.3.1
--gen_func_subsections Puts each function in a separate subsection in the object file Section 4.3.2
--help -h Help Section 2.3.1
--include_path=directory -I Defines #include search path Section 2.3.1

Section 2.6.2.1
--keep_asm -k Keeps the assembly language (.asm) file Section 2.3.1
--preinclude=filename Includes filename at the beginning of compilation Section 2.3.1
--quiet -q Suppresses progress messages (quiet) Section 2.3.1
--run_linker -z Enables linking Section 2.3.1
--skip_assembler -n Compiles or assembly optimizes only Section 2.3.1
--src_interlist -s Interlists optimizer comments (if available) and assembly source Section 2.3.1

statements; otherwise interlists C and assembly source statements
--undefine=name -U Undefines name Section 2.3.1
--verbose -v Displays a banner and function progress information Section 2.3.1
--tool_version -version Displays version number for each tool –

SLAU132C–November 2008 Using the C/C++ Compiler 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Changing the Compiler's Behavior With Options www.ti.com

Table 2-2. Options That Control Symbolic Debugging and Profiling
Option Alias Effect Section
--symdebug:dwarf -g Enables symbolic debugging Section 2.3.3

Section 3.8
--symdebug:dwarf_version=2|3 Specifies the DWARF format version Section 2.3.3
--symdebug:none Disables all symbolic debugging Section 2.3.3
--symdebug:skeletal Enables minimal symbolic debugging that does not hinder Section 2.3.3

optimizations (default behavior)

Table 2-3. Options That Change the Default File Extensions
Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files Section 2.3.7
--c_extension=[.]extension -ec Sets a default extension for C source files Section 2.3.7
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files Section 2.3.7
--listing_extension=[.]extension -es Sets a default extension for listing files Section 2.3.7
--obj_extension=[.]extension -eo Sets a default extension for object files Section 2.3.7

Table 2-4. Options That Specify Files
Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 2.3.5

extension. By default, the compiler and assembler treat .asm files as
assembly source files.

--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By Section 2.3.5
default, the compiler treats .c files as C source files.

--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.5
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 2.3.5

default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 2.3.5

By default, the compiler and linker treat .obj files as object code files.

Table 2-5. Options That Specify Directories
Option Alias Effect Section
--abs_directory=directory -fb Specifies an absolute listing file directory Section 2.3.8
--asm_directory=directory -fs Specifies an assembly file directory Section 2.3.8
--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file Section 2.3.8

directory
--obj_directory=directory -fr Specifies an object file directory Section 2.3.8
--temp_directory=directory -ft Specifies a temporary file directory Section 2.3.8

Using the C/C++ Compiler20 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Changing the Compiler's Behavior With Options

Table 2-6. Options That Are Machine-Specific
Option Alias Effect Section
––aliased_variables -ma Assumes variables are aliased Section 2.3.2
––large_memory_model -ml Use a large memory model when compiling for the MSP430X Section 2.3.2
––opt_for_speed[=0-5] -mf Optimizes for speed over space Section 2.3.2
––optimize_with_debug Re-enables the optimizations disabled by the --symdebug:dwarf Section 2.3.2

option.
––plain_char={signed|unsigned} -mc Changes variables of type char from unsigned to signed Section 2.3.2
––printf_support={full|minimal| Enables support for smaller limited versions of printf. Section 2.3.2

nofloat}
––small–enum Uses the smallest possible size for the enumeration type Section 2.3.2
––silicon_version={msp|mspx} -v Selects the instruction set. Section 2.3.2

Table 2-7. Options That Control Hooks
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks Section 2.13
--entry_param={name|address| Specifies the parameters to the function to the --entry_hook option Section 2.13

none}
--exit_hook[=name] Enables exit hooks Section 2.13
--exit_param={name|address|none} Specifies the parameters to the function to the --exit_hook option Section 2.13

Table 2-8. Options That Control Parsing
Option Alias Effect Section
--create_pch=filename Creates a precompiled header file with the name specified Section 2.5
--embedded_cpp -pe Enables embedded C++ mode Section 5.12.3
--exceptions Enables C++ exception handling Section 2.3.1
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode Section 2.3.1
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic Section 2.3.1
--gcc Enables support for GCC extensions Section 5.13
--gen_asp_raw -pl Generates a raw listing file Section 2.10
--gen_acp_xref -px Generates a cross-reference listing file Section 2.9
--kr_compatible -pk Allows K&R compatibility Section 5.12.1
--no_inlining -pi Disables definition-controlled inlining (but --opt_level=3 (or -O3) Section 2.11

optimizations still perform automatic inlining)
--pch Creates or uses precompiled header files Section 2.5
--pch_dir=directory Specifies the path where the precompiled header file resides Section 2.5
--pch_verbose Displays a message for each precompiled header file that is Section 2.5

considered but not used
--program_level_compile -pm Combines source files to perform program-level optimization Section 3.3
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations Section 5.12.2
--rtti -rtti Enables run time type information (RTTI) –
--sat_reassoc={on|off} Enables or disables the reassociation of saturating arithmetic Section 2.3.1
--static_template_instantiation Instantiate all template entities with internal linkage –
--strict_ansi -ps Enables strict ISO mode (for C/C++, not K&R C) Section 5.12.2
--use_pch=filename Specifies the precompiled header file to use for this compilation Section 2.5

SLAU132C–November 2008 Using the C/C++ Compiler 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Changing the Compiler's Behavior With Options www.ti.com

Table 2-9. Parser Options That Control Preprocessing
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 2.6.7

output, writes a list of dependency lines suitable for input to a
standard make utility

--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 2.6.8
output, writes a list of files included with the #include directive

--preproc_macros Performs preprocessing only. Writes list of predefined and Section 2.6.9
user-defined macros to a file with the same name as the input but
with a .pp extension.

--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 2.6.3
with the same name as the input but with a .pp extension.

--preproc_with_comments -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 2.6.5
the comments, to a file with the same name as the input but with a
.pp extension.

--preproc_with_compile -ppa Continues compilation after preprocessing Section 2.6.4
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with Section 2.6.6

line-control information (#line directives) to a file with the same name
as the input but with a .pp extension.

Table 2-10. Parser Options That Control Diagnostics
Option Alias Effect Section
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning Section 2.7.1
--display_error_number=num -pden Displays a diagnostic's identifiers along with its text Section 2.7.1
--issue_remarks -pdr Issues remarks (nonserious warnings) Section 2.7.1
--no_warnings -pdw Suppresses warning diagnostics (errors are still issued) Section 2.7.1
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 2.7.1

this number of errors. (The default is 100.)
--verbose_diagnostics -pdv Provides verbose diagnostics that display the original source with Section 2.7.1

line-wrap
--write_diagnostics_file (1) -pdf Generates a diagnostics information file Section 2.7.1

(1) Parser only option.

Using the C/C++ Compiler22 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Changing the Compiler's Behavior With Options

Table 2-11. Options That Control Optimization (1)

Option Alias Effect Section
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not Section 3.6

specified, the default is 1.
--call_assumptions=0 -op0 Specifies that the module contains functions and variables that are Section 3.3.1

called or modified from outside the source code provided to the
compiler

--call_assumptions=1 -op1 Specifies that the module contains variables modified from outside Section 3.3.1
the source code provided to the compiler but does not use functions
called from outside the source code

--call_assumptions=2 -op2 Specifies that the module contains no functions or variables that are Section 3.3.1
called or modified from outside the source code provided to the
compiler (default)

--call_assumptions=3 -op3 Specifies that the module contains functions that are called from Section 3.3.1
outside the source code provided to the compiler but does not use
variables modified from outside the source code

--gen_opt_info=0 -on0 Disables the optimization information file Section 3.2.2
--gen_opt_info=1 -on1 Produces an optimization information file Section 3.2.2
--gen_opt_info=2 -on2 Produces a verbose optimization information file Section 3.2.2
--opt_level=0 -O0 Optimizes register usage Section 3.1
--opt_level=1 -O1 Uses -O0 optimizations and optimizes locally Section 3.1
--opt_level=2 -O2 or -O Uses -O1 optimizations and optimizes globally Section 3.1
--opt_level=3 -O3 Uses -O2 optimizations and optimizes the file Section 3.1

Section 3.2
--optimizer_interlist -os Interlists optimizer comments with assembly statements Section 3.7
--single_inline Inlines functions that are only called once
--std_lib_func_defined -ol1 or Informs the optimizer that your file declares a standard library Section 3.2.1

-oL1 function
--std_lib_func_not_defined -ol2 or Informs the optimizer that your file does not declare or alter library Section 3.2.1

-oL2 functions. Overrides the -ol0 and -ol1 options (default).
--std_lib_func_redefined -ol0 or Informs the optimizer that your file alters a standard library function Section 3.2.1

-oL0

(1) Note: Machine-specific options (see Table 2-6) can also affect optimization.

Table 2-12. Options That Control the Assembler
Option Alias Effect Section
--absolute_listing -aa Enables absolute listing Section 2.3.9
--asm_define=name[=def] -ad Sets the name symbol Section 2.3.9
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies Section 2.3.9
--asm_includes -api Performs preprocessing; lists only included #include files Section 2.3.9
--asm_listing -al Generates an assembly listing file Section 2.3.9
--asm_undefine=name -au Undefines the predefined constant name Section 2.3.9
--copy_file=filename -ahc Copies the specified file for the assembly module Section 2.3.9
--cross_reference -ax Generates the cross-reference file Section 2.3.9
--include_file=filename -ahi Includes the specified file for the assembly module Section 2.3.9
--output_all_syms -as Puts labels in the symbol table Section 2.3.9
--syms_ignore_case -ac Makes case insignificant in assembly source files Section 2.3.9

SLAU132C–November 2008 Using the C/C++ Compiler 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Changing the Compiler's Behavior With Options www.ti.com

Table 2-13. Options That Control the Linker
Option Alias Description Section
--absolute_exe -a Generates absolute executable output Section 4.2
-ar Generates relocatable, executable output Section 4.2
--arg_size=size --args Allocates memory to be used by the loader to pass arguments Section 4.2
--compress_dwarf Aggressively reduces the size of DWARF information from input Section 4.2

object files
--define=name[=val] Predefines name as a preprocessor macro. Section 4.2
--diag_error=num Categorizes the diagnostic identified by num as an error Section 2.7.1
--diag_remark=num Categorizes the diagnostic identified by num as a remark Section 2.7.1
--diag_suppress=num Suppresses the diagnostic identified by num Section 2.7.1
--diag_warning=num Categorizes the diagnostic identified by num as a warning Section 2.7.1
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 4.2
--disable_clink -j Disables conditional linking of COFF object modules Section 4.2
--disable_pp Disables preprocessing for link command files Section 4.2
--display_error_number=num Displays a diagnostic's identifiers along with its text Section 2.7.1
--entry_point=global_symbol -e Defines an entry point Section 4.2
--fill_value=value -f Sets default fill value Section 4.2
--generate_dead_funcs_list= Writes a list of the dead functions that were removed by the linker to Section 4.2

filename filename.
--heap_size=size -heap Sets heap size (bytes) Section 4.2
--issue_remarks Issues remarks (nonserious warnings) Section 2.7.1
--library=libraryname -l Supplies library or command filename Section 4.2
--linker_help -help Displays usage information Section 4.2
--make_global=global_symbol -g Keeps a global_symbol global (overrides -h) Section 4.2
--make_static -h Makes all global symbols static Section 4.2
--map_file=filename -m Names the map file Section 4.2
--mapfile_contents=filter[, filter] Controls the information that appears in the map file Section 4.2
--no_demangle Disables demangling of symbol names in diagnostics Section 4.2
--no_sym_merge -b Disables merge of COFF symbolic debugging information Section 4.2
--no_sym_table -s Strips symbol table information and line number entries from the Section 4.2

output module
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 2.7.1
--output_file=filename -o Names the output file. Section 4.2
--priority -priority Satisfies unresolved references by the first library that contains a Section 4.2

definition for that symbol
--ram_model -cr Initializes variables at load time Section 4.2

Section 6.9.7
--relocatable -r Produces nonexecutable, relocatable output Section 4.2
--reread_libs -x Forces rereading of libraries Section 4.2
--rom_model -c Autoinitializes variables at run time Section 4.2

Section 6.9.7
--run_abs -abs Produces an absolute listing file Section 4.2
--scan_libraries Scans all libraries for duplicate symbol definitions Section 4.2
--search_path=directory Defines library search path Section 4.2-I

--set_error_limit=num Sets the error limit to num. The linker abandons linking after this Section 2.7.1
number of errors. (The default is 100.)

--stack_size=size -stack Sets stack size (bytes) Section 4.2
--strict_compatibility Performs more conservative and rigorous compatibility checking of Section 4.2

input object files
--symbol_map=refname=defname Enables symbol mapping Section 4.2
--undef_sym -u Creates unresolved external symbol Section 4.2

24 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.1 Frequently Used Options

www.ti.com Changing the Compiler's Behavior With Options

Table 2-13. Options That Control the Linker (continued)
Option Alias Description Section
--undefine=name[=val] Removes the preprocessor macro name Section 4.2
--use_hw_mpy[={16|32|F5}] Replaces all references to the default integer/long multiply routine Section 4.2

with the version of the multiply routine that uses the hardware
multiplier support.

--verbose_diagnostics Provides verbose diagnostics that display the original source with Section 2.7.1
line-wrap

--warn_sections -w Displays a message when an undefined output section is created Section 4.2
--xml_link_info Generates an XML information file Section 4.2

Following are detailed descriptions of options that you will probably use frequently:

--c_src_interlist Invokes the interlist feature, which interweaves original C/C++ source
with compiler-generated assembly language. The interlisted C
statements may appear to be out of sequence. You can use the interlist
feature with the optimizer by combining the --optimizer_interlist and
--c_src_interlist options. See Section 3.7. The --c_src_interlist option can
have a negative performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. You can use this option
to avoid limitations on command line length or C style comments
imposed by the host operating system. Use a # or ; at the beginning of a
line in the command file to include comments. You can also include
comments by delimiting them with /* and */. To specify options, surround
hyphens with quotation marks. For example, "--"quiet.
You can use the --cmd_file option multiple times to specify multiple files.
For instance, the following indicates that file3 should be compiled as
source and file1 and file2 are --cmd_file files:
cl430 --cmd_file=file1 --cmd_file=file2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which
specifies linking. The --compile_only option's short form is -c. Use this
option when you have --run_linker specified in the MSP430_C_OPTION
environment variable and you do not want to link. See Section 4.1.3.

--define_name=name[=def] Predefines the constant name for the preprocessor. This is equivalent to
inserting #define name def at the top of each C source file. If the
optional[=def] is omitted, the name is set to 1. The --define_name
option's short form is -D.
If you want to define a quoted string and keep the quotation marks, do
one of the following:
• For Windows®, use --define_name=name="\"string def\"". For

example, --define_name=car="\"sedan\""
• For UNIX®, use --define_name=name='"string def"'. For example,

--define_name=car='"sedan"'
• For Code Composer Studio, enter the definition in a file and include

that file with the --cmd_file option.
--exceptions Enables support of C++ exception handling. The compiler will generate

code to handle try/catch/throw statements in C++ code. See Section 5.5.

SLAU132C–November 2008 Using the C/C++ Compiler 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Changing the Compiler's Behavior With Options www.ti.com

--fp_mode={relaxed|strict} Supports relaxed floating-point mode. In this mode, if the result of a
double-precision floating-point expression is assigned to a
single-precision floating-point or an integer, the computations in the
expression are converted to single-precision computations. Any
double-precision constants in the expression are also converted to
single-precision if they can be correctly represented as single-precision
constants. This behavior does not conform with ISO; but it results in
faster code, with some loss in accuracy. In the following example, where
N is a number, iN=integer variable, fN=float variable, dN=double
variable:

il = f1 + f2 * 5.0 -> +, * are float, 5.0 is converted to 5.0f
il = d1 + d2 * d3 -> +, are float
f1 = f2 + f3 * 1.1; -> +, are float, 1.1 is converted to 1

To enable relaxed floating-point mode use the --fp_mode=relaxed option,
which also sets --fp_reassoc=on. To disable relaxed floating-point mode
use the --fp_mode=strict option, which also sets --fp_reassoc=off. The
default behavior is --fp_mode=strict.
If --strict_ansi is specified, --fp_mode=strict is set automatically. You can
enable the relaxed floating-point mode with strict ansi mode by
specifying --fp_mode=relaxed after --strict_ansi.

--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. If
--fp_mode=relaxed is specified, --fp_reassoc=on is set automatically. If
--strict_ansi is set, --fp_reassoc=off is set since reassociation of
floating-point arithmetic is an ANSI violation.

--help Displays the syntax for invoking the compiler and lists available options.
If the --help option is followed by another option or phrase detailed
information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for
#include files. The --include_path option's short form is -I. You can use
this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a
directory name, the preprocessor ignores the --include_path option. See
Section 2.6.2.1.

--keep_asm Retains the assembly language output from the compiler or assembly
optimizer. Normally, the compiler deletes the output assembly language
file after assembly is complete. The --keep_asm option's short form is -k.

--preinclude=filename Includes the source code of filename at the beginning of the compilation.
This can be used to establish standard macro definitions. The filename is
searched for in the directories on the include search list. The files are
processed in the order in which they were specified.

--quiet Suppresses banners and progress information from all the tools. Only
source filenames and error messages are output. The --quiet option's
short form is -q.

--run_linker Runs the linker on the specified object files. The --run_linker option and
its parameters follow all other options on the command line. All
arguments that follow --run_linker are passed to the linker. The
--run_linker option's short form is -z. See Section 4.1.

26 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.2 Machine-Specific Options

www.ti.com Changing the Compiler's Behavior With Options

--sat_reassoc={on|off} Enables or disables the reassociation of saturating arithmetic.
--skip_assembler Compiles only. The specified source files are compiled but not

assembled or linked. The --skip_assembler option's short form is -n. This
option overrides --run_linker. The output is assembly language output
from the compiler.

--src_interlist Invokes the interlist feature, which interweaves optimizer comments or
C/C++ source with assembly source. If the optimizer is invoked
(--opt_level=n option), optimizer comments are interlisted with the
assembly language output of the compiler, which may rearrange code
significantly. If the optimizer is not invoked, C/C++ source statements are
interlisted with the assembly language output of the compiler, which
allows you to inspect the code generated for each C/C++ statement. The
--src_interlist option implies the --keep_asm option. The --src_interlist
option's short form is -s.

--tool_version Prints the version number for each tool in the compiler. No compiling
occurs.

--undefine_name=name Undefines the predefined constant name. This option overrides any
--define_name options for the specified constant. The --undefine_name
option's short form is -U.

--verbose Displays progress information and toolset version while compiling.
Resets the --quiet option.

These options are specific to the MSP430 toolset. The linker options are described in Section 4.2. Please
see the referenced sections for more information.

--aliased_variables Assumes that variables are aliased. The compiler assumes that
pointers may alias (point to) named variables. Therefore, it disables
register optimizations when an assignment is made through a pointer
when the compiler determines that there may be another pointer
pointing to the same object. See Section 3.4.

--gcc Enables support for GCC extensions. See Section 5.13.
--large_memory_model Uses a large memory model for an MSP430X device. The large-data

model uses 20-bit data pointers, which allows data to be located
anywhere in the address space and not be restricted to the low 64
Kb.

--opt_for_speed[=0-5] Controls speed vs size tradeoffis in optimization. By default, the
MSP430 optimizer attempts to reduce the size of your code at the
expense of speed. A value of 5 indicates fully optimizing for speed
with a potentially large code size penalty while a value of 0 indicates
fully optimizing for size. Values between 0 and 5 indicate tradeoffs
between the two extremes. If this option is not specified a default
value of 1 is used. If the option is specified with no argument then a
value of 4 is used. (Default:4)

--optimize_with_debug Re-enables the optimizations disabled by the --symdebug:dwarf
option. If you use the --symdebug:dwarf option, many code generator
optimizations are disabled because the disrupt the debugger.
Therefore, if you use the --optimize_with_debug option, portions of
the debugger's functionality will be unreliable.

SLAU132C–November 2008 Using the C/C++ Compiler 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Changing the Compiler's Behavior With Options www.ti.com

--plain_char={unsigned|signed} Specifies how to treat C/C++ plain char variables, default is unsigned.
--printf_support=version Enables support for smaller, limited versions of the printf and sprintf

run-time-support functions. The valid version values are full (default),
nofloat and minimal.
The printf/sprintf functions use a common low-level routine, _printfi,
which processes a given printf format string. The full version of_printfi
provides formatting capabilities that are not required in typical
embedded applications. To address this the C run-time libraries also
include two limited of versions of _printfi that provide a useful subset
of the formatting features specified by C library standard.
One version excludes support for printing floating values. All format
specifiers except for %f, %g, %G, %e, or %E are supported. You
specify this version with ––printf_support=nofloat when compiling and
linking.
The other version only supports printing of integer, char, or string
values without width or precision flags. Specifically, only the %%, %d,
%o, %c, %s, and %x format specifiers are supported. You specify this
version with ––printf_support=minimal when compiling and linking.
There are no run-time error checks if a format specifier is used but is
not supported in the version specified by the ––printf_support option.
An upcoming release will add compile-time checks.
The ––printf_support option precedes the ––run_linker option;––
printf_support must be used when performing the final link.

--small_enum By default, the MSP430 compiler uses 16 bits for every enum. When
you use the --small-enum option, the smallest possible byte size for
the enumeration type is used. For example, enum example_enum
{first = -128, second = 0, third = 127} uses only one byte instead of 16
bits when the --small-enum option is used. Do not link object files
compiled with the --small-enum option with object files that have been
compiled without it. If you use the --small-enum option, you must use
it with all of your C/C++ files, otherwise, you will encounter errors that
cannot be detected until run time.

--silicon_version Selects the instruction set version. Using --silicon_version=mspx
generates code for MSP430X devices (20-bit code addressing). Using
--silicon_version=msp generates code for 16-bit MSP430 devices.
Modules assembled/compiled for 16-bit MSP430 devices are not
compatible with modules that are assembled/compiled for 20-bit
MSPx devices. The linker generates errors if an attempt is made to
combine incompatible object files.

Using the C/C++ Compiler28 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.3 Symbolic Debugging Options

2.3.4 Specifying Filenames

www.ti.com Changing the Compiler's Behavior With Options

The following options are used to select symbolic debugging or profiling:

--symdebug:dwarf Generates directives that are used by the C/C++ source-level
debugger and enables assembly source debugging in the
assembler. The --symdebug:dwarf option's short form is -g. The
--symdebug_dwarf option disables many code generator
optimizations, because they disrupt the debugger. You can use the
--symdebug_dwarf option with the --opt_level (aliased as -O) option
to maximize the amount of optimization that is compatible with
debugging (see Section 3.8).
For more information on the DWARF debug format, see The
DWARF Debugging Standard.

--symdebug:dwarf_version={2|3} Specifies the DWARF debugging format version (2 or 3) to be
generated when --symdebug:dwarf or --symdebug:skeletal is
specified. For more information on TI extensions to the DWARF
language, see The Impact of DWARF on TI Object Files
(SPRAAB5).

--symdebug:none Disables all symbolic debugging output. This option is not
recommended; it prevents debugging and most performance
analysis capabilities.

--symdebug:skeletal Generates as much symbolic debugging information as possible
without hindering optimization. Generally, this consists of
global-scope information only. This option reflects the default
behavior of the compiler.

See Section 2.3.10 for a list of deprecated symbolic debugging options.

The input files that you specify on the command line can be C source files, C++ source files, assembly
source files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type
.asm, .abs, or .s* (extension begins with s) Assembly source
.c C source
.C Depends on operating system
.cpp, .cxx, .cc C++ source
.obj Object

Note: Case Sensitivity in Filename Extensions

Case sensitivity in filename extensions is determined by your operating system. If your
operating system is not case sensitive, a file with a .C extension is interpreted as a C file. If
your operating system is case sensitive, a file with a .C extension is interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see
Section 2.3.5. For information about how you can alter the way that the compiler interprets and names the
extensions of assembly source and object files, see Section 2.3.8.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by
system; use the appropriate form listed in your operating system manual. For example, to compile all of
the files in a directory with the extension .cpp, enter the following:

SLAU132C–November 2008 Using the C/C++ Compiler 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.5 Changing How the Compiler Interprets Filenames

2.3.6 Changing How the Compiler Processes C Files

2.3.7 Changing How the Compiler Interprets and Names Extensions

Changing the Compiler's Behavior With Options www.ti.com

cl430 *.cpp

Note: No Default Extension for Source Files is Assumed

If you list a filename called example on the command line, the compiler assumes that the
entire filename is example not example.c. No default extensions are added onto files that do
not contain an extension.

You can use options to change how the compiler interprets your filenames. If the extensions that you use
are different from those recognized by the compiler, you can use the filename options to specify the type
of file. You can insert an optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy,
use the --asm_file and --c_file options to force the correct interpretation:
cl430 --c_file=file.s --asm_file=assy

You cannot use the filename options with wildcard specifications.

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler
treats files with a .c extension as C files. See Section 2.3.7 for more information about filename extension
conventions.

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they
apply to on the command line. You can use wildcard specifications with these options. An extension can
be up to nine characters in length. Select the appropriate option for the type of extension you want to
specify:

--asm_extension=new extension for an assembly language file
--c_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--obj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:
cl430 --asm_extension=.rrr --obj_extension=.o fit.rrr

The period (.) in the extension is optional. You can also write the example above as:
cl430 --asm_extension=rrr --obj_extension=o fit.rrr

Using the C/C++ Compiler30 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.8 Specifying Directories

2.3.9 Assembler Options

www.ti.com Changing the Compiler's Behavior With Options

By default, the compiler program places the object, assembly, and temporary files that it creates into the
current directory. If you want the compiler program to place these files in different directories, use the
following options:

--abs_directory=directory Specifies the destination directory for absolute listing files. The default is
to use the same directory as the object file directory. For example:
cl430 --abs_directory=d:\abso_list

--asm_directory=directory Specifies a directory for assembly files. For example:
cl430 --asm_directory=d:\assembly

--list_directory=directory Specifies the destination directory for assembly listing files and
cross-reference listing files. The default is to use the same directory as
the object file directory. For example:
cl430 --list_directory=d:\listing

--obj_directory=directory Specifies a directory for object files. For example:
cl430 --obj_directory=d:\object

--temp_directory=directory Specifies a directory for temporary intermediate files. For example:
cl430 --temp_directory=c:\temp

Following are assembler options that you can use with the compiler. For more information, see the
MSP430 Assembly Language Tools User's Guide.

--absolute_listing Generates a listing with absolute addresses rather than section-relative
offsets.

--asm_define=name[=def] Predefines the constant name for the assembler; produces a .set directive
for a constant or a .arg directive for a string. If the optional [=def] is
omitted, the name is set to 1. If you want to define a quoted string and
keep the quotation marks, do one of the following:
• For Windows, use --asm_define=name="\"string def\"". For

example:--asm_define=car="\"sedan\""
• For UNIX, use --asm_define=name='"string def"'. For example:

--asm_define=car='"sedan"'

• For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

--asm_dependency Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of dependency lines suitable for input to
a standard make utility. The list is written to a file with the same name as
the source file but with a .ppa extension.

--asm_includes Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of files included with the #include
directive. The list is written to a file with the same name as the source file
but with a .ppa extension.

--asm_listing Produces an assembly listing file.
--asm_undefine=name Undefines the predefined constant name. This option overrides any

--asm_define options for the specified constant.

SLAU132C–November 2008 Using the C/C++ Compiler 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.3.10 Deprecated Options

2.4 Controlling the Compiler Through Environment Variables

2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)

Controlling the Compiler Through Environment Variables www.ti.com

--copy_file=filename Copies the specified file for the assembly module; acts like a .copy
directive. The file is inserted before source file statements. The copied file
appears in the assembly listing files.

--cross_reference Produces a symbolic cross-reference in the listing file.
--include_file=filename Includes the specified file for the assembly module; acts like a .include

directive. The file is included before source file statements. The included
file does not appear in the assembly listing files.

--output_all_syms Puts labels in the symbol table. Label definitions are written to the COFF
symbol table for use with symbolic debugging.

--syms_ignore_case Makes letter case insignificant in the assembly language source files. For
example, --syms_ignore_case makes the symbols ABC and abc
equivalent. If you do not use this option, case is significant (this is the
default).

Several compiler options have been deprecated. The compiler continues to accept these options, but they
are not recommended for use. Future releases of the tools will not support these options. Table 2-14 lists
the deprecated options and the options that have replaced them.

Table 2-14. Compiler Backwards-Compatibility Options Summary
Old Option Effect New Option
-gp Allows function-level profiling of optimized code --symdebug:dwarf or -g
-gt Enables symbolic debugging using the alternate STABS --symdebug:coff

debugging format
-gw Enables symbolic debugging using the DWARF debugging --symdebug:dwarf or -g

format

Additionally, the --symdebug:profile_coff option has been added to enable function-level profiling of
optimized code with symbolic debugging using the STABS debugging format (the --symdebug:coff or -gt
option).

An environment variable is a system symbol that you define and assign a string to. Setting environment
variables is useful when you want to run the compiler repeatedly without re-entering options, input
filenames, or pathnames.

Note: C_OPTION and C_DIR

The C_OPTION and C_DIR environment variables are deprecated. Use the device-specific
environment variables instead.

You might find it useful to set the compiler, assembler, and linker default options using the
MSP430_C_OPTION environment variable. If you do this, the compiler uses the default options and/or
input filenames that you name with MSP430_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler
consecutive times with the same set of options and/or input files. After the compiler reads the command
line and the input filenames, it looks for the MSP430_C_OPTION environment variable and processes it.

32 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.4.2 Naming an Alternate Directory (MSP430_C_DIR)

www.ti.com Controlling the Compiler Through Environment Variables

The table below shows how to set the MSP430_C_OPTION environment variable. Select the command
for your operating system:

Operating System Enter
UNIX (Bourne shell) MSP430_C_OPTION="option1[option2 . . .]"; export MSP430_C_OPTION
Windows set MSP430_C_OPTION=option1[;option2. . .]

Environment variable options are specified in the same way and have the same meaning as they do on
the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++
source interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
MSP430_C_OPTION environment variable as follows:

set MSP430_C_OPTION=--quiet --src_interlist --run_linker

In the following examples, each time you run the compiler, it runs the linker. Any options following
--run_linker on the command line or in MSP430_C_OPTION are passed to the linker. Thus, you can use
the MSP430_C_OPTION environment variable to specify default compiler and linker options and then
specify additional compiler and linker options on the command line. If you have set --run_linker in the
environment variable and want to compile only, use the compiler --compile_only option. These additional
examples assume MSP430_C_OPTION is set as shown above:
cl430 *c ; compiles and links
cl430 --compile_only *.c ; only compiles
cl430 *.c --run_linker lnk.cmd ; compiles and links using a command file
cl430 --compile_only *.c --run_linker lnk.cmd

; only compiles (--compile_only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see Section 4.2.

The linker uses the MSP430_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) MSP430_C_DIR=" pathname1 ; pathname2 ;..."; export MSP430_C_DIR
Windows set MSP430_C_DIR=pathname1;pathname2;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:
• Pathnames must be separated with a semicolon.
• Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after

the semicolon in the following is ignored:
set MSP430_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set MSP430_C_DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset MSP430_C_DIR

Windows set MSP430_C_DIR=

SLAU132C–November 2008 Using the C/C++ Compiler 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.5 Precompiled Header Support

2.5.1 Automatic Precompiled Header

2.5.2 Manual Precompiled Header

2.5.3 Additional Precompiled Header Options

Precompiled Header Support www.ti.com

Precompiled header files may reduce the compile time for applications whose source files share a
common set of headers, or a single file which has a large set of header files. Using precompiled headers,
some recompilation is avoided thus saving compilation time.

There are two ways to use precompiled header files. One is the automatic precompiled header file
processing and the other is called the manual precompiled header file processing.

The option to turn on automatic precompiled header processing is: --pch. Under this option, the compile
step takes a snapshot of all the code prior to the header stop point, and dump it out to a file with suffix
.pch. This snapshot does not have to be recompiled in the future compilations of this file or compilations of
files with the same header files.

The stop point typically is the first token in the primary source file that does not belong to a preprocessing
directive. For example, in the following the stopping point is before int i:
#include "x.h"
#include "y.h"
int i

Carefully organizing the include directives across multiple files so that their header files maximize common
usage can increase the compile time savings when using precompiled headers.

A precompiled header file is produced only if the header stop point and the code prior to it meet certain
requirements.

You can manually control the creation and use of precompiled headers by using several command line
options. You specify a precompiled header file with a specific filename as follows:

--create_pch=filename

The --use_pch=filename option specifies that the indicated precompiled header file should be used for this
compilation. If this precompiled header file is invalid, if its prefix does not match the prefix for the current
primary source file for example, a warning is issued and the header file is not used.

If --create_pch=filename or --use_pch=filename is used with --pch_dir, the indicated filename, which can
be a path name, is tacked on to the directory name, unless the filename is an absolute path name.

The --create_pch, --use_pch, and --pch options cannot be used together. If more than one of these
options is specified, only the last one is applied. In manual mode, the header stop points are determined
in the same way as in automatic mode. The precompiled header file applicability is determined in the
same manner.

The --pch_verbose option displays a message for each precompiled header file that is considered but not
used. The --pch_dir=pathname option specifies the path where the precompiled header file resides.

34 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.6 Controlling the Preprocessor

2.6.1 Predefined Macro Names

www.ti.com Controlling the Preprocessor

This section describes specific features that control the preprocessor, which is part of the parser. A
general description of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard
C/C++ preprocessing functions, which are built into the first pass of the compiler. The preprocessor
handles:
• Macro definitions and expansions
• #include files
• Conditional compilation
• Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the
error occurred are printed along with a diagnostic message.

The compiler maintains and recognizes the predefined macro names listed in Table 2-15.

Table 2-15. Predefined Macro Names
Macro Name Description
__DATE__ (1) Expands to the compilation date in the form mmm dd yyyy
__FILE__ (1) Expands to the current source filename
_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.

Regardless of any optimization, always undefined when --no_inlining is used.
__LARGE_CODE_MODEL__ Defined if ––silicon_version=mspx is specified
__LARGE_DATA_MODEL Defined if ––large_memory_model is specified
__LINE__ (1) Expands to the current line number
__MSP430__ Always defined
__MSP430X461X__ Defined if --silicon_version=mspx is specified
__signed_chars__ Defined if char types are signed by default (--plain_char=signed)
__STDC__ (1) Defined to indicate that compiler conforms to ISO C Standard. See Section 5.1 for

exceptions to ISO C conformance.
__TI_COMPILER_VERSION__ Defined to a 7-digit integer that takes the 3-digit release version number X.Y.Z and

generates an integer XXXYYYZZZ where each portion X, Y and Z is expanded to three
digits and concatenated together. The number does not contain a decimal. For example,
version 3.2.1 is represented as 3002001. The leading zeros are dropped to prevent the
number being interpreted as an octal.

__TIME__ (1) Expands to the compilation time in the form hh:mm:ss
__unsigned_chars__ Defined if char types are unsigned by default (default or–– plain_char=unsigned)

(1) Specified by the ISO standard

You can use the names listed in Table 2-15 in the same manner as any other defined name. For example,
printf ("%s %s" , __TIME__ , __DATE__);

translates to a line such as:
printf ("%s %s" , "13:58:17", "Jan 14 1997");

SLAU132C–November 2008 Using the C/C++ Compiler 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.6.2 The Search Path for #include Files

2.6.2.1 Changing the #include File Search Path (--include_path Option)

Controlling the Preprocessor www.ti.com

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can
be a complete pathname, partial path information, or a filename with no path information.
• If you enclose the filename in double quotes (" "), the compiler searches for the file in the following

directories in this order:
1. The directory of the file that contains the #include directive and in the directories of any files that

contain that file.
2. Directories named with the --include_path option.
3. Directories set with the MSP430_C_DIR environment variable.

• If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:
1. Directories named with the --include_path option.
2. Directories set with the MSP430_C_DIR environment variable.

See Section 2.6.2.1 for information on using the --include_path option. See Section 2.4.2 for more
information on input file directories.

The --include_path option names an alternate directory that contains #include files. The --include_path
option's short form is -I. The format of the --include_path option is:

--include_path=directory1 [--include_path=directory2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each
--include_path option names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the directory information with the
--include_path option. For example, assume that a file called source.c is in the current directory. The file
source.c contains the following directive statement:

#include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX /tools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:
Operating System Enter
UNIX cl430 --include_path=tools/files source.c

Windows cl430 --include_path=c:\tools\files source.c

36 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.6.3 Generating a Preprocessed Listing File (--preproc_only Option)

2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option)

2.6.5 Generating a Preprocessed Listing File With Comments (--preproc_with_comments

2.6.6 Generating a Preprocessed Listing File With Line-Control Information

www.ti.com Controlling the Preprocessor

Note: Specifying Path Information in Angle Brackets

If you specify the path information in angle brackets, the compiler applies that information
relative to the path information specified with --include_path options and the MSP430_C_DIR
environment variable.

For example, if you set up MSP430_C_DIR with the following command:
MSP430_C_DIR "/usr/include;/usr/ucb"; export C_DIR

or invoke the compiler with the following command:
cl430 --include_path=/usr/include file.c

and file.c contains this line:
#include <sys/proc.h>

the result is that the included file is in the following path:
/usr/include/sys/proc.h

The --preproc_only option allows you to generate a preprocessed version of your source file with an
extension of .pp. The compiler's preprocessing functions perform the following operations on the source
file:
• Each source line ending in a backslash (\) is joined with the following line.
• Trigraph sequences are expanded.
• Comments are removed.
• #include files are copied into the file.
• Macro definitions are processed.
• All macros are expanded.
• All other preprocessing directives, including #line directives and conditional compilation, are expanded.

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your source
code. To override this feature and continue to compile after your source code is preprocessed, use the
--preproc_with_compile option along with the other preprocessing options. For example, use
--preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file
with a .pp extension, and compile your source code.

Option)
The --preproc_with_comments option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp extension. Use the
--preproc_with_comments option instead of the --preproc_only option if you want to keep the comments.

(--preproc_with_line Option)
By default, the preprocessed output file contains no preprocessor directives. To include the #line
directives, use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only
and writes preprocessed output with line-control information (#line directives) to a file named as the
source file but with a .pp extension.

SLAU132C–November 2008 Using the C/C++ Compiler 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

2.6.8 Generating a List of Files Included With the #include Directive (--preproc_includes

2.6.9 Generating a List of Macros in a File (--preproc_macros Option)

2.7 Understanding Diagnostic Messages

Understanding Diagnostic Messages www.ti.com

The --preproc_dependency option performs preprocessing only, but instead of writing preprocessed
output, writes a list of dependency lines suitable for input to a standard make utility. If you do not supply
an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension.

Option)
The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output,
writes a list of files included with the #include directive. If you do not supply an optional filename, the list is
written to a file with the same name as the source file but with a .pp extension.

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not
supply an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension. Predefined macros are listed first and indicated by the comment /* Predefined */. User-defined
macros are listed next and indicated by the source filename.

One of the compiler's primary functions is to report diagnostics for the source program. The new linker
also reports diagnostics. When the compiler or linker detects a suspect condition, it displays a message in
the following format:

"file.c=, line n:diagnostic severity: diagnostic message

"file.c" The name of the file involved
line n : The line number where the diagnostic applies
diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have an associated severity, as follows:
• A fatal error indicates a problem so severe that the compilation cannot continue. Examples of such

problems include command-line errors, internal errors, and missing include files. If multiple source files
are being compiled, any source files after the current one will not be compiled.

• An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation
continues, but object code is not generated.

• A warning indicates something that is valid but questionable. Compilation continues and object code is
generated (if no errors are detected).

• A remark is less serious than a warning. It indicates something that is valid and probably intended, but
may need to be checked. Compilation continues and object code is generated (if no errors are
detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable
remarks.

Diagnostics are written to standard error with a form like the following example:
"test.c", line 5: error: a break statement may only be used within a loop or switch

break;
^

By default, the source line is omitted. Use the --verbose_diagnostics compiler option to enable the display
of the source line and the error position. The above example makes use of this option.

38 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.7.1 Controlling Diagnostics

www.ti.com Understanding Diagnostic Messages

The message identifies the file and line involved in the diagnostic, and the source line itself (with the
position indicated by the ^ character) follows the message. If several diagnostics apply to one source line,
each diagnostic has the form shown; the text of the source line is displayed several times, with an
appropriate position indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric
identifier be included in the diagnostic message. When displayed, the diagnostic identifier also indicates
whether the diagnostic can have its severity overridden on the command line. If the severity can be
overridden, the diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is
present. For example:
"Test_name.c", line 7: error #64-D: declaration does not declare anything

struct {};
^

"Test_name.c", line 9: error #77: this declaration has no storage class or type specifier
xxxxx;
^

Because an error is determined to be discretionary based on the error severity associated with a specific
context, an error can be discretionary in some cases and not in others. All warnings and remarks are
discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are
listed following the initial error message:
"test.c", line 4: error: more than one instance of overloaded function "f"

matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)

f(1.5);
^

In some cases, additional context information is provided. Specifically, the context information is useful
when the front end issues a diagnostic while doing a template instantiation or while generating a
constructor, destructor, or assignment operator function. For example:
"test.c", line 7: error: "A::A()" is inaccessible

B x;
^

detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

The C/C++ compiler provides diagnostic options to modify how the parser interprets your code. These
options are used by the linker to control linker-generated diagnostics. The diagnostic options must be
specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_error=num to recategorize
the diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_remark=num to
recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostics.

SLAU132C–November 2008 Using the C/C++ Compiler 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.7.2 How You Can Use Diagnostic Suppression Options

Understanding Diagnostic Messages www.ti.com

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate compile. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_warning=num to
recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostics.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and
--diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See Section 2.7.

--issue_remarks Issues remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).
--set_error_limit=num Sets the error limit to num, which can be any decimal value. The compiler

abandons compiling after this number of errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap

and indicate the position of the error in the source line
--write_diagnostics_file Produces a diagnostics information file with the same source file name with an

.err extension. (The --write_diagnostics_file option is not supported by the
linker.)

The following example demonstrates how you can control diagnostic messages issued by the compiler.
You control the linker diagnostic messages in a similar manner.
int one();
int I;
int main()
{

switch (I){
case 1;

return one ();
break;

default:
return 0;

break;
}

}

If you invoke the compiler with the --quiet option, this is the result:
"err.c", line 9: warning: statement is unreachable
"err.c", line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at the end of each case arm to
avoid the fall-through condition, these warnings can be ignored. Using the --display_error_number option,
you can find out the diagnostic identifier for these warnings. Here is the result:
[err.c]
"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

40 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.8 Other Messages

2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)

www.ti.com Other Messages

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation now produces no diagnostic messages (because remarks are
disabled by default).

Although this type of control is useful, it can also be extremely dangerous. The compiler often emits
messages that indicate a less than obvious problem. Be careful to analyze all diagnostics emitted before
using the suppression options.

Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability
to find specified files, are usually fatal. They are identified by the symbol >> preceding the message.

The --gen_acp_xref option generates a cross-reference listing file that contains reference information for
each identifier in the source file. (The --gen_acp_xref option is separate from --cross_reference, which is
an assembler rather than a compiler option.) The cross-reference listing file has the same name as the
source file with a .crl extension.

The information in the cross-reference listing file is displayed in the following format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:

D Definition
d Declaration (not a definition)
M Modification
A Address taken
U Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate

filename The source file
line number The line number in the source file
column number The column number in the source file

SLAU132C–November 2008 Using the C/C++ Compiler 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.10 Generating a Raw Listing File (--gen_acp_raw Option)

Generating a Raw Listing File (--gen_acp_raw Option) www.ti.com

The --gen_acp_raw option generates a raw listing file that can help you understand how the compiler is
preprocessing your source file. Whereas the preprocessed listing file (generated with the --preproc_only,
--preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options) shows a
preprocessed version of your source file, a raw listing file provides a comparison between the original
source line and the preprocessed output. The raw listing file has the same name as the corresponding
source file with an .rl extension.

The raw listing file contains the following information:
• Each original source line
• Transitions into and out of include files
• Diagnostics
• Preprocessed source line if nontrivial processing was performed (comment removal is considered

trivial; other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed in Table 2-16.

Table 2-16. Raw Listing File Identifiers
Identifier Definition

N Normal line of source
X Expanded line of source. It appears immediately following the normal line of

source if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key
Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:
1 = entry into an include file
2 = exit from an include file

The --gen_acp_raw option also includes diagnostic identifiers as defined in Table 2-17.

Table 2-17. Raw Listing File Diagnostic Identifiers
Diagnostic Identifier Definition

E Error
F Fatal
R Remark
W Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-17 that indicates the severity of the diagnostic
filename The source file
line number The line number in the source file
column number The column number in the source file
diagnostic The message text for the diagnostic

Using the C/C++ Compiler42 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.11 Using Inline Function Expansion

2.11.1 Inlining Intrinsic Operators

2.11.2 Using the inline Keyword, the --no_inlining Option, and Level 3 Optimization

www.ti.com Using Inline Function Expansion

Diagnostics after the end of file are indicated as the last line of the file with a column number of 0. When
diagnostic message text requires more than one line, each subsequent line contains the same file, line,
and column information but uses a lowercase version of the diagnostic identifier. For more information
about diagnostic messages, see Section 2.7.

When an inline function is called, the C/C++ source code for the function is inserted at the point of the call.
This is known as inline function expansion. Inline function expansion is advantageous in short functions for
the following reasons:
• It saves the overhead of a function call.
• Once inlined, the optimizer is free to optimize the function in context with the surrounding code.

Inline function expansion is performed in one of the following ways:
• Intrinsic operators are inlined by default.
• Code is compiled with definition-controlled inlining.
• When the optimizer is invoked with the --opt_level=3 option (-O3), automatic inline expansion is

performed at call sites to small functions. For more information about automatic inline function
expansion, see Section 3.6.

Note: Function Inlining Can Greatly Increase Code Size

Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions.

An operator is intrinsic if it can be implemented very efficiently with the target's instruction set. The
compiler automatically inlines the intrinsic operators of the target system by default. Inlining happens
whether or not you use the optimizer and whether or not you use any compiler or optimizer options on the
command line. These functions are considered the intrinsic operators:
• abs
• labs
• fabs

Definition-controlled inline function expansion is performed when you invoke the compiler with optimization
and the compiler encounters the inline keyword in code. Functions with a variable number of arguments
are not inlined. In addition, a limit is placed on the depth of inlining for recursive or nonleaf functions.
Inlining should be used for small functions or functions that are called in a few places (though the compiler
does not enforce this). You can control this type of function inlining with the inline keyword.

The inline keyword specifies that a function is expanded inline at the point at which it is called, rather than
by using standard calling procedures.

The semantics of the inline keyword follows that described in the C++ standard. The inline keyword is
identically supported in C as a language extension. Because it is a language extension that could conflict
with a strictly conforming program, however, the keyword is disabled in strict ANSI C mode (when you use
the --strict_ansi compiler option). If you want to use definition-controlled inlining while in strict ANSI C
mode, use the alternate keyword _ _inline.

When you want to compile without definition-controlled inlining, use the --no_inlining option.

SLAU132C–November 2008 Using the C/C++ Compiler 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.12 Using Interlist

Using Interlist www.ti.com

Note: Using the --no_inlining Option With Level 3 Optimizations

When you use the --no_inlining option with --opt_level=3 (aliased as -O3) optimizations,
automatic inlining is still performed.

The compiler tools include a feature that interlists C/C++ source statements into the assembly language
output of the compiler. The interlist feature enables you to inspect the assembly code generated for each
C statement. The interlist behaves differently, depending on whether or not the optimizer is used, and
depending on which options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the
interlist on a program called function.c, enter:

cl430 --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output
file. The output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between
the code generator and the assembler. It reads both the assembly and C/C++ source files, merges them,
and writes the C/C++ statements into the assembly file as comments.

Using the --c_src_interlist option can cause performance and/or code size degradation.

Example 2-1 shows a typical interlisted assembly file.

For more information about using the interlist feature with the optimizer, see Section 3.7.

44 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Using Interlist

Example 2-1. An Interlisted Assembly Language File

;**
;* MSP430 C/C++ Codegen Unix v0.2.0 *
;* Date/Time created: Tue Jun 29 14:54:28 2004 *
;**

.compiler_opts --mem_model:code=flat --mem_model:data=flat --symdebug:none
; acp430 -@/var/tmp/TI764/AAAv0aGVG

.sect ".text"

.align 2

.clink

.global main
;---
; 3 | int main()
;---

;**
;* FUNCTION NAME: main *
;* *
;* Regs Modified : SP,SR,r11,r12,r13,r14,r15 *
;* Regs Used : SP,SR,r11,r12,r13,r14,r15 *
;* Local Frame Size : 2 Args + 0 Auto + 0 Save = 2 byte *
;**
main:
;* ---*

SUB.W #2,SP
;---
; 5 | printf("Hello, world\n");
;---

MOV.W #CSL1+0,0(SP) ; |5|
CALL #printf ; |5|

; |5|
;---
; 7 | return 0;
;---

MOV.W #0,r12 ; |7|
ADD.W #2,SP ; |7|
RET ; |7|
; |7|

;**
;* STRINGS *
;**

.sect ".const"

.align 2
CSL1: .string "Hello, world",10,0
;**
;* UNDEFINED EXTERNAL REFERENCES *
;**

.global printf

SLAU132C–November 2008 Using the C/C++ Compiler 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

2.13 Enabling Entry Hook and Exit Hook Functions

Enabling Entry Hook and Exit Hook Functions www.ti.com

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a
routine that is called upon exit of each function. Applications for hooks include debugging, trace, profiling,
and stack overflow checking.

Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise,
the default entry hook function name is __entry_hook.

--entry_param{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);
The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void
hook(void);

--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise,
the default exit hook function name is __exit_hook.

--exit_param{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);
The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void
hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given
signature. If a declaration or definition of the hook function appears in the compilation unit compiled with
the options, it must agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as
other inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same
function can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any
function which itself has hook calls inserted. To help prevent this, hooks are not generated for inline
functions, or for the hook functions themselves.

See Section 5.8.12 for information about the NO_HOOKS pragma.

46 Using the C/C++ Compiler SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 3
SLAU132C–November 2008

Optimizing Your Code

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of
C and C++ programs by simplifying loops, software pipelining, rearranging statements and expressions,
and allocating variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when
performing optimization and how you can profile or debug optimized code.

Topic .. Page

3.1 Invoking Optimization.. 48
3.2 Performing File-Level Optimization (--opt_level=3 option) 49
3.3 Performing Program-Level Optimization

(--program_level_compile and --opt_level=3 options) 50
3.4 Accessing Aliased Variables in Optimized Code 52
3.5 Use Caution With asm Statements in Optimized Code................... 52
3.6 Automatic Inline Expansion (--auto_inline Option) 53
3.7 Using the Interlist Feature With Optimization 53
3.8 Debugging Optimized Code.. 55
3.9 What Kind of Optimization Is Being Performed? 55

SLAU132C–November 2008 Optimizing Your Code 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.1 Invoking Optimization

Invoking Optimization www.ti.com

The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use high-level
optimizations to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option
on the compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of
optimization (0, 1, 2, and 3), which controls the type and degree of optimization.
• --opt_level=0 or -O0

– Performs control-flow-graph simplification
– Allocates variables to registers
– Performs loop rotation
– Eliminates unused code
– Simplifies expressions and statements
– Expands calls to functions declared inline

• --opt_level=1 or -O1
Performs all --opt_level=0 (-O0) optimizations, plus:
– Performs local copy/constant propagation
– Removes unused assignments
– Eliminates local common expressions

• --opt_level=2 or -O2
Performs all --opt_level=1 (-O1) optimizations, plus:
– Performs loop optimizations
– Eliminates global common subexpressions
– Eliminates global unused assignments
– Performs loop unrolling
The optimizer uses --opt_level=2 (-O2) as the default if you use --opt_level (-O) without an optimization
level.

• --opt_level=3 or -O3
Performs all --opt_level=2 (-O2) optimizations, plus:
– Removes all functions that are never called
– Simplifies functions with return values that are never used
– Inlines calls to small functions
– Reorders function declarations; the called functions attributes are known when the caller is

optimized
– Propagates arguments into function bodies when all calls pass the same value in the same

argument position
– Identifies file-level variable characteristics

If you use --opt_level=3 (-O3), see Section 3.2 and Section 3.3 for more information.

The levels of optimizations described above are performed by the stand-alone optimization pass. The
code generator performs several additional optimizations, particularly processor-specific optimizations. It
does so regardless of whether you invoke the optimizer. These optimizations are always enabled,
although they are more effective when the optimizer is used.

48 Optimizing Your Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.2 Performing File-Level Optimization (--opt_level=3 option)

3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options)

3.2.2 Creating an Optimization Information File (--gen_opt_info Option)

www.ti.com Performing File-Level Optimization (--opt_level=3 option)

The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level
optimization. You can use the --opt_level=3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The options listed in Table 3-1
work with --opt_level=3 to perform the indicated optimization:

Table 3-1. Options That You Can Use With --opt_level=3
If You ... Use this Option See
Have files that redeclare standard library functions --std_lib_func_defined Section 3.2.1

--std_lib_func_redefined
Want to create an optimization information file --gen_opt_level=n Section 3.2.2
Want to compile multiple source files --program_level_compile Section 3.3

When you invoke the compiler with the --opt_level=3 option, some of the optimizations use known
properties of the standard library functions. If your file redeclares any of these standard library functions,
these optimizations become ineffective. Use Table 3-2 to select the appropriate file-level optimization
option.

Table 3-2. Selecting a File-Level Optimization Option
If Your Source File... Use this Option
Declares a function with the same name as a standard library function --std_lib_func_redefined
Contains but does not alter functions declared in the standard library --std_lib_func_defined
Does not alter standard library functions, but you used the --std_lib_func_redefined or --std_lib_func_not_defined
--std_lib_func_defined option in a command file or an environment variable. The
--std_lib_func_not_defined option restores the default behavior of the optimizer.

When you invoke the compiler with the --opt_level=3 option, you can use the --gen_opt_info option to
create an optimization information file that you can read. The number following the option denotes the
level (0, 1, or 2). The resulting file has an .nfo extension. Use Table 3-3 to select the appropriate level to
append to the option.

Table 3-3. Selecting a Level for the --gen_opt_info Option
If you... Use this option
Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 --gen_opt_level=0
option in a command file or an environment variable. The --gen_opt_level=0 option restores the
default behavior of the optimizer.
Want to produce an optimization information file --gen_opt_level=1
Want to produce a verbose optimization information file --gen_opt_level=2

SLAU132C–November 2008 Optimizing Your Code 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.3 Performing Program-Level Optimization (--program_level_compile and --opt_level=3

3.3.1 Controlling Program-Level Optimization (--call_assumptions Option)

Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options) www.ti.com

options)
You can specify program-level optimization by using the --program_level_compile option with the
--opt_level=3 option (aliased as -O3). With program-level optimization, all of your source files are compiled
into one intermediate file called a module. The module moves to the optimization and code generation
passes of the compiler. Because the compiler can see the entire program, it performs several
optimizations that are rarely applied during file-level optimization:
• If a particular argument in a function always has the same value, the compiler replaces the argument

with the value and passes the value instead of the argument.
• If a return value of a function is never used, the compiler deletes the return code in the function.
• If a function is not called directly or indirectly by main(), the compiler removes the function.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to
generate an information file. See Section 3.2.2 for more information.

In Code Composer Studio, when the --program_level_compile option is used, C and C++ files that have
the same options are compiled together. However, if any file has a file-specific option that is not selected
as a project-wide option, that file is compiled separately. For example, if every C and C++ file in your
project has a different set of file-specific options, each is compiled separately, even though program-level
optimization has been specified. To compile all C and C++ files together, make sure the files do not have
file-specific options. Be aware that compiling C and C++ files together may not be safe if previously you
used a file-specific option.

Note: Compiling Files With the --program_level_compile and --keep_asm Options

If you compile all files with the --program_level_compile and --keep_asm options, the
compiler produces only one .asm file, not one for each corresponding source file.

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3,
by using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in
other modules can call a module's external functions or modify a module's external variables. The number
following --call_assumptions indicates the level you set for the module that you are allowing to be called or
modified. The --opt_level=3 option combines this information with its own file-level analysis to decide
whether to treat this module's external function and variable declarations as if they had been declared
static. Use Table 3-4 to select the appropriate level to append to the --call_assumptions option.

Table 3-4. Selecting a Level for the --call_assumptions Option
If Your Module … Use this Option
Has functions that are called from other modules and global variables that are modified in other --call_assumptions=0
modules
Does not have functions that are called by other modules but has global variables that are modified in --call_assumptions=1
other modules
Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules
Has functions that are called from other modules but does not have global variables that are modified --call_assumptions=3
in other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you
specified, or it might disable program-level optimization altogether. Table 3-5 lists the combinations of
--call_assumptions levels and conditions that cause the compiler to revert to other --call_assumptions
levels.

Optimizing Your Code50 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.3.2 Optimization Considerations When Mixing C/C++ and Assembly

www.ti.com Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)

Table 3-5. Special Considerations When Using the --call_assumptions Option
Then the --call_assumptions

If Your Option is... Under these Conditions... Level...
Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2
Not specified The compiler sees calls to outside functions under the Reverts to --call_assumptions=0

--opt_level=3 optimization level
Not specified Main is not defined Reverts to --call_assumptions=0
--call_assumptions=1 or No function has main defined as an entry point and functions are Reverts to --call_assumptions=0
--call_assumptions=2 not identified by the FUNC_EXT_CALLED pragma
--call_assumptions=1 or No interrupt function is defined Reverts to --call_assumptions=0
--call_assumptions=2
--call_assumptions=1 or Functions are identified by the FUNC_EXT_CALLED pragma Remains --call_assumptions=1
--call_assumptions=2 or --call_assumptions=2
--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a
--call_assumptions option or the FUNC_EXT_CALLED pragma. See Section 3.3.2 for information about
these situations.

If you have any assembly functions in your program, you need to exercise caution when using the
--program_level_compile option. The compiler recognizes only the C/C++ source code and not any
assembly code that might be present. Because the compiler does not recognize the assembly code calls
and variable modifications to C/C++ functions, the --program_level_compile option optimizes out those
C/C++ functions. To keep these functions, place the FUNC_EXT_CALLED pragma (see Section 5.8.6)
before any declaration or reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the
--call_assumptions=n option with the --program_level_compile and --opt_level=3 options (see
Section 3.3.1).

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or
--call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

Situation— Your application consists of C/C++ source code that calls assembly functions. Those
assembly functions do not call any C/C++ functions or modify any C/C++ variables.

Solution —Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler
that outside functions do not call C/C++ functions or modify C/C++ variables. See Section 3.3.1 for
information about the --call_assumptions=2 option.
If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts
from the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler
uses --call_assumptions=0, because it presumes that the calls to the assembly language functions
that have a definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

Situation— Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution— Try both of these solutions and choose the one that works best with your code:
• Compile with --program_level_compile --opt_level=3 --call_assumptions=1.
• Add the volatile keyword to those variables that may be modified by the assembly functions and

compile with --program_level_compile --opt_level=3 --call_assumptions=2.
See Section 3.3.1 for information about the --call_assumptions=n option.

SLAU132C–November 2008 Optimizing Your Code 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.4 Accessing Aliased Variables in Optimized Code

3.5 Use Caution With asm Statements in Optimized Code

Accessing Aliased Variables in Optimized Code www.ti.com

Situation— Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the
assembly functions call are never called from C/C++. These C/C++ functions act like main: they
function as entry points into C/C++.

Solution— Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then,
you can optimize your code in one of these ways:
• You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the

entry-point functions called from the assembly language interrupts, and then compiling with
--program_level_compile --opt_level=3 --call_assumptions=2. Be sure that you use the pragma
with all of the entry-point functions. If you do not, the compiler might remove the entry-point
functions that are not preceded by the FUNC_EXT_CALLED pragma.

• Compile with --program_level_compile --opt_level=3 --call_assumptions=3. Because you do not
use the FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is
less aggressive than the --call_assumptions=2 option, and your optimization may not be as
effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the
compiler removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED
pragma to keep these functions.

Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers
point to the same object or when a pointer points to a named object. Aliasing can disrupt optimization
because any indirect reference can refer to another object. The optimizer analyzes the code to determine
where aliasing can and cannot occur, then optimizes as much as possible while still preserving the
correctness of the program. The optimizer behaves conservatively. If there is a chance that two pointers
are pointing to the same object, then the optimizer assumes that the pointers do point to the same object.

The compiler assumes that if the address of a local variable is passed to a function, the function changes
the local variable by writing through the pointer. This makes the local variable's address unavailable for
use elsewhere after returning. For example, the called function cannot assign the local variable's address
to a global variable or return the local variable's address. In cases where this assumption is invalid, use
the --aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case
aliasing, any indirect reference can refer to such a variable.

You must be extremely careful when using asm (inline assembly) statements in optimized code. The
compiler rearranges code segments, uses registers freely, and can completely remove variables or
expressions. Although the compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is inserted can differ significantly
from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but asm
statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are
correct and maintain the integrity of the program.

52 Optimizing Your Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.6 Automatic Inline Expansion (--auto_inline Option)

3.7 Using the Interlist Feature With Optimization

www.ti.com Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option (aliased as -O3), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold. Any function larger than
the size threshold is not automatically inlined. You can use the --auto_inline=size option in the following
ways:
• If you set the size parameter to 0 (--auto_inline=0), automatic inline expansion is disabled.
• If you set the size parameter to a nonzero integer, the compiler uses this size threshold as a limit to

the size of the functions it automatically inlines. The compiler multiplies the number of times the
function is inlined (plus 1 if the function is externally visible and its declaration cannot be safely
removed) by the size of the function.

The compiler inlines the function only if the result is less than the size parameter. The compiler measures
the size of a function in arbitrary units; however, the optimizer information file (created with the
--gen_opt_level=1 or --gen_opt_level=2 option) reports the size of each function in the same units that the
--auto_inline option uses.

The --auto_inline=size option controls only the inlining of functions that are not explicitly declared as inline.
If you do not use the --auto_inline=size option, the compiler inlines very small functions.

Note: Optimization Level 3 and Inlining

In order to turn on automatic inlining, you must use the --opt_level=3 option. The
--opt_level=3 option turns on other optimizations. If you desire the --opt_level=3
optimizations, but not automatic inlining, use --auto_inline=0 with the --opt_level=3 option.

Note: Inlining and Code Size

Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions. In order to prevent increases in code size because
of inlining, use the --auto_inline=0 and --no_inlining options. These options, used together,
cause the compiler to inline intrinsics only.

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On
option) with the --optimizer_interlist and --c_src_interlist options.
• The --optimizer_interlist option interlists compiler comments with assembly source statements.
• The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the

original C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a
separate pass. Instead, the compiler inserts comments into the code, indicating how the compiler has
rearranged and optimized the code. These comments appear in the assembly language file as comments
starting with ;**. The C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the
compiler extensively rearranges your program. Therefore, when you use the --optimizer_interlist option,
the compiler writes reconstructed C/C++ statements.

Example 3-1 shows a function that has been compiled with optimization (--opt_level=2) and the
--optimizer_interlist option. The assembly file contains compiler comments interlisted with assembly code.

Note: Impact on Performance and Code Size

The --c_src_interlist option can have a negative effect on performance and code size.

SLAU132C–November 2008 Optimizing Your Code 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Using the Interlist Feature With Optimization www.ti.com

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts
its comments and the interlist feature runs before the assembler, merging the original C/C++ source into
the assembly file.

Example 3-2 shows the function from Example 3-1 compiled with the optimization (--opt_level=2) and the
--c_src_interlist and --optimizer_interlist options. The assembly file contains compiler comments and C
source interlisted with assembly code.

Example 3-1. The Function From Example 2-1 Compiled with the --opt_level=2 and
--optimizer_interlist Options

main:
;* ---*

SUB.W #2,SP
;** 5 ------------------------- printf((const unsigned char *)"Hello, world\n");

MOV.W #CSL1+0,0(SP) ; |5|
CALL #printf ; |5|

; |5|
;** 6 ------------------------- return 0;

MOV.W #0,r12 ; |6|
ADD.W #2,SP
RET

Example 3-2. The Function From Example 2-1 Compiled with the --opt_level=2, --optimizer_interlist,
and --c_src_interlist Options

main:
;* --*

SUB.W #2,SP
;** 5 ------------------------- printf((const unsigned char *)"Hello, world\n");
;--
; 5 | printf ("Hello, world\n");
;--

MOV.W #CSL1+0,0(SP) ; |5|
CALL #printf ; |5|

; |5|
;** 6 ------------------------- return 0;
;--
; 6 | return 0;
;--

MOV.W #0,r12 ; |6|
ADD.W #2,SP
RET

Optimizing Your Code54 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.8 Debugging Optimized Code

3.9 What Kind of Optimization Is Being Performed?

www.ti.com Debugging Optimized Code

Debugging fully optimized code is not recommended, because the compiler's extensive rearrangement of
code and the many-to-many allocation of variables to registers often make it difficult to correlate source
code with object code. Profiling code that has been built with the --symdebug:dwarf (aliased as -g) option
or the --symdebug:coff option (STABS debug) is not recommended as well, because these options can
significantly degrade performance. To remedy these problems, you can use the options described below
to optimize your code in such a way that you can still debug or profile the code.

To debug optimized code, use the --opt_level option (aliased as -O) in conjunction with one of the
symbolic debugging options (--symdebug:dwarf or --symdebug:coff). The symbolic debugging options
generate directives that are used by the C/C++ source-level debugger, but they disable many compiler
optimizations. When you use the --opt_level option (which invokes optimization) with the
--symdebug:dwarf or --symdebug:coff option, you turn on the maximum amount of optimization that is
compatible with debugging.

If you want to use symbolic debugging and still generate fully optimized code, use the
--optimize_with_debug option. This option reenables the optimizations disabled by --symdebug:dwarf or
--symdebug:coff. However, if you use the --optimize_with_debug option, portions of the debugger's
functionality will be unreliable.

Note: Symbolic Debugging Options Affect Performance and Code Size

Using the --symdebug:dwarf or -symdebug:coff option can cause a significant performance
and code size degradation of your code. Use these options for debugging only. Using
--symdebug:dwarf or -symdebug:coff when profiling is not recommended.

The MSP430 C/C++ compiler uses a variety of optimization techniques to improve the execution speed of
your C/C++ programs and to reduce their size. See Section 2.11 for more information.

Following are some of the optimizations performed by the compiler:
Optimization See
Cost-based register allocation Section 3.9.1
Alias disambiguation Section 3.9.1
Branch optimizations and control-flow simplification Section 3.9.3
Data flow optimizations Section 3.9.4

• Copy propagation
• Common subexpression elimination
• Redundant assignment elimination

Expression simplification Section 3.9.5
Inline expansion of functions Section 3.9.6
Induction variable optimizations and strength reduction Section 3.9.7
Loop-invariant code motion Section 3.9.8
Loop rotation Section 3.9.9
Instruction scheduling Section 3.9.10

MSP430-Specific Optimization See
Tail merging Section 3.9.12
Integer division with constant divisor Section 3.9.11
_never_executed() intrinsic Section 3.9.13

SLAU132C–November 2008 Optimizing Your Code 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.9.1 Cost-Based Register Allocation

3.9.2 Alias Disambiguation

3.9.3 Branch Optimizations and Control-Flow Simplification

3.9.4 Data Flow Optimizations

3.9.5 Expression Simplification

What Kind of Optimization Is Being Performed? www.ti.com

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary
values according to their type, use, and frequency. Variables used within loops are weighted to have
priority over others, and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a
simple counting loop and software pipeline, unroll, or eliminate the loop. Strength reduction turns the array
references into efficient pointer references with autoincrements.

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine
whether or not two or more I values (lowercase L: symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often prevents the compiler from
retaining values in registers because it cannot be sure that the register and memory continue to hold the
same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of
operations (basic blocks) to remove branches or redundant conditions. Unreachable code is deleted,
branches to branches are bypassed, and conditional branches over unconditional branches are simplified
to a single conditional branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are
reduced to conditional instructions, totally eliminating the need for branches.

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and
remove unnecessary assignments, and avoid operations that produce values that are already computed.
The compiler with optimization enabled performs these data flow optimizations both locally (within basic
blocks) and globally (across entire functions).
• Copy propagation. Following an assignment to a variable, the compiler replaces references to the

variable with its value. The value can be another variable, a constant, or a common subexpression.
This can result in increased opportunities for constant folding, common subexpression elimination, or
even total elimination of the variable.

• Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

• Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference
before another assignment or before the end of the function). The compiler removes these dead
assignments.

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer
instructions or registers. Operations between constants are folded into single constants. For example, a =
(b + 4) - (c + 1) becomes a = b - c + 3.

Optimizing Your Code56 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

3.9.6 Inline Expansion of Functions

3.9.7 Induction Variables and Strength Reduction

3.9.8 Loop-Invariant Code Motion

3.9.9 Loop Rotation

3.9.10 Instruction Scheduling

3.9.11 Integer Division With Constant Divisor

3.9.12 Tail Merging

3.9.13 _never_executed Intrinsic

www.ti.com What Kind of Optimization Is Being Performed?

The compiler replaces calls to small functions with inline code, saving the overhead associated with a
function call as well as providing increased opportunities to apply other optimizations.

Induction variables are variables whose value within a loop is directly related to the number of executions
of the loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence of array elements is replaced
with code that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your
loop-control variable, allowing its elimination.

This optimization identifies expressions within loops that always compute to the same value. The
computation is moved in front of the loop, and each occurrence of the expression in the loop is replaced
by a reference to the precomputed value.

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In
many cases, the initial entry conditional check and the branch are optimized out.

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a
way that improves performance while maintaining the semantics of the original order. Instruction
scheduling is used to improve instruction parallelism and hide pipeline latencies. It can also be used to
reduce code size.

The optimizer attempts to rewrite integer divide operations with constant divisors. The integer divides are
rewritten as a multiply with the reciprocal of the divisor. This occurs at optimization level 2 (--opt_level=2
or -O2) and higher. You must also compile with the --opt_for_speed option, which selects compile for
speed.

If you are optimizing for code size, tail merging can be very effective for some functions. Tail merging finds
basic blocks that end in an identical sequence of instructions and have a common destination. If such a
set of blocks is found, the sequence of identical instructions is made into its own block. These instructions
are then removed from the set of blocks and replaced with branches to the newly created block. Thus,
there is only one copy of the sequence of instructions, rather than one for each block in the set.

The _never_executed()intrinsic can be used to assert to the compiler that a switch expression can only
take on values represented by the case labels within a switch block. This assertion enables the compiler
to avoid generating test code for handling values not specified by the switch case labels. This assertion is
specifically suited for handling values that characterize a vector generator. See Section 6.8.3 for details on
the _never_executed() intrinsic.

SLAU132C–November 2008 Optimizing Your Code 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Optimizing Your Code58 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 4
SLAU132C–November 2008

Linking C/C++ Code

The C/C++ compiler and assembly language tools provide two methods for linking your programs:
• You can compile individual modules and link them together. This method is especially useful when you

have multiple source files.
• You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements
of linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and
allocating the program into memory. For a complete description of the linker, see the MSP430 Assembly
Language Tools User's Guide.

Topic .. Page

4.1 Invoking the Linker Through the Compiler (-z Option) 60
4.2 Linker Options .. 62
4.3 Linker Code Optimizations ... 65
4.4 Controlling the Linking Process.. 66

SLAU132C–November 2008 Linking C/C++ Code 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.1 Invoking the Linker Through the Compiler (-z Option)

4.1.1 Invoking the Linker Separately

Invoking the Linker Through the Compiler (-z Option) www.ti.com

This section explains how to invoke the linker after you have compiled and assembled your programs: as
a separate step or as part of the compile step.

This is the general syntax for linking C/C++ programs as a separate step:

cl430 --run_linker {--rom_model | --ram_model} filenames [options]
[--output_file=name.out] --library=library [lnk.cmd]

cl430 --run_linker The command that invokes the linker.
--rom_model | --ram_model Options that tell the linker to use special conventions defined by the

C/C++ environment. When you use cl430 --run_linker, you must use
--rom_model or --ram_model. The --rom_model option uses
automatic variable initialization at run time; the --ram_model option
uses variable initialization at load time.

filenames Names of object files, linker command files, or archive libraries. The
default extension for all input files is .obj; any other extension must be
explicitly specified. The linker can determine whether the input file is
an object or ASCII file that contains linker commands. The default
output filename is a.out, unless you use the --output_file option to
name the output file.

options Options affect how the linker handles your object files. Linker options
can only appear after the --run_linker option on the command line,
but otherwise may be in any order. (Options are discussed in
Section 4.2.)

--output_file= name.out Names the output file.
--library= library Identifies the appropriate archive library containing C/C++

run-time-support and floating-point math functions, or linker command
files. If you are linking C/C++ code, you must use a run-time-support
library. You can use the libraries included with the compiler, or you
can create your own run-time-support library. If you have specified a
run-time-support library in a linker command file, you do not need this
parameter. The --library option's short form is -l.

lnk.cmd Contains options, filenames, directives, or commands for the linker.

When you specify a library as linker input, the linker includes and links only those library members that
resolve undefined references. The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker command file to customize
the allocation process. For information, see the MSP430 Assembly Language Tools User's Guide.

You can link a C/C++ program consisting of modules prog1.obj, prog2.obj, and prog3.obj, with an
executable filename of prog.out with the command:
cl430 --run_linker --rom_model prog1 prog2 prog3 --output_file=prog.out

--library=rts430.lib

Linking C/C++ Code60 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.1.2 Invoking the Linker as Part of the Compile Step

4.1.3 Disabling the Linker (--compile_only Compiler Option)

www.ti.com Invoking the Linker Through the Compiler (-z Option)

This is the general syntax for linking C/C++ programs as part of the compile step:

cl430 filenames [options] --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file=name.out] --library=library [lnk.cmd]

The --run_linker option divides the command line into the compiler options (the options before
--run_linker) and the linker options (the options following --run_linker). The --run_linker option must follow
all source files and compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can
be linker command files, additional object files, linker options, or libraries. These arguments are the same
as described in Section 4.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments
can be C/C++ source files, assembly files, or compiler options. These arguments are described in
Section 2.2.

You can compile and link a C/C++ program consisting of modules prog1.c, prog2.c, and prog3.c, with an
executable filename of prog.out with the command:
cl430 prog1.c prog2.c prog3.c --run_linker --rom_model --output_file=prog.out --library=rts430.lib

Note: Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes
arguments to the linker in the following order:
1. Object filenames from the command line
2. Arguments following the --run_linker option on the command line
3. Arguments following the --run_linker option from the MSP430_C_OPTION environment

variable

You can override the --run_linker option by using the --compile_only compiler option. The -run_linker
option's short form is -z and the --compile_only option's short form is -c.

The --compile_only option is especially helpful if you specify the --run_linker option in the
MSP430_C_OPTION environment variable and want to selectively disable linking with the --compile_only
option on the command line.

SLAU132C–November 2008 Linking C/C++ Code 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.2 Linker Options
Linker Options www.ti.com

All command-line input following the --run_linker option (aliased as -z) is passed to the linker as
parameters and options. Following are the options that control the linker, along with detailed descriptions
of their effects.

--absolute_exe Produces an absolute, executable module. This is the default; if
neither --absolute_exe nor --relocatable is specified, the linker acts
as if --absolute_exe is specified.

-ar Produces a relocatable, executable object module. The output
module contains the special linker symbols, an optional header,
and all symbol references. The relocation information is retained.

--arg_size=size Allocates memory to be used by the loader to pass arguments from
the command line of the loader to the program. The linker allocates
size bytes in an uninitialized .args section. The __c_args__ symbol
contains the address of the .args section.

--compress_dwarf Aggressively reduces the size of DWARF information from input
object files

--define=name[=val] Predefines name as a preprocessor macro. This option is distinct
from the compiler --define option.

--diag_error=num Categorizes the diagnostic identified by num as an error. See
Section 2.7.1 for details.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. See
Section 2.7.1 for details.

--diag_suppress=num Suppresses the diagnostic identified by num. See Section 2.7.1 for
details.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. See
Section 2.7.1 for details.

--disable_auto_rts Disables the automatic selection of a run-time-support library. See
Section 4.4.1.2 for more information.

--disable_clink Disables conditional linking that has been set up with the assembler
.clink directive for COFF object files. By default, all sections are
unconditionally linked.

--disable_pp Disables preprocessing for command files. By default, the linker
now preprocesses link command files using a standard C
preprocessor.

--display_error_number=num Displays a diagnostic's identifiers along with its text. See
Section 4.4.1.2 for more information.

--entry_point=global_symbol Defines a global_symbol that specifies the primary entry point for
the output module

--fill_value=value Sets the default fill value for null areas within output sections; value
is a 16-bit constant

--generate_dead_funcs_list Writes a list of the dead functions that were removed by the linker
to file fname for object files

--heap_size=size Sets the heap size (for dynamic memory allocation) to size bytes
and defines a global symbol that specifies the heap size. The
default is 128 bytes.

--issue_remarks Issues remarks (nonserious warnings). See Section 4.4.1.2 for
more information.

62 Linking C/C++ Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Linker Options

--library= libraryname Names an archive library file or linker command filename as linker
input. The libraryname is an archive library name and must follow
operating system conventions. The --library option's short form is -l.

--linker_help Produces a help listing displaying syntax and available options
--make_global=global_symbol Defines global_symbol as global even if the global symbol has

been made static with the --make_static option
--make_static Makes all global symbols static; global symbols are essentially

hidden. This allows external symbols with the same name (in
different files) to be treated as unique.

--map_file=filename Produces a map or listing of the input and output sections, including
null areas, and places the listing in filename. The filename must
follow operating system conventions.

--mapfile_contents=filter[,filter] Controls the information that appears in the map file. Enter
--mapfile_contents=help on the command line to produce a listing
of available options.

--no_demangle Disables demangling of symbol names in diagnostics
--no_sym_merge Disables merge of symbolic debugging information in COFF object

files. The linker keeps the duplicate entries of symbolic debugging
information commonly generated when a C program is compiled for
debugging. (Deprecated option; use the strip utility described in the
MSP430 Assembly Language Tools User's Guide.

--no_sym_table Creates a smaller output section by stripping symbol table
information and line number entries from the output module.

--no_warnings Suppresses warning diagnostics (errors are still issued). See
Section 4.4.1.2 for more information.

--output_file=filename Names the executable output module. The filename must follow
operating system conventions. If the --output_file option is not used,
the default filename is a.out.

--priority Satisfies each unresolved reference by the first library that contains
a definition for that symbol

--ram_model Initializes variables at load time. See Section 6.9.7 for more
information.

--relocatable Retains relocation entries in the output module.
--reread_libs Forces rereading of libraries. The linker continues to reread libraries

until no more references can be resolved.
--rom_model Autoinitializes variables at run time. See Section 6.9.6 for more

information.
--run_abs Produces an absolute listing file.
--scan_libraries Scans all libraries during a link to look for duplicate symbol

definitions to those symbols that are actually included in the link.
--search_path=directory Alters the library-search algorithm to look in directory before looking

in the default location. This option must appear before the --library
option. The directory must follow operating system conventions.
You can specify up to 128 --search_path options. The
--search_path option's short form is -I.

SLAU132C–November 2008 Linking C/C++ Code 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Linker Options www.ti.com

--set_error_limit=num Sets the error limit to num. The linker abandons linking after this
number of errors. (The default is 100.) See Section 4.4.1.2 for more
information.

--stack_size=size Sets the C/C++ system stack size to size bytes and defines a
global symbol that specifies the stack size. The default is 128
bytes.

--strict_compatibility Performs more conservative and rigorous compatibility checking of
input object files.

--symbol_map=refname=defname Enables symbol mapping, which allows a symbol reference to be
resolved by a symbol with a different name.

--undef_sym=symbol Places the unresolved external symbol symbol into the output
module's symbol table. This forces the linker to search a library and
include the member that defines the symbol.

--undefine=name Removes the preprocessor macro name. This option is distinct from
the compiler --undefine option.

--use_hw_mpy[={16|32|F5}] Replaces all references to the default integer/long multiply routine
with the version of the multiply routine that uses hardware multiplier
support. The optional argument can be 16 for 16-bit hardware
multiplier (default); 32 for F4xxx 32-bit hardware multiplier; or F5 for
F5xxx 32-bit hardware multiplier.

--verbose_diagnostics Provides verbose diagnostics that display the original source with
line-wrap. See Section 4.4.1.2 for more information.

--warn_sections Displays a message when the linker encounters one or more input
sections that do not have a corresponding output section defined in
the SECTIONS directive.

--xml_link_info=file Generates an XML link information file. This option causes the
linker to generate a well-formed XML file containing detailed
information about the result of a link. The information included in
this file includes all of the information that is currently produced in a
linker generated map file.

For more information on linker options, see the MSP430 Assembly Language Tools User's Guide.

64 Linking C/C++ Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.3 Linker Code Optimizations

4.3.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)

4.3.2 Generating Function Subsections (--gen_func_subsections Compiler Option)

www.ti.com Linker Code Optimizations

These options are used to further optimize your code.

In order to facilitate the removal of unused code, the linker generates a feedback file containing a list of
functions that are never referenced. The feedback file must be used the next time you compile the source
files. The syntax for the --generate_dead_funcs_list option is:

--generate_dead_funcs_list= filename

If filename is not specified, a default filename of dead_funcs.txt is used.

Proper creation and use of the feedback file entails the following steps:
1. Compile all source files using the --gen_func_subsections compiler option. For example:

cl430 file1.c file2.c --gen_func_subsections

2. During the linker, use the --generate_dead_funcs_list option to generate the feedback file based on the
generated object files. For example:
cl430 --run_linker file1.obj file2.obj
--generate_dead_funcs_list=feedback.txt

Alternatively, you can combine steps 1 and 2 into one step. When you do this, you are not required to
specify --gen_func_subsections when compiling the source files as this is done for you automatically.
For example:
cl430 file1.c file2.c --run_linker --generate_dead_funcs_list=feedback.txt

3. Once you have the feedback file, rebuild the source. Give the feedback file to the compiler using the
--use_dead_funcs_list option. This option forces each dead function listed in the file into its own
subsection. For example:
cl430 file1.c file2.c --use_dead_funcs_list=feedback.txt

4. Invoke the linker with the newly built object files. The linker removes the subsections. For example:
cl430 --run_linker file1.obj file2.obj

Alternatively, you can combine steps 3 and 4 into one step. For example:
cl430 file1.c file2.c --use_dead_funcs_list=feedback.txt --run_linker

Note: Dead Functions Feedback

The feedback file generated with the -gen_dead_funcs_list option is version controlled. It
must be generated by the linker in order to be processed correctly by the compiler.

When the linker places code into an executable file, it allocates all the functions in a single source file as a
group. This means that if any function in a file needs to be linked into an executable, then all the functions
in the file are linked in. This can be undesirable if a file contains many functions and only a few are
required for an executable.

This situation may exist in libraries where a single file contains multiple functions, but the application only
needs a subset of those functions. An example is a library .obj file that contains a signed divide routine
and an unsigned divide routine. If the application requires only signed division, then only the signed divide
routine is required for linking. By default, both the signed and unsigned routines are linked in since they
exist in the same .obj file.

The --gen_func_subsections compiler option remedies this problem by placing each function in a file in its
own subsection. Thus, only the functions that are referenced in the application are linked into the final
executable. This can result in an overall code size reduction.

SLAU132C–November 2008 Linking C/C++ Code 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.4 Controlling the Linking Process

4.4.1 Including the Run-Time-Support Library

4.4.1.1 Manual Run-Time-Support Library Selection

Controlling the Linking Process www.ti.com

In addition to placing each function in a separate subsection, the compiler also annotates that subsection
with a conditional linking directive, .clink. This directive marks the section as a candidate to be removed if
it is not referenced by any other section in the program. The compiler does not place a .clink directive in a
subsection for a trap or interrupt function, as these may be needed by a program even though there is no
symbolic reference to them anywhere in the program.

If a section that has been marked for conditional linking is never referenced by any other section in the
program, that section is removed from the program. Conditional linking is disabled when performing a
partial link or when relocation information is kept with the output of the link. Conditional linking can also be
disabled with the --disable_clink link option.

Regardless of the method you choose for invoking the linker, special requirements apply when linking
C/C++ programs. You must:
• Include the compiler's run-time-support library
• Specify the type of initialization
• Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default
linker command file.

For more information about how to operate the linker, see the linker description in the MSP430 Assembly
Language Tools User's Guide.

You must include a run-time-support library in the linker process. The following sections describe two
methods for including the run-time-support library.

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++
functions as well as functions used by the compiler to manage the C/C++ environment. You must use the
--library linker option to specify which MSP430 run-time-support library to use. The --library option also
tells the linker to look at the --search_path options and then the MSP430_C_DIR environment variable to
find an archive path or object file. To use the --library linker option, type on the command line:

cl430 --run_linker {--rom_model | --ram_model} filenames --library=libraryname

Generally, you should specify the run-time-support library as the last name on the command line because
the linker searches libraries for unresolved references in the order that files are specified on the command
line. If any object files follow a library, references from those object files to that library are not resolved.
You can use the --reread_libs option to force the linker to reread all libraries until references are resolved.
Whenever you specify a library as linker input, the linker includes and links only those library members
that resolve undefined references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then
the definition from the same library that introduced the unresolved reference is used. Use the --priority
option if you want the linker to use the definition from the first library on the command line that contains
the definition.

66 Linking C/C++ Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.4.1.2 Automatic Run-Time-Support Library Selection

4.4.2 Run-Time Initialization

4.4.3 Initialization by the Interrupt Vector

www.ti.com Controlling the Linking Process

If the --rom_model or --ram_model option is specified during the linker and the entry point for the program
(normally c_int00) is not resolved by any specified object file or library, the linker attempts to automatically
include the best compatible run-time-support library for your program. The chosen run-time-support library
is linked in as if it was specified with the --library option last on the command line. Alternatively, you can
always force the linker to choose an appropriate run-time-support library by specifying “libc.a” as an
argument to the --library option, or when specifying the run-time-support library name explicitly in a linker
command file.

The automatic selection of a run-time-support library can be disabled with the --disable_auto_rts option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is
generated indicating which run-time support library was linked in. If a different run-time-support library is
desired, you must specify the name of the desired run-time-support library using the --library option and in
your linker command files when necessary.

For example:
cl430 --issue_remarks main.c --run_linker --rom_model

<Linking>

remark: linking in "libc.a"

remark: linking in "rts430.lib" in place of "libc.a"

You must link all C/C++ programs with code to initialize and execute the program called a bootstrap
routine. The bootstrap routine is responsible for the following tasks:
• Set up the stack
• Process the .cinit run-time initialization table to autoinitialize global variables (when using the

--rom_model option)
• Call all global constructors (.pinit) for C++
• Call main.com
• Call exit when main returns

A sample bootstrap routine is _c_int00, provided in boot.obj in the run-time-support libraries. The entry
point is usually set to the starting address of the bootstrap routine.

Note: The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as
the entry point for the program.

If your program begins running from load time, you must set up the reset vector to branch to _c_int00.
This causes boot.obj to be loaded from the library and your program is initialized correctly. The boot.obj
places the address of _c_int00 into a section named .reset. This section can then be allocated at the reset
vector location using the linker.

SLAU132C–November 2008 Linking C/C++ Code 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.4.4 Global Object Constructors

4.4.5 Specifying the Type of Global Variable Initialization

Controlling the Linking Process www.ti.com

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler
produces a table of constructors to be called at startup.

The constructors are invoked in the order that they occur in the table.

Global constructors are called after initialization of other global variables and before main() is called.
Global destructors are invoked during exit(), similar to functions registered through atexit().

Section 6.9.5 discusses the format of the global constructor table.

The C/C++ compiler produces data for initializing global variables. Section 6.9.5 discusses the format of
these initialization tables. The initialization tables are used in one of the following ways:
• Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.9.6).
• Global variables are initialized at load time. Use the --ram_model linker option (see Section 6.9.7).

When you link a C/C++ program, you must use either the --rom_model or --ram_model option. These
options tell the linker to select initialization at run time or load time.

When you compile and link programs, the --rom_model option is the default. If used, the --rom_model
option must follow the --run_linker option (see Section 4.1). The following list outlines the linking
conventions used with --rom_model or --ram_model:
• The symbol _c_int00 is defined as the program entry point; it identifies the beginning of the C/C++ boot

routine in boot.obj. When you use --rom_model or --ram_model, _c_int00 is automatically referenced,
ensuring that boot.obj is automatically linked in from the run-time-support library.

• The initialization output section is padded with a termination record so that the loader (load-time
initialization) or the boot routine (run-time initialization) knows when to stop reading the initialization
tables.

• The global constructor output section is padded with a termination record.
• When initializing at load time (the --ram_model option), the following occur:

– The linker sets the initialization table symbol to -1. This indicates that the initialization tables are not
in memory, so no initialization is performed at run time.

– The STYP_COPY flag is set in the initialization table section header. STYP_COPY is the special
attribute that tells the loader to perform autoinitialization directly and not to load the initialization
table into memory. The linker does not allocate space in memory for the initialization table.

• When autoinitializing at run time (--rom_model option), the linker defines the initialization table symbol
as the starting address of the initialization table. The boot routine uses this symbol as the starting point
for autoinitialization.

• The linker defines the starting address of the global constructor table. The boot routine uses this
symbol as the beginning of the table of global constructors.

Note: Boot Loader

A loader is not included as part of the C/C++ compiler tools.

68 Linking C/C++ Code SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

4.4.6 Specifying Where to Allocate Sections in Memory

4.4.7 A Sample Linker Command File

www.ti.com Controlling the Linking Process

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated
in memory in a variety of ways to conform to a variety of system configurations.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 4-1 summarizes the
initialized sections. Table 4-2 summarizes the uninitialized sections.

Table 4-1. Initialized Sections Created by the Compiler
Name Contents
.cinit Tables for explicitly initialized global and static variables
.const Global and static const variables that are explicitly initialized and contain string

literals
.pinit Table of constructors to be called at startup
.text Executable code and constants

Table 4-2. Uninitialized Sections Created by the Compiler
Name Contents
.args Linker-created section used to pass arguments from the command line of the

loader to the program
.bss Global and static variables
.stack Stack
.sysmem Memory for malloc functions (heap)

When you link your program, you must specify where to allocate the sections in memory. In general,
initialized sections are linked into ROM or RAM; uninitialized sections are linked into RAM. With the
exception of .text, the initialized and uninitialized sections created by the compiler cannot be allocated into
internal program memory. See Section 6.1.3 for a complete description of how the compiler uses these
sections.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information
about allocating sections into memory, see the MSP430 Assembly Language Tools User's Guide.

Example 4-1 shows a typical linker command file that links a 32-bit C program. The command file in this
example is named lnk32.cmd and lists several link options:

––rom_model Tells the linker to use autoinitialization at run time
--stack_size Tells the linker to set the C stack size at 0x140 bytes
--heap_size Tells the linker to set the heap size to 0x120 bytes
--library Tells the linker to use an archive library file, rts430.lib

To link the program, enter:

cl430 --run_linker object_file(s) --output_file=file --map_file=file lnk.cmd

SLAU132C–November 2008 Linking C/C++ Code 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Controlling the Linking Process www.ti.com

Example 4-1. Linker Command File

--rom_model
--stack_size=0x0140
--heap_size=0x120
--library=rts430.lib

/***/
/* SPECIFY THE SYSTEM MEMORY MAP */
/***/

MEMORY
{

SFR(R) : origin = 0x0000, length = 0x0010
PERIPHERALS_8BIT : origin = 0x0010, length = 0x00F0
PERIPHERALS_16BIT: origin = 0x0100, length = 0x0100
RAM(RW) : origin = 0x0200, length = 0x0800
INFOA : origin = 0x1080, length = 0x0080
INFOB : origin = 0x1000, length = 0x0080
FLASH : origin = 0x1100, length = 0xEEE0
VECTORS(R) : origin = 0xFFE0, length = 0x001E
RESET : origin = 0xFFFE, length = 0x0002

}
/**/
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
/**/

SECTIONS
{

.bss : {} > RAM /* GLOBAL & STATIC VARS */

.sysmem : {} > RAM /* DYNAMIC MEMORY ALLOCATION AREA */

.stack : {} > RAM /* SOFTWARE SYSTEM STACK */

.text : {} > FLASH /* CODE */

.cinit : {} > FLASH /* INITIALIZATION TABLES */

.const : {} > FLASH /* CONSTANT DATA */

.cio : {} > RAM /* C I/O BUFFER */

.pinit : {} > RAM /* C++ CONSTRUCTOR TABLES */

.intvecs : {} > VECTORS /* MSP430 INTERRUPT VECTORS */

.reset : {} > RESET /* MSP430 RESET VECTOR */

Linking C/C++ Code70 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 5
SLAU132C–November 2008

MSP430 C/C++ Language Implementation

The C/C++ compiler supports the C/C++ language standard that was developed by a committee of the
American National Standards Institute (ANSI/ISO) to standardize the C programming language.

The C++ language supported by the MSP430 is defined by the ANSI/ISO/IEC 14882-1998 standard with
certain exceptions.

Topic .. Page

5.1 Characteristics of MSP430 C .. 72
5.2 Characteristics of MSP430 C++... 72
5.3 Data Types ... 73
5.4 Keywords... 74
5.5 C++ Exception Handling .. 76
5.6 Register Variables and Parameters ... 76
5.7 The asm Statement ... 77
5.8 Pragma Directives ... 78
5.9 The _Pragma Operator... 86
5.10 Generating Linknames... 86
5.11 Initializing Static and Global Variables... 87
5.12 Changing the ANSI/ISO C Language Mode 88
5.13 GNU C Compiler Extensions... 90
5.14 Compiler Limits .. 91

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.1 Characteristics of MSP430 C

5.2 Characteristics of MSP430 C++

Characteristics of MSP430 C www.ti.com

The compiler supports the C language as defined by ISO 9899, which is equivalent to American National
Standard for Information Systems-Programming Language C X3.159-1989 (C89). The compiler does not
support C99.

Unsupported features of the C library are:
• The run-time library has minimal support for wide and multi-byte characters. The type wchar_t is

implemented as int. The wide character set is equivalent to the set of values of type char. The library
includes the header files <wchar.h> and <wctype.h>, but does not include all the functions specified in
the standard. So-called multi-byte characters are limited to single characters. There are no shift states.
The mapping between multi-byte characters and wide characters is simple equivalence; that is, each
wide character maps to and from exactly a single multi-byte character having the same value.

• The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is
hard-coded to the behavior of the C locale, and attempting to install a different locale by way of a call
to setlocale() will return NULL.

The MSP430 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:1998 standard, including
these features:
• Complete C++ standard library support, with exceptions noted below.
• Templates
• Exceptions, which are enabled with the --exceptions option; see Section 5.5.
• Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The exceptions to the standard are as follows:
• The <complex> header and its functions are not included in the library.
• The library supports wide chars, in that template functions and classes that are defined for char are

also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and
so on (corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no
low-level file I/O for wide chars. Also, the C library interface to wide char support (through the C++
headers <cwchar> and <cwctype>) is limited as described above in the C library.

• If the definition of an inline function contains a static variable, and it appears in multiple compilation
units (usually because it’s a member function of a class defined in a header file), the compiler
generates multiple copies of the static variable rather than resolving them to a single definition. The
compiler emits a warning (#1369) in such cases.

• The reinterpret_cast type does not allow casting a pointer-to-member of one class to a
pointer-to-member of another class if the classes are unrelated.

• Two-phase name binding in templates, as described in [tesp.res] and [temp.dep] of the standard, is not
implemented.

• Template parameters are not implemented.
• The export keyword for templates is not implemented.
• A typedef of a function type cannot include member function cv-qualifiers.
• A partial specialization of a class member template cannot be added outside of the class definition.

72 MSP430 C/C++ Language Implementation SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.3 Data Types
www.ti.com Data Types

Table 5-1 lists the size, representation, and range of each scalar data type for the MSP430 compiler.
Many of the range values are available as standard macros in the header file limits.h.

Table 5-1. MSP430 C/C++ Data Types
Range

Type Size Representation Minimum Maximum
char, signed char 8 bits ASCII -128 -127
unsigned char, bool 8 bits ASCII 0 255
short, signed short 16 bits 2s complement -32 768 32 767
unsigned short, wchar_t 16 bits Binary 0 65 535
int, signed int 16 bits 2s complement -32 768 32 767
unsigned int 16 bits Binary 0 65 535
long, signed long 32 bits 2s complement -2 147 483 648 2 147 483 647
unsigned long 32 bits Binary 0 4 294 967 295
enum 16 bits 2s complement -32 768 32 767
float 32 bits IEEE 32-bit 1.175 495e-38 (1) 3.40 282 35e+38
double 32 bits IEEE 32-bit 1.175 495e-38 (1) 3.40 282 35e+38
long double 32 bits IEEE 32-bit 1.175 495e-308 (1) 3.40 282 35e+38
pointers, references, 16 bits Binary 0 0xFFFF
pointer to data members
MSP430X large-data 20 bits Binary 0 0xFFFFF
model pointers,
references, pointer to
data members (2)

MSP430 function pointers 16 bits Binary 0 0xFFFF
MSP430X function 20 bits Binary 0 0xFFFFF
pointers (3)

(1) Figures are minimum precision.
(2) MSP430X large-data model is specified by --silicon_version=mspx --large_memory_model
(3) MSP430X devices are specified by --silicon_version=mspx

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.4 Keywords

5.4.1 The const Keyword

5.4.2 The interrupt Keyword

Keywords www.ti.com

The MSP430 C/C++ compiler supports the standard const, register, and volatile keywords. In addition, the
MSP430 C/C++ compiler extends the C/C++ language through the support of the interrupt keyword.

The C/C++ compiler supports the ANSI/ISO standard keyword const. This keyword gives you greater
optimization and control over allocation of storage for certain data objects. You can apply the const
qualifier to the definition of any variable or array to ensure that its value is not altered.

If you define an object as const, the .const section allocates storage for the object. The const data storage
allocation rule has two exceptions:
• If the keyword volatile is also specified in the definition of an object (for example, volatile const int x).

Volatile keywords are assumed to be allocated to RAM. (The program does not modify a const volatile
object, but something external to the program might.)

• If the object has automatic storage (function scope).

In both cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword within a definition is important. For example, the first statement below
defines a constant pointer p to a variable int. The second statement defines a variable pointer q to a
constant int:
int * const p = &x;
const int * q = &x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:
const int digits[] = {0,1,2,3,4,5,6,7,8,9};

The compiler extends the C/C++ language by adding the interrupt keyword, which specifies that a function
is treated as an interrupt function.

Functions that handle interrupts follow special register-saving rules and a special return sequence. When
C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers that
are used by the routine or by any function called by the routine. When you use the interrupt keyword with
the definition of the function, the compiler generates register saves based on the rules for interrupt
functions and the special return sequence for interrupts.

You can only use the interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or
global variables. For example:
interrupt void int_handler()
{

unsigned int flags;
...

}

The name c_int00 is the C/C++ entry point. This name is reserved for the system reset interrupt. This
special interrupt routine initializes the system and calls the function main. Because it has no caller, c_int00
does not save any registers.

Use the alternate keyword, __interrupt, if you are writing code for strict ANSI/ISO mode (using the
--strict_ansi compiler option).

HWI Objects and the interrupt Keyword
Note: The interrupt keyword must not be used when BIOS HWI objects are used in conjunction

with C functions. The HWI_enter/HWI_exit macros and the HWI dispatcher contain this
functionality, and the use of the C modifier can cause catastrophic results.

74 MSP430 C/C++ Language Implementation SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.4.3 The restrict Keyword

5.4.4 The volatile Keyword

www.ti.com Keywords

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with
the restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references,
and arrays. Its use represents a guarantee by you, the programmer, that within the scope of the pointer
declaration the object pointed to can be accessed only by that pointer. Any violation of this guarantee
renders the program undefined. This practice helps the compiler optimize certain sections of code
because aliasing information can be more easily determined.

In Example 5-1, the restrict keyword is used to tell the compiler that the function func1 is never called with
the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through
a and b will never conflict; therefore, a write through one pointer cannot affect a read from any other
pointers. The precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO
C Standard.

Example 5-1. Use of the restrict Type Qualifier With Pointers

void func1(int * restrict a, int * restrict b)
{
/* func1's code here */

}

Example 5-2 illustrates using the restrict keyword when passing arrays to a function. Here, the arrays c
and d should not overlap, nor should c and d point to the same array.

Example 5-2. Use of the restrict Type Qualifier With Arrays

void func2(int c[restrict], int d[restrict])
{
int i;

for(i = 0; i < 64; i++)
{
c[i] += d[i];
d[i] += 1;

}
}

The compiler analyzes data flow to avoid memory accesses whenever possible. If you have code that
depends on memory accesses exactly as written in the C/C++ code, you must use the volatile keyword to
identify these accesses. A variable qualified with a volatile keyword is allocated to an uninitialized section
(as opposed to a register). The compiler does not optimize out any references to volatile variables.

In the following example, the loop waits for a location to be read as 0xFF:
unsigned int *ctrl;
while (*ctrl !=0xFF);

In this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-memory
read. To correct this, define *ctrl as:
volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.5 C++ Exception Handling

5.6 Register Variables and Parameters

C++ Exception Handling www.ti.com

The compiler supports all the C++ exception handling features as defined by the ANSI/ISO 14882 C++
Standard. More details are discussed in The C++ Programming Language, Third Edition by Bjarne
Stroustrup.

The compiler --exceptions option enables exception handling. The compiler’s default is no exception
handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions
option, regardless of whether exceptions occur in a particular file. Mixing exception-enabled object files
and libraries with object files and libraries that do not have exceptions enabled can lead to undefined
behavior. Also, when using --exceptions, you need to link with run-time-support libraries whose name
contains _eh. These libraries contain functions that implement exception handling.

Using --exceptions causes code size to increase.

See Section 7.1 for details on the run-time libraries.

The C/C++ compiler treats register variables (variables defined with the register keyword) differently,
depending on whether you use the --opt_level (-O) option.
• Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values
by using an algorithm that makes the most efficient use of registers.

• Compiling without optimization
If you use the register keyword, you can suggest variables as candidates for allocation into registers.
The compiler uses the same set of registers for allocating temporary expression results as it uses for
allocating register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it
frees a register by moving its contents to memory. If you define too many objects as register variables,
you limit the number of registers the compiler has for temporary expression results. This limit causes
excessive movement of register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function,
some of the parameters are copied to a location on the stack where they are referenced during the
function body. The compiler copies a register parameter to a register instead of the stack, which speeds
access to the parameter within the function.

For more information about register conventions, see Section 6.3.

76 MSP430 C/C++ Language Implementation SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.7 The asm Statement

www.ti.com The asm Statement

The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language—the asm
statement. The asm (or __asm) statement provides access to hardware features that C/C++ cannot
provide. The asm statement is syntactically like a call to a function named asm, with one string constant
argument:

asm(" assembler text ");

The compiler copies the argument string directly into your output file. The assembler text must be
enclosed in double quotes. All the usual character string escape codes retain their definitions. For
example, you can insert a .byte directive that contains quotes as follows:
asm("STR: .byte \"abc\"");

The inserted code must be a legal assembly language statement. Like all assembly language statements,
the line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or
semicolon). The compiler performs no checking on the string; if there is an error, the assembler detects it.
For more information about the assembly language statements, see the MSP430 Assembly Language
Tools User's Guide.

The asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can appear
as a statement or a declaration, even outside of blocks. This is useful for inserting directives at the very
beginning of a compiled module.

Use the alternate statement __asm("assembler text") if you are writing code for strict ANSI/ISO C mode
(using the --strict_ansi option).

Note: Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with asm statements. The compiler does not
check the inserted instructions. Inserting jumps and labels into C/C++ code can cause
unpredictable results in variables manipulated in or around the inserted code. Directives that
change sections or otherwise affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with asm statements. Although the compiler
cannot remove asm statements, it can significantly rearrange the code order near them and
cause undesired results.

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8 Pragma Directives

5.8.1 The BIS_IE1_INTERRUPT

Pragma Directives www.ti.com

Pragma directives tell the compiler how to treat a certain function, object, or section of code. The MSP430
C/C++ compiler supports the following pragmas:
• BIS_IE1_INTERRUPT
• CODE_SECTION
• DATA_ALIGN
• DATA_SECTION
• FUNC_CANNOT_INLINE
• FUNC_EXT_CALLED
• FUNC_IS_PURE
• FUNC_NEVER_RETURNS
• FUNC_NO_GLOBAL_ASG
• FUNC_NO_IND_ASG
• INTERRUPT
• NO_HOOKS

For the pragmas that apply to functions or symbols, the syntax for the pragmas differs between C and
C++. In C, you must supply the name of the object or function to which you are applying the pragma as
the first argument. In C++, the name is omitted; the pragma applies to the declaration of the object or
function that follows it.

The BIS_IE1_INTERRUPT pragma treats the named function as an interrupt routine. Additionally, the
compiler generates a BIS operation on the IE1 special function register upon function exit. The mask
value, which must be an 8-bit constant literal, is logically OR’ed with the IE1 SFR, just before the RETI
instruction. The compiler assumes the IE1 SFR is mapped to address 0x0000.

The syntax of the pragma in C is:

#pragma BIS_IE1_INTERRUPT (func , mask);

The syntax of the pragma in C++ is:

#pragma BIS_IE1_INTERRUPT (mask);

In C, the argument func is the name of the function that is an interrupt. In C++, the pragma applies to the
next function declared.

MSP430 C/C++ Language Implementation78 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.2 The CODE_SECTION Pragma

www.ti.com Pragma Directives

The CODE_SECTION pragma allocates space for the symbol in a section named section name.

The syntax of the pragma in C is:

#pragma CODE_SECTION (symbol , " section name ");

The syntax of the pragma in C++ is:

#pragma CODE_SECTION (" section name ");

The CODE_SECTION pragma is useful if you have code objects that you want to link into an area
separate from the .text section.

The following examples demonstrate the use of the CODE_SECTION pragma.

Example 5-3. Using the CODE_SECTION Pragma C Source File

#pragma CODE_SECTION(funcA,"codeA")
int funcA(int a)

{
int i;
return (i = a);

}

Example 5-4. Generated Assembly Code From Example 5-3

.sect "codeA"

.align 2

.clink

.global funcA
;***
;* FUNCTION NAME: funcA *
;* *
;* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,r12 *
;* Local Frame Size : 0 Args + 4 Auto + 0 Save = 4 byte *
;***
funcA:
;* --*

SUB.W #4,SP
MOV.W r12,0(SP) ; |4|
MOV.W 0(SP),2(SP) ; |6|
MOV.W 2(SP),r12 ; |6|
ADD.W #4,SP
RET

Example 5-5. Using the CODE_SECTION Pragma C++ Source File

#pragma CODE_SECTION("codeB")
int i_arg(int x) { return 1; }
int f_arg(float x) { return 2; }

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.3 The DATA_ALIGN Pragma

Pragma Directives www.ti.com

Example 5-6. Generated Assembly Code From Example 5-5

.sect "codeB"

.align 2

.clink

.global i_arg__Fi
;***
;* FUNCTION NAME: i_arg(int) *
;* *
;* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,r12 *
;* Local Frame Size : 0 Args + 2 Auto + 0 Save = 2 byte *
;***
i_arg__Fi:
;* --*

SUB.W #2,SP
MOV.W r12,0(SP) ; |2|
MOV.W #1,r12 ; |2|
ADD.W #2,SP
RET

.sect ".text"

.align 2

.clink

.global f_arg__Ff

;***
;* FUNCTION NAME: f_arg(float) *
;* *
;* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,r12,r13 *
;* Local Frame Size : 0 Args + 4 Auto + 0 Save = 4 byte *
;***
f_arg__Ff:
;* --*

SUB.W #4,SP
MOV.W r12,0(SP) ; |3|
MOV.W r13,2(SP) ; |3|
MOV.W #2,r12 ; |3|
ADD.W #4,SP
RET

The DATA_ALIGN pragma aligns the symbol to an alignment boundary. The alignment boundary is the
maximum of the symbol's default alignment value or the value of the constant in bytes. The constant must
be a power of 2.

The syntax of the pragma in C is:

#pragma DATA_ALIGN (symbol , constant);

The syntax of the pragma in C++ is:

#pragma DATA_ALIGN (constant);

80 MSP430 C/C++ Language Implementation SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.4 The DATA_SECTION Pragma

www.ti.com Pragma Directives

The DATA_SECTION pragma allocates space for the symbol in a section named section name.

The syntax of the pragma in C is:

#pragma DATA_SECTION (symbol , " section name ");

The syntax of the pragma in C++ is:

#pragma DATA_SECTION (" section name ");

The DATA_SECTION pragma is useful if you have data objects that you want to link into an area separate
from the .bss section. If you allocate a global variable using a DATA_SECTION pragma and you want to
reference the variable in C code, you must declare the variable as extern far.

Example 5-7 through Example 5-9 demonstrate the use of the DATA_SECTION pragma.

Example 5-7. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTION(bufferB, "my_sect")
char bufferA[512];
char bufferB[512];

Example 5-8. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA_SECTION("my_sect")
char bufferB[512];

Example 5-9. Using the DATA_SECTION Pragma Assembly Source File

.global bufferA

.bss bufferA,512,2

.global bufferB
bufferB: .usect "my_sect",512,2

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.5 The FUNC_CANNOT_INLINE Pragma

5.8.6 The FUNC_EXT_CALLED Pragma

Pragma Directives www.ti.com

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded
inline. Any function named with this pragma overrides any inlining you designate in any other way, such as
using the inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the
next function declared.

The syntax of the pragma in C is:

#pragma FUNC_CANNOT_INLINE (func);

The syntax of the pragma in C++ is:

#pragma FUNC_CANNOT_INLINE;

When you use the --program_level_compile option, the compiler uses program-level optimization. When
you use this type of optimization, the compiler removes any function that is not called, directly or indirectly,
by main. You might have C/C++ functions that are called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C functions or any other
functions that these C/C++ functions call. These functions act as entry points into C/C++.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that you do not want removed. In C++, the pragma applies
to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_EXT_CALLED (func);

The syntax of the pragma in C++ is:

#pragma FUNC_EXT_CALLED;

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the
name of the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with
certain options. See Section 3.3.2.

MSP430 C/C++ Language Implementation82 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.7 The FUNC_IS_PURE Pragma

5.8.8 The FUNC_NEVER_RETURNS Pragma

5.8.9 The FUNC_NO_GLOBAL_ASG Pragma

www.ti.com Pragma Directives

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This
allows the compiler to do the following:
• Delete the call to the function if the function's value is not needed
• Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_IS_PURE (func);

The syntax of the pragma in C++ is:

#pragma FUNC_IS_PURE;

The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its
caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that does not return. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NEVER_RETURNS (func);

The syntax of the pragma in C++ is:

#pragma FUNC_NEVER_RETURNS;

The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments
to named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_GLOBAL_ASG (func);

The syntax of the pragma in C++ is:

#pragma FUNC_NO_GLOBAL_ASG;

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.10 The FUNC_NO_IND_ASG Pragma

5.8.11 The INTERRUPT Pragma

Pragma Directives www.ti.com

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments
through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_IND_ASG (func);

The syntax of the pragma in C++ is:

#pragma FUNC_NO_IND_ASG;

The INTERRUPT pragma enables you to handle interrupts directly with C code. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma INTERRUPT (func);

The syntax of the pragma in C++ is:

#pragma INTERRUPT;

The code for the function will return via the IRP (interrupt return pointer).

Except for _c_int00, which is the name reserved for the system reset interrupt for C programs, the name
of the interrupt (the func argument) does not need to conform to a naming convention.

HWI Objects and the INTERRUPT Pragma
Note: The INTERRUPT pragma must not be used when BIOS HWI objects are used in conjunction

with C functions. The HWI_enter/HWI_exit macros and the HWI dispatcher contain this
functionality, and the use of the C modifier can cause catastrophic results.

MSP430 C/C++ Language Implementation84 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.8.12 The NO_HOOKS Pragma

5.8.13 The vector Pragma

www.ti.com Pragma Directives

The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

#pragma NO_HOOKS (func);

The syntax of the pragma in C++ is:

#pragma NO_HOOKS;

See Section 2.13 for details on entry and exit hooks.

The vector pragma indicates that the function that follows is to be used as the interrupt vector routine for
the listed vectors. The syntax of the pragma is:

#pragma vector =vec1[, vec2, vec3, ...]

The vector pragma requires linker command file support. The command file must specify output sections
for each interrupt vector of the form .intxx where xx is the number of the interrupt vector. The output
sections mut map to the physical memory location of the appropriate interrupt vector. The standard linker
command files are set up to handle the vector pragma.

The __even_in_range intrinsic provides a hint to the compiler when generating switch statements for
interrupt vector routines. The intrinsic is usually used as follows:

switch (__even_in_range(x, NUM))
{

...
}

The __even_in_range intrinsic returns the value x to control the switch statement, but also tells the
compiler that x must be an even value in the range of 0 to NUM, inclusive.

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.9 The _Pragma Operator

5.10 Generating Linknames

The _Pragma Operator www.ti.com

The MSP430 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor
operator is similar to #pragma directives. However, _Pragma can be used in preprocessing macros
(#defines).

The syntax of the operator is:

_Pragma (" string_literal ");

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal
must be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the
DATA_SECTION syntax:

#pragma DATA_SECTION(func ," section ");
Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION(func ,\" section \")")
The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:
...

#define EMIT_PRAGMA(x) _Pragma(#x)
#define COLLECT_DATA(var) EMIT_PRAGMA(DATA_SECTION(var,"mysection"))

COLLECT_DATA(x)
int x;

...

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the
section argument to the DATA_SECTION pragma.̀

The compiler transforms the names of externally visible identifiers when creating their linknames. The
algorithm used depends on the scope within which the identifier is declared. For objects and C functions,
an underscore (_) is prefixed to the identifier name. C++ functions are prefixed with an underscore also,
but the function name is modified further.

Mangling is the process of embedding a function's signature (the number and types of its parameters) into
its name. Mangling occurs only in C++ code. The mangling algorithm used closely follows that described
in The Annotated Reference Manual (ARM). Mangling allows function overloading, operator overloading,
and type-safe linking.

For example, the general form of a C++ linkname for a function named func is:

_func__F parmcodes

Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:
int foo(int i){ } //global C++ function

This is the resulting assembly code:
_foo__Fi

The linkname of foo is _foo__Fi, indicating that foo is a function that takes a single argument of type int.
To aid inspection and debugging, a name demangling utility is provided that demangles names into those
found in the original C++ source. See Chapter 8 for more information.

MSP430 C/C++ Language Implementation86 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.11 Initializing Static and Global Variables

5.11.1 Initializing Static and Global Variables With the Linker

5.11.2 Initializing Static and Global Variables With the const Type Qualifier

www.ti.com Initializing Static and Global Variables

The ANSI/ISO C standard specifies that global (extern) and static variables without explicit initializations
must be initialized to 0 before the program begins running. This task is typically done when the program is
loaded. Because the loading process is heavily dependent on the specific environment of the target
application system, the compiler itself makes no provision for preinitializing variables at run time. It is up to
your application to fulfill this requirement.

If your loader does not preinitialize variables, you can use the linker to preinitialize the variables to 0 in the
object file. For example, in the linker command file, use a fill value of 0 in the .bss section:
SECTIONS

{
...

.bss: {} = 0x00;

...
}

Because the linker writes a complete load image of the zeroed .bss section into the output COFF file, this
method can have the unwanted effect of significantly increasing the size of the output file (but not the
program).

If you burn your application into ROM, you should explicitly initialize variables that require initialization.
The preceding method initializes .bss to 0 only at load time, not at system reset or power up. To make
these variables 0 at run time, explicitly define them in your code.

For more information about linker command files and the SECTIONS directive, see the linker description
information in the MSP430 Assembly Language Tools User's Guide.

Static and global variables of type const without explicit initializations are similar to other static and global
variables because they might not be preinitialized to 0 (for the same reasons discussed in Section 5.11).
For example:
const int zero; /* may not be initialized to 0 */

However, the initialization of const global and static variables is different because these variables are
declared and initialized in a section called .const. For example:
const int zero = 0 /* guaranteed to be 0 */

This corresponds to an entry in the .const section:
.sect .const

_zero
.word 0

This feature is particularly useful for declaring a large table of constants, because neither time nor space
is wasted at system startup to initialize the table. Additionally, the linker can be used to place the .const
section in ROM.

You can use the DATA_SECTION pragma to put the variable in a section other than .const. For example,
the following C code:
#pragma DATA_SECTION (var, ".mysect");

const int zero=0;

is compiled into this assembly code:
.sect .mysect

_zero
.word 0

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.12 Changing the ANSI/ISO C Language Mode

5.12.1 Compatibility With K&R C (--kr_compatible Option)

Changing the ANSI/ISO C Language Mode www.ti.com

The --kr_compatible, --relaxed_ansi, and --strict_ansi options let you specify how the C/C++ compiler
interprets your source code. You can compile your source code in the following modes:
• Normal ANSI/ISO mode
• K&R C mode
• Relaxed ANSI/ISO mode
• Strict ANSI/ISO mode

The default is normal ANSI/ISO mode. Under normal ANSI/ISO mode, most ANSI/ISO violations are
emitted as errors. Strict ANSI/ISO violations (those idioms and allowances commonly accepted by C/C++
compilers, although violations with a strict interpretation of ANSI/ISO), however, are emitted as warnings.
Language extensions, even those that conflict with ANSI/ISO C, are enabled.

K&R C mode does not apply to C++ code.

The ANSI/ISO C/C++ language is a superset of the de facto C standard defined in Kernighan and
Ritchie's The C Programming Language. Most programs written for other non-ANSI/ISO compilers
correctly compile and run without modification.

There are subtle changes, however, in the language that can affect existing code. Appendix C in The C
Programming Language (second edition, referred to in this manual as K&R) summarizes the differences
between ANSI/ISO C and the first edition's C standard (the first edition is referred to in this manual as
K&R C).

To simplify the process of compiling existing C programs with the ANSI/ISO C/C++ compiler, the compiler
has a K&R option (--kr_compatible) that modifies some semantic rules of the language for compatibility
with older code. In general, the --kr_compatible option relaxes requirements that are stricter for ANSI/ISO
C than for K&R C. The --kr_compatible option does not disable any new features of the language such as
function prototypes, enumerations, initializations, or preprocessor constructs. Instead, --kr_compatible
simply liberalizes the ANSI/ISO rules without revoking any of the features.

The specific differences between the ANSI/ISO version of C and the K&R version of C are as follows:
• The integral promotion rules have changed regarding promoting an unsigned type to a wider signed

type. Under K&R C, the result type was an unsigned version of the wider type; under ANSI/ISO, the
result type is a signed version of the wider type. This affects operations that perform differently when
applied to signed or unsigned operands; namely, comparisons, division (and mod), and right shift:
unsigned short u;
int i;
if (u < i) /* SIGNED comparison, unless --kr_compatible used */

• ANSI/ISO prohibits combining two pointers to different types in an operation. In most K&R compilers,
this situation produces only a warning. Such cases are still diagnosed when --kr_compatible is used,
but with less severity:
int *p;
char *q = p; /* error without --kr_compatible, warning with --kr_compatible */

• External declarations with no type or storage class (only an identifier) are illegal in ANSI/ISO but legal
in K&R:
a; /* illegal unless --kr_compatible used */

• ANSI/ISO interprets file scope definitions that have no initializers as tentative definitions. In a single
module, multiple definitions of this form are fused together into a single definition. Under K&R, each
definition is treated as a separate definition, resulting in multiple definitions of the same object and
usually an error. For example:
int a;
int a; /* illegal if --kr_compatible used, OK if not */

Under ANSI/ISO, the result of these two definitions is a single definition for the object a. For most K&R
compilers, this sequence is illegal, because int a is defined twice.

• ANSI/ISO prohibits, but K&R allows objects with external linkage to be redeclared as static:
extern int a;
static int a; /* illegal unless --kr_compatible used */

88 MSP430 C/C++ Language Implementation SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.12.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and

5.12.3 Enabling Embedded C++ Mode (--embedded_cpp Option)

www.ti.com Changing the ANSI/ISO C Language Mode

• Unrecognized escape sequences in string and character constants are explicitly illegal under ANSI/ISO
but ignored under K&R:
char c = '\q'; /* same as 'q' if --kr_compatible used, error if not */

• ANSI/ISO specifies that bit fields must be of type int or unsigned. With --kr_compatible, bit fields can
be legally defined with any integral type. For example:
struct s
{

short f : 2; /* illegal unless --kr_compatible used */
};

• K&R syntax allows a trailing comma in enumerator lists:
enum { a, b, c, }; /* illegal unless --kr_compatible used */

• K&R syntax allows trailing tokens on preprocessor directives:
#endif NAME /* illegal unless --kr_compatible used */

--relaxed_ansi Options)
Use the --strict_ansi option when you want to compile under strict ANSI/ISO mode. In this mode, error
messages are provided when non-ANSI/ISO features are used, and language extensions that could
invalidate a strictly conforming program are disabled. Examples of such extensions are the inline and asm
keywords.

Use the --relaxed_ansi option when you want the compiler to ignore strict ANSI/ISO violations rather than
emit a warning (as occurs in normal ANSI/ISO mode) or an error message (as occurs in strict ANSI/ISO
mode). In relaxed ANSI/ISO mode, the compiler accepts extensions to the ANSI/ISO C standard, even
when they conflict with ANSI/ISO C.

The compiler supports the compilation of embedded C++. In this mode, some features of C++ are
removed that are of less value or too expensive to support in an embedded system. When compiling for
embedded C++, the compiler generates diagnostics for the use of omitted features.

Embedded C++ is enabled by compiling with the --embedded_cpp option.

Embedded C++ omits these C++ features:
• Templates
• Exception handling
• Run-time type information
• The new cast syntax
• The keyword mutable
• Multiple inheritance
• Virtual inheritance

Under the standard definition of embedded C++, namespaces and using-declarations are not supported.
The MSP430 compiler nevertheless allows these features under embedded C++ because the C++
run-time-support library makes use of them. Furthermore, these features impose no run-time penalty.

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.13 GNU C Compiler Extensions
GNU C Compiler Extensions www.ti.com

The GNU compiler, GCC, provides a number of language features not found in the ANSI standard C. The
definition and official examples of these extensions can be found at
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/C-Extensions.html#C-Extensions. To enable GNU extension
support, use the --gcc compiler option.

The extensions that the TI C compiler supports are listed in Table 5-2.

Table 5-2. GCC Extensions Supported
Extensions Descriptions
Statement expressions Putting statements and declarations inside expressions (useful for creating smart 'safe' macros)
Local labels Labels local to a statement expression
Naming types Giving a name to the type of an expression
typeof operator typeof referring to the type of an expression
Generalized lvalues Using question mark (?) and comma (,) and casts in lvalues
Conditionals Omitting the middle operand of a ? expression
Hex floats Hexadecimal floating-point constants
Zero length Zero-length arrays
Macro varargs Macros with a variable number of arguments
Subscripting Any array can be subscripted, even if it is not an lvalue.
Pointer arithmetic Arithmetic on void pointers and function pointers
Initializers Nonconstant initializers
Cast constructors Constructor expressions give structures, unions, or arrays as values
Labeled elements Labeling elements of initializers
Cast to union Casting to union type from any member of the union
Case ranges 'Case 1 ... 9' and such
Function attributes Declaring that functions have no side effects, or that they can never return
Function prototypes Prototype declarations and old-style definitions
C++ comments C++ comments are recognized.
Dollar signs A dollar sign is allowed in identifiers.
Character escapes The character ESC is represented as \'e'
Alignment Inquiring about the alignment of a type or variable
Variable attributes Specifying the attributes of variables
Type attributes Specifying the attributes of types
Inline Defining inline functions (as fast as macros)
Assembly labels Specifying the assembler name to use for a C symbol
Alternate keywords Header files can use __const__, __asm__, etc
Incomplete enums enum foo??
Function names Printable strings which are the name of the current function
Return address Getting the return or frame address of a function

__builtin_return_address
__builtin_frame_address

Other built-ins Other built-in functions include:
__builtin_constant_p
__builtin_expect

MSP430 C/C++ Language Implementation90 SLAU132C–November 2008
Submit Documentation Feedback

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/C-Extensions.html#C-Extensions
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

5.13.1 Function Attributes

5.13.2 Built-In Functions

5.14 Compiler Limits

www.ti.com Compiler Limits

The GNU extension support provides a number of attributes about functions to help the C compiler’s
optimization. The TI compiler accepts only three of these attributes. All others are simply ignored.
Table 5-3 lists the attributes that are supported.

Table 5-3. TI-Supported GCC Function Attributes
Attributes Description
deprecated This function exists but the compiler generates a warning if it is used.
section Place this function in the specified section.
unused The function is meant to be possibly not used.

TI provides support for only the four built-in functions in Table 5-4.

Table 5-4. TI-Supported GCC Built-In Functions
Function Description
__builtin_constant_p(expr) Returns true only if expr is a constant at compile time.
__builtin_expect(expr, CONST) Returns expr. The compiler uses this function to optimize along paths determined by

conditional statements such as if-else. While this function can be used anywhere in your code,
it only conveys useful information to the compiler if it is the entire predicate of an if statement
and CONST is 0 or 1. For example, the following indicates that you expect the predicate "a ==
3" to be true most of the time:
if (__builtin_expect(a == 3, 1))

__builtin_return_address(int level) Returns 0.
__builtin_frame_address(int level) Returns 0.

Due to the variety of host systems supported by the C/C++ compiler and the limitations of some of these
systems, the compiler may not be able to successfully compile source files that are excessively large or
complex. In general, exceeding such a system limit prevents continued compilation, so the compiler aborts
immediately after printing the error message. Simplify the program to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure your filenames are shorter
than 500.

The compiler has no arbitrary limits but is limited by the amount of memory available on the host system.
On smaller host systems such as PCs, the optimizer may run out of memory. If this occurs, the optimizer
terminates and the shell continues compiling the file with the code generator. This results in a file compiled
with no optimization. The optimizer compiles one function at a time, so the most likely cause of this is a
large or extremely complex function in your source module. To correct the problem, your options are:
• Don't optimize the module in question.
• Identify the function that caused the problem and break it down into smaller functions.
• Extract the function from the module and place it in a separate module that can be compiled without

optimization so that the remaining functions can be optimized.

SLAU132C–November 2008 MSP430 C/C++ Language Implementation 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

MSP430 C/C++ Language Implementation92 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 6
SLAU132C–November 2008

Run-Time Environment

This chapter describes the MSP430 C/C++ run-time environment. To ensure successful execution of
C/C++ programs, it is critical that all run-time code maintain this environment. It is also important to follow
the guidelines in this chapter if you write assembly language functions that interface with C/C++ code.

Topic .. Page

6.1 Memory Model .. 94
6.2 Object Representation ... 97
6.3 Register Conventions .. 100
6.4 Function Structure and Calling Conventions 101
6.5 Interfacing C and C++ With Assembly Language......................... 103
6.6 Interrupt Handling ... 106
6.7 Intrinsic Run-Time-Support Arithmetic and Conversion Routines . 107
6.8 Using Intrinsics to Access Assembly Language Statements......... 108
6.9 System Initialization... 111
6.10 Compiling for 20-Bit MSP430X Devices 115

SLAU132C–November 2008 Run-Time Environment 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.1 Memory Model

6.1.1 Large-Code Memory Model

6.1.2 Large-Data Memory Model

Memory Model www.ti.com

The MSP430 compiler treats memory as a single linear block that is partitioned into subblocks of code and
data. Each subblock of code or data generated by a C program is placed in its own continuous memory
space. The compiler assumes that a full 16-bit address space is available in target memory.

When the --silicon_version=mspx option is specified, the compiler supports a large-code memory model
while generating code for MSP430X devices. The size of function pointers is 20-bits. As for MSP430
devices, the size of data pointers is 16-bits. A large-code memory model allows unrestricted placement of
programs in the 20-bit address space with the exception of interrupt service routines (see Section 6.6.5).
However, data is still required to be placed into the low 64K of memory. Accessing data located in
memory above 64K requires interfacing to assembly routines from C.

Modules assembled/compiled for 16-bit MSP430 devices are not compatible with modules that are
assembled/compiled for 20-bit MSPX devices. The linker generates errors if an attempt is made to
combine incompatible object files.

When the --silicon_version=mspx and --large_memory_model options are specified, the compiler supports
a large-data memory model for MSP430X devices. The large-data memory model allows data to be
located anywhere in the 20-bit address space of the device. This permits applications with larger amounts
of data to be run on the MSP430X. The option is only available with a MSP430X device.

Large-data model programs frequently require the use of larger instructions, and require more space to
store data pointers. Consequently, large-data model programs are larger than equivalent small-data model
programs and small-data model should still be used when possible.

Object files compiled using the large-data model are not compatible with small model object files.
Therefore, when building large-data model applications all files must be compiled using the large-data
model option. Large-data model run-time-support libraries must be used as well (rts430xl.lib and
rts430xl_eh.lib).

The maximum size of an object (size_t) and the maximum difference between two pointers (ptrdiff_t) are
increased from 16-bits to 32-bits in large-data model. Applications that rely on size_t or ptrdiff_t to be a
specific size may need to be updated.

Note: The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and data into target
memory. The compiler assumes nothing about the types of memory available, about any
locations not available for code or data (holes), or about any locations reserved for I/O or
control purposes. The compiler produces relocatable code that allows the linker to allocate
code and data into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into on-chip RAM or to
allocate executable code into external ROM. You can allocate each block of code or data
individually into memory, but this is not a general practice (an exception to this is
memory-mapped I/O, although you can access physical memory locations with C/C++
pointer types).

Run-Time Environment94 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.1.3 Sections

www.ti.com Memory Model

The compiler produces relocatable blocks of code and data called sections. The sections are allocated
into memory in a variety of ways to conform to a variety of system configurations. For more information
about sections and allocating them, see the introductory object module information in the MSP430
Assembly Language Tools User's Guide.

There are two basic types of sections:
• Initialized sections contain data or executable code. The C/C++ compiler creates the following

initialized sections:
– The .cinit section and the .pinit section contain tables for initializing variables and constants.
– The .const section contains string constants, switch tables, and data defined with the C/C++

qualifier const (provided the constant is not also defined as volatile).
– The .text section contains executable code as well as string literals and compiler-generated

constants.
• Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run

time to create and store variables. The compiler creates the following uninitialized sections:
– The .bss section reserves space for global and static variables. At boot or load time, the C/C++

boot routine or the loader copies data out of the .cinit section (which can be in ROM) and uses it for
initializing variables in the .bss section.

– The .stack section reserves memory for the C/C++ software stack.
– The .sysmem section reserves space for dynamic memory allocation. The reserved space is used

by dynamic memory allocation routines, such as malloc, calloc, realloc, or new. If a C/C++ program
does not use these functions, the compiler does not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. The C/C++ compiler, however, does not
use the .data section. You can instruct the compiler to create additional sections by using
DATA_SECTION pragma (see Section 5.8.4).

The linker takes the individual sections from different modules and combines sections that have the same
name. The resulting output sections and the appropriate placement in memory for each section are listed
in Table 6-1. You can place these output sections anywhere in the address space as needed to meet
system requirements.

Table 6-1. Summary of Sections and Memory Placement
Section Type of Memory Section Type of Memory
.bss RAM .pinit ROM or RAM
.cinit ROM or RAM .stack RAM
.const ROM or RAM .sysmem RAM
.data ROM or RAM .text ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-allocation
process. For more information about allocating sections into memory, see the linker description chapter in
the MSP430 Assembly Language Tools User's Guide.

SLAU132C–November 2008 Run-Time Environment 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.1.4 C/C++ Software Stack

6.1.5 Dynamic Memory Allocation

Memory Model www.ti.com

The C/C++ compiler uses a stack to:
• Allocate local variables
• Pass arguments to functions
• Save register contents

The run-time stack grows from the high addresses to the low addresses. The compiler uses the R13
register to manage this stack. R13 is the stack pointer (SP), which points to the next unused location on
the stack.

The linker sets the stack size, creates a global symbol, __STACK_SIZE, and assigns it a value equal to
the stack size in bytes. The default stack size is 2048 bytes. You can change the stack size at link time by
using the --stack_size option with the linker command. For more information on the --stack_size option,
see Section 4.2.

Save-On-Entry Registers and C/C+ Stack Size
Note: Since register sizes increase for MSP430X devices (specified with --silicon_version=mspx),

saving and restoring save-on-entry registers requires 32-bits of stack space for each register
saved on the stack. When you are porting code originally written for 16-bit MSP430 devices,
you may need to increase the C stack size from previous values.

At system initialization, SP is set to a designated address for the top of the stack. This address if the first
location past the end of the .stack section. Since the position of the stack depends on where the .stack
section is allocated, the actual address of the stack is determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to
restore the stack to the state before the function was entered. If you interface assembly language routines
to C/C++ programs, be sure to restore the stack pointer to the same state it was in before the function
was entered.

For more information about using the stack pointer, see Section 6.3; for more information about the stack,
see Section 6.4.

Note: Stack Overflow

The compiler provides no means to check for stack overflow during compilation or at run
time. A stack overflow disrupts the run-time environment, causing your program to fail. Be
sure to allow enough space for the stack to grow.

The run-time-support library supplied with the MSP430 compiler contains several functions (such as
malloc, calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the
size of the .sysmem section by using the --heap_size=size option with the linker command. The linker also
creates a global symbol, __SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes.
The default size is 128 bytes. For more information on the --heap_size option, see Section 4.2.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size
limited only by the amount of available memory in your system. To conserve space in the .bss section,
you can allocate large arrays from the heap instead of defining them as global or static. For example,
instead of a definition such as:
struct big table[100];

use a pointer and call the malloc function:
struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

Run-Time Environment96 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.1.6 Initialization of Variables

6.2 Object Representation

6.2.1 Data Type Storage

www.ti.com Object Representation

The C/C++ compiler produces code that is suitable for use as firmware in a ROM-based system. In such a
system, the initialization tables in the .cinit section are stored in ROM. At system initialization time, the
C/C++ boot routine copies data from these tables (in ROM) to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory and run, you can avoid
having the .cinit section occupy space in memory. A loader can read the initialization tables directly from
the object file (instead of from ROM) and perform the initialization directly at load time instead of at run
time. You can specify this to the linker by using the --ram_model link option. For more information, see
Section 6.9.

This section explains how various data objects are sized, aligned, and accessed.

Table 6-2 lists register and memory storage for various data types:

Table 6-2. Data Representation in Registers and Memory
Data Type Register Storage Memory Storage
char, signed char Bits 0-7 of register (1) 8 bits aligned to 8-bit boundary
unsigned char, bool Bits 0-7 of register 8 bits aligned to 8-bit boundary
short, signed short Bits 0-15 of register (1) 16 bits aligned to 16-bit (word) boundary
unsigned short, wchar_t Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
int, signed int Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
unsigned int Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
enum Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
long. signed long Register pair 32 bits aligned to 16-bit (word) boundary
unsigned long Register pair 32 bits aligned to 16-bit (word) boundary
float Register pair 32 bits aligned to 16-bit (word) boundary
double Register pair 32 bits aligned to 16-bit (word) boundary
long double Register pair 32 bits aligned to 16-bit (word) boundary
struct Members are stored as their individual types Members are stored as their individual types

require. require; aligned according to the member with the
most restrictive alignment requirement.

array Members are stored as their individual types Members are stored as their individual types
require. require; aligned to 32-bit (word) boundary. All

arrays inside a structure are aligned according to
the type of each element in the array.

pointer to data member Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
MSP430X large-data model Bits 0-20 of register 32 bits aligned to 16-bit (word) boundary
pointer to data member (2)

MSP430 pointer to function Bits 0-15 of register 16 bits aligned to 16-bit (word) boundary
MSP430X (3) pointer to function Bits 0-20 of register 32 bits aligned to 16-bit (word) boundary

(1) Negative values are sign-extended to bit 15.
(2) MSP430X large-data model is specified by --silicon_version=mspx --large_memory_model
(3) MSP430X is specified with the ––silicon_version=mspx option.

SLAU132C–November 2008 Run-Time Environment 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.2.1.1 Pointer to Member Function Types

6.2.1.2 Structure and Array Alignment

6.2.1.3 Field/Structure Alignment

Object Representation www.ti.com

Pointer to member function objects are stored as a structure with three members, and the layout is
equivalent to:
struct {

short int d;
short int I;
union {

void (f) ();
long 0; }

};

The parameter d is the offset to be added to the beginning of the class object for this pointer. The
parameter I is the index into the virtual function table, offset by 1. The index enables the NULL pointer to
be represented. Its value is -1 if the function is nonvirtual. The parameter f is the pointer to the member
function if it is nonvirtual, when I is 0. The 0 is the offset to the virtual function pointer within the class
object.

Structures are aligned according to the member with the most restrictive alignment requirement.
Structures do not contain padding after the last member. Arrays are always word aligned. Elements of
arrays are stored in the same manner as if they were individual objects.

When the compiler allocates space for a structure, it allocates as many words as are needed to hold all of
the structure's members and to comply with alignment constraints for each member.

When a structure contains a 32-bit (long) member, the long is aligned to a 1-word (16-bit) boundary. This
may require padding before, inside, or at the end of the structure to ensure that the long is aligned
accordingly and that the sizeof value for the structure is an even value.

All non-field types are aligned on wordor byte boundaries. Fields are allocated as many bits as requested.
Adjacent fields are packed into adjacent bits of a word, but they do not overlap words. If a field would
overlap into the next word, the entire field is placed into the next word.

Fields are packed as they are encountered; the leastsignificant bits of the structure word are filled
first.Example 6-1 shows the C code definition of var while Figure 6-1 shows the memory layout of var.

Example 6-1. C Code Definition of var

struct example {
char c;
long l;
int bf1:1;
int bf2:2;
int bf3:3;
int bf4:4;
int bf5:5;
int bf6:6;

};

Run-Time Environment98 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

123451

long (high)

long (low)

<pad> char c

<pad 10 bits> 6

012345678910111213141516

var + 0

var + 2

var + 4

var + 6

var + 8

6.2.2 Character String Constants

www.ti.com Object Representation

Figure 6-1. Memory Layout of var

In C, a character string constant is used in one of the following ways:
• To initialize an array of characters. For example:

char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is a
separate initializer. For more information about initialization, see Section 6.9.

• In an expression. For example:
strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const section with the .string
assembler directive, along with a unique label that points to the string; the terminating 0 byte is
included. For example, the following lines define the string abc, and the terminating 0 byte (the label
SL5 points to the string):

.sect ".const"
SL5: .string "abc",0

String labels have the form SLn, where n is a number assigned by the compiler to make the label
unique. The number begins at 0 and is increased by 1 for each string defined. All strings used in a
source module are defined at the end of the compiled assembly language module.
The label SLn represents the address of the string constant. The compiler uses this label to reference
the string expression.
Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a
program to modify a string constant. The following code is an example of incorrect string use:
const char *a = "abc"
a[1] = 'x'; /* Incorrect! */

SLAU132C–November 2008 Run-Time Environment 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.3 Register Conventions
Register Conventions www.ti.com

Strict conventions associate specific registers with specific operations in the C/C++ environment. If you
plan to interface an assembly language routine to a C/C++ program, you must understand and follow
these register conventions.

The register conventions dictate how the compiler uses registers and how values are preserved across
function calls. Table 6-3 shows the types of registers affected by these conventions.Table 6-4 summarizes
how the compiler uses registers and whether their values are preserved across calls. For information
about how values are preserved across calls, see Section 6.4.

Table 6-3. How Register Types Are Affected by the Conventions
Register Type Description
Argument register Passes arguments during a function call
Return register Holds the return value from a function call
Expression register Holds a value
Argument pointer Used as a base value from which a function's parameters (incoming

arguments) are accessed
Stack pointer Holds the address of the top of the software stack
Program counter Contains the current address of code being executed

Table 6-4. Register Usage and Preservation Conventions
Register Alias Usage Preserved by Function (1)

R0 PC Program counter N/A
R1 SP Stack pointer N/A (2)

R2 SR Status register N/A
R3 Constant generator N/A
R4-R10 Expression register Child
R11 Expression register Parent
R12 Expression register, argument pointer, Parent

return register
R13 Expression register, argument pointer, Parent

return register
R14 Expression register, argument pointer Parent
R15 Expression register, argument pointer Parent

(1) The parent function refers to the function making the function call. The child function refers to the function being called.
(2) The SP is preserved by the convention that everything pushed on the stack is popped off before returning.

Run-Time Environment100 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.4 Function Structure and Calling Conventions

Caller’s
argument

block

Caller’s
local variables

Register
save area

High

SP

Low

Before call

Argument 5...
argument n

Caller’s
local variables

Register
save area

High

SP

Low

Move arguments
to argument block;

call function

Argument 1 register R12

Argument 2 register R13

Argument 3 register R14

Argument 4 register R15

®

®

®

®

Argument 5...
argument n

Caller’s
local variables

Register
save area

High

SP

Low

Allocate new frames
and argument block

Register
save area

Callee’s
local variables

Callee’s
argument

block

Legend: SP: stack pointer

www.ti.com Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support
functions, any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere
to these rules can disrupt the C/C++ environment and cause a program to fail.

The following sections use this terminology to describe the function-calling conventions of the C/C++
compiler:
• Argument block. The part of the local frame used to pass arguments to other functions. Arguments

are passed to a function by moving them into the argument block rather than pushing them on the
stack. The local frame and argument block are allocated at the same time.

• Register save area. The part of the local frame that is used to save the registers when the program
calls the function and restore them when the program exits the function.

• Save-on-call registers. Registers R11-R15. The called function does not preserve the values in these
registers; therefore, the calling function must save them if their values need to be preserved.

• Save-on-entry registers. Registers R4-R10. It is the called function's responsibility to preserve the
values in these registers. If the called function modifies these registers, it saves them when it gains
control and preserves them when it returns control to the calling function.

Figure 6-2 illustrates a typical function call. In this example, arguments are passed to the function, and the
function uses local variables and calls another function. The first four arguments are passed to registers
R12-R15. This example also shows allocation of a local frame and argument block for the called function.
Functions that have no local variables and do not require an argument block do not allocate a local frame.

Figure 6-2. Use of the Stack During a Function Call

SLAU132C–November 2008 Run-Time Environment 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.4.1 How a Function Makes a Call

6.4.2 How a Called Function Responds

Function Structure and Calling Conventions www.ti.com

A function (parent function) performs the following tasks when it calls another function (child function):
1. The calling function (parent) is responsible for preserving any save-on-call registers across the call that

are live across the call. (The save-on-call registers are R11-R15.)
2. If the called function (child) returns a structure, the caller allocates space for the structure and passes

the address of that space to the called function as the first argument.
3. The caller places the first arguments in registers R12-R15, in that order. The caller moves the

remaining arguments to the argument block in reverse order, placing the leftmost remaining argument
at the lowest address. Thus, the leftmost remaining argument is placed at the top of the stack.

4. The caller calls the function.

A called function (child function) must perform the following tasks:
1. If the function is declared with an ellipsis, it can be called with a variable number of arguments. The

called function pushes these arguments on the stack if they meet both of these criteria:
• The argument includes or follows the last explicitly declared argument.
• The argument is passed in a register.

2. The called function pushes register values of all the registers that are modified by the function and that
must be preserved upon exit of the function onto the stack. Normally, these registers are the
save-on-entry registers (R4-R10) if the function contains calls. If the function is an interrupt, additional
registers may need to be preserved. For more information, see Section 6.6.

3. The called function allocates memory for the local variables and argument block by subtracting a
constant from the SP. This constant is computed with the following formula:
size of all local variables + max = constant
The max argument specifies the size of all parameters placed in the argument block for each call.

4. The called function executes the code for the function.
5. If the called function returns a value, it places the value in R12 (or R12 and R13 values).
6. If the called function returns a structure, it copies the structure to the memory block that the first

argument, R12, points to. If the caller does not use the return value, R12 is set to 0. This directs the
called function not to copy the return structure.
In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = f(x), where s is a structure and f is a function that returns a structure, the
caller can simply pass the address of s as the first argument and call f. The function f then copies the
return structure directly into s, performing the assignment automatically.
You must be careful to properly declare functions that return structures, both at the point where they
are called (so the caller properly sets up the first argument) and at the point where they are declared
(so the function knows to copy the result).

7. The called function deallocates the frame and argument block by adding the constant computed in
Step 3.

8. The called function restores all registers saved in Step 2.
9. The called function (_f) returns.

The following example is typical of how a called function responds to a call:
func: ; Called function entry point

PUSH.W r10
PUSH.W r9 ; Save SOE registers
SUB.W #2,SP ; Allocate the frame
:
: ; Body of function
:
ADD.W #2,SP ; Deallocate the frame
POP r9 ; Restore SOE registers
POP r10
RET ; Return

Run-Time Environment102 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.4.3 Accessing Arguments and Local Variables

6.5 Interfacing C and C++ With Assembly Language

6.5.1 Using Assembly Language Modules With C/C++ Code

www.ti.com Interfacing C and C++ With Assembly Language

A function accesses its local nonregister variables indirectly through the stack pointer (SP or R1) and its
stack arguments. The SP always points to the top of the stack (points to the most recently pushed value).

Since the stack grows toward smaller addresses, the local data on the stack for the C/C++ function is
accessed with a positive offset from the SP register.

The following are ways to use assembly language with C/C++ code:
• Use separate modules of assembled code and link them with compiled C/C++ modules (see

Section 6.5.1).
• Use assembly language variables and constants in C/C++ source (see Section 6.5.2).
• Use inline assembly language embedded directly in the C/C++ source (see Section 6.5.4).

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions
defined in Section 6.4, and the register conventions defined in Section 6.3. C/C++ code can access
variables and call functions defined in assembly language, and assembly code can access C/C++
variables and call C/C++ functions.

Follow these guidelines to interface assembly language and C:
• You must preserve any dedicated registers modified by a function. Dedicated registers include:

– Save-on-entry registers (R4-R10)
– Stack pointer (SP or R1)
If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly
function is free to use the stack as long as anything that is pushed onto the stack is popped back off
before the function returns (thus preserving SP).
Any register that is not dedicated can be used freely without first being saved.

• Interrupt routines must save all the registers they use. For more information, see Section 6.6.
• When you call a C/C++ function from assembly language, load the designated registers with

arguments and push the remaining arguments onto the stack as described in Section 6.4.1.
Remember that a function can alter any register not designated as being preserved without having to
restore it. If the contents of any of these registers must be preserved across the call, you must
explicitly save them.

• Functions must return values correctly according to their C/C++ declarations. Double values are
returned in R12 and R13, and structures are returned as described in Step 1 of Section 6.4.1. Any
other values are returned in R12.

• No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization
tables. Disrupting the tables by putting other information in .cinit can cause unpredictable results.

• The compiler assigns linknames to all external objects. Thus, when you are writing assembly language
code, you must use the same linknames as those assigned by the compiler. See Section 5.10 for more
information.
For identifiers to be used only in an assembly language module, ensure that they do not conflict with a
C/C++ identifier. Use a $ or a consistent prefix naming convention to create a different namespace for
assembly identifiers.

• Any object or function declared in assembly language that is accessed or called from C/C++ must be
declared with the .def or .global directive in the assembly language modifier. This declares the symbol
as external and allows the linker to resolve references to it.
Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external
reference that the linker resolves.

SLAU132C–November 2008 Run-Time Environment 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.5.2 Accessing Assembly Language Variables From C/C++

6.5.2.1 Accessing Assembly Language Global Variables

Interfacing C and C++ With Assembly Language www.ti.com

• Any assembly routines that interface with MSP430x C programs are required to conform to the
large-code model:

– Use CALLA/RETA instead of CALL/RET
– Use PUSHM.A/POPM.A to save and restore any used save-on-entry registers. The entire 20-bit

register must be saved/restored.
– Manipulation of function pointers requires 20-bit operations (OP.A)
– If interfacing with C code compiled for the large-data model, data pointer manipulation must be

performed using 20-bit operations (OP.A).

Example 6-2 illustrates a C++ function called main, which calls an assembly language function called
asmfunc, Example 6-3. The asmfunc function takes its single argument, adds it to the C++ global variable
called gvar, and returns the result.

Example 6-2. Calling an Assembly Language Function From C/C++ C Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */
int gvar = 0; /* define global variable */
}

void main()
{

int I = 5;

I = asmfunc(I); /* call function normally */

Example 6-3. Assembly Language Program Called by Example 6-2

.global asmfunc

.global gvar
asmfunc:

MOV &gvar,R11
ADD R11,R12
RET

In the C++ program in Example 6-2, the extern "C" declaration tells the compiler to use C naming
conventions (i.e., no name mangling). When the linker resolves the .global asmfunc reference, the
corresponding definition in the assembly file will match.

The parameter I is passed in R12, and the result is returned in R12.

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly
language. There are several methods that you can use to accomplish this, depending on where and how
the item is defined: a variable defined in the .bss section, a variable not defined in the .bss section, or a
constant.

Accessing uninitialized variables from the .bss section or a section named with .usect is straightforward:
1. Use the .bss or .usect directive to define the variable.
2. Use the .def or .global directive to make the definition external.
3. Use the appropriate linkname in assembly language.
4. In C/C++, declare the variable as extern and access it normally.

Example 6-5 and Example 6-4 show how you can access a variable defined in .bss.

Run-Time Environment104 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.5.2.2 Accessing Assembly Language Constants

6.5.3 Sharing C/C++ Header Files With Assembly Source

www.ti.com Interfacing C and C++ With Assembly Language

Example 6-4. Assembly Language Variable Program

* Note the use of underscores in the following lines

.bss var,4,4 ; Define the variable

.global var ; Declare it as external

Example 6-5. C Program to Access Assembly Language From Example 6-4

extern int var; /* External variable */
var = 1; /* Use the variable */

You can define global constants in assembly language by using the .set, .def, and .global directives, or
you can define them in a linker command file using a linker assignment statement. These constants are
accessible from C/C++ only with the use of special operators.

For normal variables defined in C/C++ or assembly language, the symbol table contains the address of
the value of the variable. For assembler constants, however, the symbol table contains the value of the
constant. The compiler cannot tell which items in the symbol table are values and which are addresses.

If you try to access an assembler (or linker) constant by name, the compiler attempts to fetch a value from
the address represented in the symbol table. To prevent this unwanted fetch, you must use the & (address
of) operator to get the value. In other words, if x is an assembly language constant, its value in C/C++ is
&x.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 6-6 and
Example 6-7.

Example 6-6. Accessing an Assembly Language Constant From C

extern int table_size; /*external ref */
#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address-of */

.

.
for (I=0; i<TABLE_SIZE; ++I) /* use like normal symbol */

Example 6-7. Assembly Language Program for Example 6-6

_table_size .set 10000 ; define the constant
.global _table_size ; make it global

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared
type is unimportant. In Example 6-6, int is used. You can reference linker-defined symbols in a similar
manner.

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code. For more information, see the C/C++ header files chapter in the
MSP430 Assembly Language Tools User's Guide.

SLAU132C–November 2008 Run-Time Environment 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.5.4 Using Inline Assembly Language

6.6 Interrupt Handling

6.6.1 Saving Registers During Interrupts

6.6.2 Using C/C++ Interrupt Routines

Interrupt Handling www.ti.com

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into
the assembly language file created by the compiler. A series of asm statements places sequential lines of
assembly language into the compiler output with no intervening code. For more information, see
Section 5.7.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly
code string with a semicolon (;) as shown below:
asm(";*** this is an assembly language comment");

Note: Using the asm Statement

Keep the following in mind when using the asm statement:
• Be extremely careful not to disrupt the C/C++ environment. The compiler does not check

or analyze the inserted instructions.
• Avoid inserting jumps or labels into C/C++ code because they can produce

unpredictable results by confusing the register-tracking algorithms that the code
generator uses.

• Do not change the value of a C/C++ variable when using an asm statement. This is
because the compiler does not verify such statements. They are inserted as is into the
assembly code, and potentially can cause problems if you are not sure of their effect.

• Do not use the asm statement to insert assembler directives that change the assembly
environment.

• Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or
-g) option. The C environment’s debug information and the assembly macro expansion
are not compatible.

As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code without
disrupting the C/C++ environment. When the C/C++ environment is initialized, the startup routine does not
enable or disable interrupts. If the system is initialized by way of a hardware reset, interrupts are disabled.
If your system uses interrupts, you must handle any required enabling or masking of interrupts. Such
operations have no effect on the C/C++ environment and are easily incorporated with asm statements or
calling an assembly language function.

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers
that are used by the routine or by any functions called by the routine. Register preservation must be
explicitly handled by the interrupt routine.

A C/C++ interrupt routine is like any other C/C++ function in that it can have local variables and register
variables. Except for software interrupt routines, an interrupt routine must be declared with no arguments
and must return void. For example:

A C/C++ interrupt routine is like any other C/C++ function in that it can have local variables and register
variables. Except for software interrupt routines, an interrupt routine must be declared with no arguments
and must return void. For example:
interrupt void example (void)
{
...
}

106 Run-Time Environment SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.6.3 Using Assembly Language Interrupt Routines

6.6.4 Interrupt Vectors

6.6.5 Other Interrupt Information

6.7 Intrinsic Run-Time-Support Arithmetic and Conversion Routines

www.ti.com Intrinsic Run-Time-Support Arithmetic and Conversion Routines

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt handler
uses are saved and restored. However, if a C/C++ interrupt routine does call other functions, these
functions can modify unknown registers that the interrupt handler does not use. For this reason, the
routine saves all the save-on-call registers if any other functions are called. (This excludes banked
registers.) Do not call interrupt handling functions directly.

Interrupts can be handled directly with C/C++ functions by using the interrupt pragma or the interrupt
keyword. For information, see Section 5.8.11 and Section 5.4.2, respectively.

You can handle interrupts with assembly language code as long as you follow the same register
conventions the compiler does. Like all assembly functions, interrupt routines can use the stack, access
global C/C++ variables, and call C/C++ functions normally. When calling C/C++ functions, be sure that
any save-on-call registers are preserved before the call because the C/C++ function can modify any of
these registers. You do not need to save save-on-entry registers because they are preserved by the called
C/C++ function.

The interrupt vectors for the MSP430 and MSP430X devices are 16 bits. Therefore, interrupt service
routines (ISR’s) must be placed into the low 64K of memory. Convenience macros are provided in the
MSP430X device headers file to declare interrupts to ensure 16-bit placement when linking.

Alternatively, use the CODE_SECTIONS pragma to place the code for ISRs into sections separate from
the default .text sections. Use the linker command file and the SECTIONS directive to ensure the code
sections associated with ISRs are placed into low memory.

An interrupt routine can perform any task performed by any other function, including accessing global
variables, allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:
• It is your responsibility to handle any special masking of interrupts.
• A C/C++ interrupt routine cannot be called explicitly.
• In a system reset interrupt, such as c_int00, you cannot assume that the run-time environment is set

up; therefore, you cannot allocate local variables, and you cannot save any information on the run-time
stack.

• In assembly language, remember to precede the name of a C/C++ interrupt with the appropriate
linkname. For example, refer to c_int00 as _c_int00.

The intrinsic run-time-support library contains a number of assembly language routines that provide
arithmetic and conversion capability for C/C++ operations that the 32-bit and 16-bit instruction sets do not
provide. These routines include integer division, integer modulus, and floating-point operations.

The source files for these functions are in the rts.src library. The source code has comments that describe
the operation of the functions. You can extract, inspect, and modify any of these functions.

The run-time-support routines follow the register calling conventions described in Section 6.3, except for
the following:
• Integer modulus routines. The return value for 8 and 16-bit integer modulus is placed in R14. The

return value for 32-bit integer modulus is placed in R14/R15.
• Floating compare. The result of a floating point compare is represented by the status register.

SLAU132C–November 2008 Run-Time Environment 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.8 Using Intrinsics to Access Assembly Language Statements

6.8.1 MSP430 Intrinsics

Using Intrinsics to Access Assembly Language Statements www.ti.com

The compiler recognizes a number of intrinsic operators. Intrinsics are used like functions and produce
assembly language statements that would otherwise be inexpressible in C/C++. You can use C/C++
variables with these intrinsics, just as you would with any normal function. The intrinsics are specified with
a leading underscore, and are accessed by calling them as you do a function. For example:
short state;

:
state = _get_SR_register();

No declaration of the intrinsic functions is necessary.

Table 6-5 lists all of the intrinsic operators in the MSP430 C/C++ compiler. A function-like prototype is
presented for each intrinsic that shows the expected type for each parameter. If the argument type does
not match the parameter, type conversions are performed on the argument.

For more information on the resulting assembly language mnemonics, see the MSP430x1xx Family User’s
Guide, the MSP430x3xx Family User’s Guide, and the MSP430x4xx Family User’s Guide.

Table 6-5. MSP430 Intrinsics
Intrinsic Generated Assembly
unsigned short __bcd_add_short(unsigned short op1, unsigned short op2); MOV op1, dst

CLRC
DADD op2, dst

unsigned long __bcd_add_long(unsigned long op1, unsigned long op2); MOV op1_low, dst_low
MOV op1_hi, dst_hi
CLRC
DADD op2_low, dst_low
DADD op2_hi, dst_hi

unsigned short __bic_SR_register(unsigned short mask); BIC mask, SR
unsigned short __bic_SR_register_on_exit(unsigned short mask); BIC mask, saved_SR
unsigned short __bis_SR_register(unsigned short mask); BIS mask, SR
unsigned short __bis_SR_register_on_exit(unsigned short mask); BIS mask, saved_SR
unsigned long __data16_read_addr(unsigned short addr); MOV.W addr, Rx

MOVA 0(Rx), dst
void __data16_write_addr (unsigned short addr, unsigned long src); MOV.W addr, Rx

MOVA src, 0(Rx)
unsigned char __data20_read_char(unsigned long addr); (1) MOVA addr, Rx

MOVX.B 0(Rx), dst
unsigned long __data20_read_long(unsigned long addr); (1) MOVA addr, Rx

MOVX.W 0(Rx), dst.lo
MOVX.W 2(Rx), dst.hi

unsigned short __data20_read_short(unsigned long addr); (1) MOVA addr, Rx
MOVX.W 0(Rx), dst

void __data20_write_char(unsigned long addr, unsigned char src); (1) MOVA addr, Rx
MOVX.B src, 0(Rx)

void __data20_write_long(unsigned long addr, unsigned long src); (1) MOVA addr, Rx
MOVX.W src.lo, 0(Rx)
MOVX.W src.hi, 2(Rx)

void __data20_write_short(unsigned long addr, unsigned short src); (1) MOVA addr, Rx
MOVX.W src, 0(Rx)

void __delay_cycles(unsigned long); See Section 6.8.2.
void __disable_interrupt(void); DINT

OR
_disable_interrupts(void);

(1) Instrinsic encodes multiple instructions depending on the code. The most common instructions produced are presented here.

108 Run-Time Environment SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.8.2 The __delay_cycle Intrinsic

6.8.3 The _never_executed Intrinsic

6.8.3.1 Using _never_executed With a Vector Generator

www.ti.com Using Intrinsics to Access Assembly Language Statements

Table 6-5. MSP430 Intrinsics (continued)
Intrinsic Generated Assembly
void __enable_interrupt(void); EINT

OR
_enable_interrupt(void);

OR
_enable_interrupts(void);

unsigned int __even_in_range(unsigned int, unsigned int); See Section 5.8.13.
unsigned short __get_interrupt_state(void); MOV SR, dst
unsigned short __get_R4_register(void); MOV.W R4, dst
unsigned short __get_R5_register(void); MOV.W R5, dst
unsigned short __get_SP_register(void); MOV SP, dst
unsigned short __get_SR_register(void); MOV SR, dst
unsigned short __get_SR_register_on_exit(void); MOV saved_SR, dst
void __low_power_mode_0(void); BIS.W #0x18, SR
void __low_power_mode_1(void); BIS.W #0x58, SR
void __low_power_mode_2(void); BIS.W #0x98, SR
void __low_power_mode_3(void); BIS.W #0xD8, SR
void __low_power_mode_4(void); BIS.W #0xF8, SR
void __low_power_mode_off_on_exit(void); BIC.W #0xF0, saved_SR
void __never_executed(void); See Section 6.8.3.
void __no_operation(void); NOP
void __op_code(unsigned short); Encodes whatever instruction

corresponds to the argument.
void __set_interrupt_state(unsigned short src); MOV src, SR
void __set_R4_register(unsigned short src); MOV.W src, R4
void __set_R5_register(unsigned short src); MOV.W src, R5
void __set_SP_register(unsigned short src); MOV src, SP
unsigned short __swap_bytes(unsigned short src); MOV src, dst

SWPB dst

The __delay_cycles intrinsic inserts code to consume precisely the number of specified cycles with no
side effects. The number of cycles delayed must be a compile-time constant.

The MSP430 C/C++ Compiler supports a _never_executed() intrinsic that can be used to assert that a
default label in a switch block is never executed. If you assert that a default label is never executed the
compiler can generate more efficient code based on the values specified in the case labels within a switch
block.

The _never_executed() intrinsic is specifically useful for testing the values of an MSP430 interrupt vector
generator such as the vector generator for Timer A (TAIV). MSP430 vector generator values are mapped
to an interrupt source and are characterized in that they fall within a specific range and can only take on
even values. A common way to handle a particular interrupt source represented in a vector generator is to
use a switch statement. However, a compiler is constrained by the C language in that it can make no
assumptions about what values a switch expression may have. The compiler will have to generate code to
handle every possible value, which leads to what would appear to be inefficient code.

SLAU132C–November 2008 Run-Time Environment 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.8.3.2 Using _never_executed With General Switch Expressions

Using Intrinsics to Access Assembly Language Statements www.ti.com

The _never_executed() intrinsic can be used to assert to the compiler that a switch expression can only
take on values represented by the case labels within a switch block. Having this assertion, the compiler
can avoid generating test code for handling values not specified by the switch case labels. Having this
assertion is specifically suited for handling values that characterize a vector generator.

Example 6-8 illustrates a switch block that handles the values of the Timer B (TBIV) vector generator.

Example 6-8. TBIV Vector Generator

__interrupt void Timer_B1 (void)
{
switch(TBIV)
{
case 0: break; /* Do nothing */
case 2: TBCCR1 += 255;

state +=1;
break;

case 4: TBCCR0 = 254;
TBCCR1 = 159;
state =200;
break;

case 6: break;
case 8: break;
case 10: break;
case 12: break;
case 14: break;
default: _never_executed();

}
}

In Example 6-8 using the _never_executed() intrinsic asserts that the value of TBIV can only take on the
values specified by the case labels, namely the even values from 0 to 14. Normally, the compiler would
have to generate code to handle any value which would result in extra range checks. Instead, for this
example, the compiler will generate a switch table where the value of TBIV is simply added to the PC to
jump to the appropriate code block handling each value represented by the case labels.

Using the _never_executed() intrinsic at the default label can also improve the generated switch code for
more general switch expressions that do not involve vector generator type values.

Example 6-9. General Switch Statement

switch(val)
{
case 0:
case 5: action(a); break;

case 14: action(b); break;

default: _never_executed();
}

Normally, for the switch expression values 0 and 5, the compiler generates code to test for both 0 and 5
since the compiler must handle the possible values 1–4. The _never_executed() intrinsic in Example 6-9
asserts that val cannot take on the values 1–4 and therefore the compiler only needs to generate a single
test (val < 6) to handle both case labels.

Additionally, using the _never_executed() intrinsic results in the assertion that if val is not 0 or 5 then it
has to be 14 and the compiler has no need to generate code to test for val == 14.

The _never_executed() intrinsic is only defined when specified as the single statement following a default
case label. The compiler ignores the use of the intrinsic in any other context.

Run-Time Environment110 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.9 System Initialization

6.9.1 System Pre-Initialization

6.9.2 Run-Time Stack

www.ti.com System Initialization

Before you can run a C/C++ program, the C/C++ run-time environment must be created. The C/C++ boot
routine performs this task using a function called c_int00 (or _c_int00). The run-time-support source library
contains the source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the _c_int00 function can be called by reset hardware. You must link the
_c_int00 function with the other object modules. This occurs automatically when you use the
––rom_model or ––ram_model linker function option and include the run-time library as one of the linker
input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output module to
the symbol _c_int00. The _c_int00 function performs the following tasks to initialize the C/C++
environment:
1. Reserves space for the user mode run-time stack, and sets up the initial value of the stack pointer (SP)
2. It initializes global variables by copying the data from the initialization tables to the storage allocated for

the variables in the .bss section. If you are initializing variables at load time (--ram_model option), a
loader performs this step before the program runs (it is not performed by the boot routine). For more
information, see Section 6.9.3.

3. Executes the global constructors found in the global constructors table. For more information, see
Section 6.9.4.

4. Calls the function main to run the C/C++ program

You can replace or modify the boot routine to meet your system requirements. However, the boot routine
must perform the operations listed above to correctly initialize the C/C++ environment.

The _c_int00() initialization routine also provides a mechanism for an application to perform the MSP430
setup (set I/O registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

Before calling the routine that initializes C/C++ global data and calls any C++ constructors, the boot
routine makes a call to the function _system_pre_init(). A developer can implement a customized version
of _system_pre_init() to perform any application-specific initialization before proceeding with C/C++
environment setup. In addition, the default C/C++ data initialization can be bypassed if _system_pre_init()
returns a 0. By default, _system_pre_init() should return a non-zero value.

In order to perform application-specific initializations, you can create a customized version of
_system_pre_init() and add it to the application project. The customized version will replace the default
definition included in the run-time library if it is linked in before the run-time library.

The default stubbed version of _system_pre_init() is included with the run-time library. It is located in the
file pre_init.c and is included in the run-time source library (rts.src). The archiver utility (ar430) can be
used to extract pre_init.c from the source library.

The run-time stack is allocated in a single continuous block of memory and grows down from high
addresses to lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the stack
grows beyond the limits of the memory space that was allocated for it. Be sure to allocate adequate
memory for the stack.

The stack size can be changed at link time by using the --stack_size link option on the linker command
line and specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack. If your
program uses a run-time stack when it is in other operating modes, you must also allocate space and set
up the run-time stack corresponding to those modes.

SLAU132C–November 2008 Run-Time Environment 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.9.3 Automatic Initialization of Variables

6.9.4 Global Constructors

6.9.5 Initialization Tables

Initialization record 2

Initialization record 1

Initialization record n

Initialization record 3

.cinit section

Size in
bytes

Initialization
data

Initialization record

•
•
•

Pointer to
.bss area

System Initialization www.ti.com

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++
program starts running. The process of retrieving these variables’ data and initializing the variables with
the data is called autoinitialization.

The compiler builds tables in a special section called .cinit that contains data for initializing global and
static variables. Each compiled module contains these initialization tables. The linker combines them into
a single table (a single .cinit section). The boot routine or a loader uses this table to initialize all the
system variables.

Note: Initializing Variables

In ANSI/ISO C, global and static variables that are not explicitly initialized must be set to 0
before program execution. The C/C++ compiler does not perform any preinitialization of
uninitialized variables. Explicitly initialize any variable that must have an initial value of 0.

Global variables are either autoinitialized at run time or at load time. For information, see Section 6.9.6
and Section 6.9.7. Also see Section 5.11.

All global C++ variables that have constructors must have their constructor called before main (). The
compiler builds a table of global constructor addresses that must be called, in order, before main () in a
section called .pinit. The linker combines the .pinit section form each input file to form a single table in the
.pinit section. The boot routine uses this table to execute the constructors.

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be
autoinitialized has a record in the .cinit section. Figure 6-3 shows the format of the .cinit section and the
initialization records.

Figure 6-3. Format of Initialization Records in the .cinit Section

The fields of an initialization record contain the following information:
• The first field of an initialization record contains the size (in bytes) of the initialization data. The width of

this field is one word (16).
• The second field contains the starting address of the area within the .bss section where the

initialization data must be copied. The width of this field is one word.
• The third field contains the data that is copied into the .bss section to initialize the variable. The width

of this field is variable.

Each variable that must be autoinitialized has an initialization record in the .cinit section.

Example 6-10 shows initialized global variables defined in C. Example 6-11 shows the corresponding
initialization table.

112 Run-Time Environment SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Address of constructor 2

Address of constructor 1

Address of constructor n

Address of constructor 3

.pinit section

•
•
•

www.ti.com System Initialization

Example 6-10. Initialized Variables Defined in C

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };

Example 6-11. Initialized Information for Variables Defined in Example 6-10

.sect ".cinit"

.align 2

.field 2,16

.field i+0,16

.field 23,16 ; i @ 0

.sect ".cinit"

.align 2

.field CIR_1,16

.field a+0,16

.field 1,16 ; a[0] @ 0

.field 2,16 ; a[1] @ 16

.field 3,16 ; a[2] @ 32

.field 4,16 ; a[3] @ 48

.field 5,16 ; a[4] @ 64
CIR_1: .set 10

.global i

.bss i,2,2

.global a

.bss a,10,2

The .cinit section must contain only initialization tables in this format. When interfacing assembly language
modules, do not use the .cinit section for any other purpose.

The table in the .pinit section simply consists of a list of addresses of constructors to be called (see
Figure 6-4). The constructors appear in the table after the .cinit initialization.

Figure 6-4. Format of Initialization Records in the .pinit Section

When you use the --rom_model or --ram_model option, the linker combines the .cinit sections from all the
C modules and appends a null word to the end of the composite .cinit section. This terminating record
appears as a record with a size field of 0 and marks the end of the initialization tables.

Likewise, the --rom_model or --ram_model link option causes the linker to combine all of the .pinit sections
from all C/C++ modules and append a null word to the end of the composite .pinit section. The boot
routine knows the end of the global constructor table when it encounters a null constructor address.

The const-qualified variables are initialized differently; see Section 5.4.1.

SLAU132C–November 2008 Run-Time Environment 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

6.9.6 Autoinitialization of Variables at Run Time

Initialization
tables

(EXT_MEM)

.bss
section

(D_MEM)

Boot
routine

.cinit
section

Loader

Object file Memory

cint

6.9.7 Initialization of Variables at Load Time

System Initialization www.ti.com

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections, and
global variables are initialized at run time. The linker defines a special symbol called cinit that points to the
beginning of the initialization tables in memory. When the program begins running, the C/C++ boot routine
copies data from the tables (pointed to by .cinit) into the specified variables in the .bss section. This allows
initialization data to be stored in ROM and copied to RAM each time the program starts.

Figure 6-5 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into ROM.

Figure 6-5. Autoinitialization at Run Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model link option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

A loader (which is not part of the compiler package) must be able to perform the following tasks to use
initialization at load time:
• Detect the presence of the .cinit section in the object file
• Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit

section into memory
• Understand the format of the initialization tables

Figure 6-6 illustrates the initialization of variables at load time.

Run-Time Environment114 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

.bss

.cinit Loader

Object file Memory

6.10 Compiling for 20-Bit MSP430X Devices

www.ti.com Compiling for 20-Bit MSP430X Devices

Figure 6-6. Initialization at Load Time

Regardless of the use of the --rom_model or --ram_model options, the .pinit section is always loaded and
processed at run time.

The MSP430 tools support compiling and linking code for MSP430 and MSP430X (MSP430X) devices.
See the following for more information on options and topics that apply to compiling for the MSP430X
devices:
• Use the --silicon_version=mspx option to compile for MSP430X devices. See Section 2.3.2.
• Function pointers are 20-bits. See Table 5-1 and Table 6-2.
• The compiler supports a large-code memory model while generating code for MSP430X devices. See

Section 6.1.1.
• The compiler supports a large-data memory model while generating code for MSP430X devices. See

Section 6.1.2.
• Any assembly routines that interface with MSP430X C programs must fit the large code model. See

Section 6.5.1.
• Interrupt service routines must be placed into low memory. See Section 6.6.4.
• Link with the rts430x.lib or rts430x_eh.lib run-time-support library.

SLAU132C–November 2008 Run-Time Environment 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Run-Time Environment116 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 7
SLAU132C–November 2008

Using Run-Time-Support Functions and Building Libraries

Some of the tasks that a C/C++ program performs (such as I/O, dynamic memory allocation, string
operations, and trigonometric functions) are not part of the C/C++ language itself. However, the ANSI/ISO
C standard defines a set of run-time-support functions that perform these tasks. The C/C++ compiler
implements the complete ISO standard library except for those facilities that handle exception conditions
and locale issues (properties that depend on local language, nationality, or culture). Using the ANSI/ISO
standard library ensures a consistent set of functions that provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and
Section 7.2.

A library-build process is provided with the code generation tools that lets you create customized
run-time-support libraries. This process is described in Section 7.4 .

Topic .. Page

7.1 C and C++ Run-Time Support Libraries...................................... 118
7.2 The C I/O Functions ... 121
7.3 Handling Reentrancy (_register_lock() and _register_unlock()

Functions) .. 129
7.4 Library-Build Process .. 129

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.1 C and C++ Run-Time Support Libraries

C and C++ Run-Time Support Libraries www.ti.com

The standard run-time library includes code for both the C and C++ libraries, as well as compiler helper
functions and initialization code. The library includes all the features of the C++ Library, including the
Standard Template Library (STL), streams, and strings. The following exceptions and caveats are noted:
• The <complex> header and its functions are not included in the library.
• The C++ library supports wide chars, in that template functions and classes that are defined for char

are also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf
and so on (corresponding to char classes ios, iostream, streambuf) are implemented. However, there
is no low-level file I/O for wide chars. Also, the C library interface to wide char support (through the
C++ headers <cwchar> and <cwctype>) is limited as described in Section 5.1.

The C++ library included with the compiler is licensed from Dinkumware, Ltd. The Dinkumware C++ library
is a fully conforming, industry-leading implementation of the standard C++ library.

Table 7-1 summarizes the functionality of the C++ standard library.

Table 7-1. C++ Standard Library Outline
Header Description Notes

C Library API
<cassert> Assertions
<cctype> Character Classifications
<cerrno> Error indicator
<cfloat> Floating-point properties
<ciso646> Named logical operators
<climits> Data type properties
<clocale> Locale support Supports C locale only
<cmath> Floating-point math functions
<csetjmp> Non-local jumps
<csignal> Signal and raise
<cstdarg> Variadic arguments
<cstddef> Standard C definitions
<cstdio> C standard I/O
<cstdlib> Utility functions
<cstring> C character strings
<ctime> C time manipulation
<cwchar> Wide char functions Not fully supported
<cwctype> Wide char classification Not fully supported

Standard Template Library
<algorithm> Search, sort, etc.
<deque> Double-ended queue
<functional> Function objects
<hash_map> Map keys to values Extension
<hash_set> Map keys to mulivalues Extension
<iterator> Iterators for standard containers
<list> Linked list
<map> Associative array container
<memory> Container memory management
<numeric> Various numeric functions
<queue> Queue container
<rope> Null-terminated array Extension

118 Using Run-Time-Support Functions and Building Libraries SLAU132C–November 2008
Submit Documentation Feedback

www.dinkumware.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.1.1 Linking Code With the Object Library

www.ti.com C and C++ Run-Time Support Libraries

Table 7-1. C++ Standard Library Outline (continued)
Header Description Notes
<set> General container
<slist> Singly-linked list Extension
<stack> Stack container
<utility> Operators and pairs
<valarray> Numeric vectors
<vector> One-dimensional array

I/O Streams
<fstream> I/O streams to/from files
<iomanip> Manipulate I/O streams
<ios> I/O stream base class
<iosfwd> Forward declarations of I/O classes
<iostream> Standard I/O stream operators
<istream> Input stream template
<ostream> Output stream template
<sstream> I/O streams operations on allocated arrays
<streambuf> I/O buffer base class
<strstream> I/O streams to/from strings

Strings
<string> C++ style string objects

Language / Utility
<bitset> Array of booleans
<exception> Exception handling control
<limits> Data type properties
<locale> Customizing I/O and other facilities
<new> Dynamic memory allocation operators
<stdexcept> Exception reporting objects

TI does not provide documentation that covers the functionality of the C++ library. We suggest referring to
one of the following sources:
• The Standard C++ Library: A Tutorial and Reference,Nicolai M. Josuttis, Addison-Wesley, ISBN

0-201-37926-0
• The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley,

ISBN 0-201-88954-4 or 0-201-70073-5
• Dinkumware's online reference at http://dinkumware.com/manuals

When you link your program, you must specify the object library as one of the linker input files so that
references to the I/O and run-time-support functions can be resolved. You can either specify the library or
allow the compiler to select one for you. See Section 4.4.1 for further information.

You should specify libraries last on the linker command line because the linker searches a library for
unresolved references when it encounters the library on the command line. You can also use the
--reread_libs linker option to force repeated searches of each library until the linker can resolve no more
references.

When a library is linked, the linker includes only those library members required to resolve undefined
references. For more information about linking, see the MSP430 Assembly Language Tools User's Guide.

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 119
Submit Documentation Feedback

http://dinkumware.com/manuals/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.1.2 Header Files

7.1.3 Modifying a Library Function

7.1.4 Changes to the Run-Time-Support Libraries

7.1.4.1 Minimal Support for Internationalization

7.1.4.2 Allowable Number of Open Files

C and C++ Run-Time Support Libraries www.ti.com

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

To include the correct set of header files depending on which library you are using, you can set the
MSP430_C_DIR environment variable to the specific include directory: "include\lib". The source support
for libraries is included in the rtssrc.zip file. See Section 7.4 for details on rebuilding libraries.

You can inspect or modify library functions by unzipping the source file (rtssrc.zip), changing the specific
function file, and rebuilding the library. When extracted (with any standard unzip tool on windows, linux, or
unix), this zip file will recreate the run-time source tree for the run-time library.

You can also build a new library this way, rather than rebuilding into rts430.lib. See Section 7.4.

The following changes and additions apply to the runtime support libraries in the /lib subdirectory of the
release package.

The library now includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to
support non-ASCII character sets and conventions. Our implementation of these APIs is limited in the
following ways:
• The library has minimal support for wide and multi-byte characters. The type wchar_t is implemented

as int. The wide character set is equivalent to the set of values of type char. The library includes the
header files <wchar.h> and <wctype.h> but does not include all the functions specified in the standard.
So-called multi-byte characters are limited to single characters. There are no shift states. The mapping
between multi-byte characters and wide characters is simple equivalence; that is, each wide character
maps to and from exactly a single multi-byte character having the same value.

• The C library includes the header file <locale.h> but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is
hard-coded to the behavior of the C locale, and attempting to install a different locale via a call to
setlocale() will return NULL.

In the <stdio.h> header file, the value for the macro FOPEN_MAX has been changed from 12 to the value
of the macro _NFILE, which is set to 10. The impact is that you can only have 10 files simultaneously
open at one time (including the pre-defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines
the maximum number of files that can be opened at one time. The macro is defined in the stdio.h header
file and can be modified by changing the value of the _NFILE macro.

120 Using Run-Time-Support Functions and Building Libraries SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.2 The C I/O Functions

7.2.1 Overview of Low-Level I/O Implementation

www.ti.com The C I/O Functions

The C I/O functions make it possible to access the host's operating system to perform I/O. The capability
to perform I/O on the host gives you more options when debugging and testing code.

To use the I/O functions, include the header file stdio.h, or cstdio for C++ code, for each module that
references a C I/O function.

For example, given the following C program in a file named main.c:
#include <stdio.h>;

main()
{

FILE *fid;

fid = fopen("myfile","w");
fprintf(fid,"Hello, world\n");
fclose(fid);

printf("Hello again, world\n");
}

Issuing the following compiler command compiles, links, and creates the file main.out from the
run-time-support library:
cl430 main.c --run_linker --heap_size=400 --library=rts430.lib --output_file=main.out

Executing main.out results in
Hello, world

being output to a file and
Hello again, world

being output to your host's stdout window.

With properly written device drivers, the library also offers facilities to perform I/O on a user-specified
device.

Note: C I/O Buffer Failure

If there is not enough space on the heap for a C I/O buffer, buffered operations on the file
will fail. If a call to printf() mysteriously fails, this may be the reason. Check the size of the
heap. To set the heap size, use the --heap_size option when linking (see Section 4.2).

The code that implements I/O is logically divided into layers: high level, low level, and device level.

The high-level functions are the standard C library of stream I/O routines (printf, scanf, fopen, getchar, and
so on). These routines map an I/O request to one or more of the I/O commands that are handled by the
low-level routines.

The low-level routines are comprised of basic I/O functions: open, read, write, close, lseek, rename, and
unlink. These low-level routines provide the interface between the high-level functions and the device-level
drivers that actually perform the I/O command on the specified device.

The low-level functions also define and maintain a stream table that associates a file descriptor with a
device. The stream table interacts with the device table to ensure that an I/O command performed on a
stream executes the correct device-level routine.

The data structures interact as shown in Figure 7-1.

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Device tableStream table

read

open

read

open

file_descriptor2

file_descriptor1

file_descriptor3

Device table

read

open

read

open

file_descriptor2

file_descriptor1

Host

Stream table

stdin

stdout

stderr

The C I/O Functions www.ti.com

Figure 7-1. Interaction of Data Structures in I/O Functions

The first three streams in the stream table are predefined to be stdin, stdout, and stderr and they point to
the host device and associated device drivers.

Figure 7-2. The First Three Streams in the Stream Table

At the next level are the user-definable device-level drivers. They map directly to the low-level I/O
functions. The run-time-support library includes the device drivers necessary to perform I/O on the host on
which the debugger is running.

The specifications for writing device-level routines to interface with the low-level routines follow. Each
function must set up and maintain its own data structures as needed. Some function definitions perform no
action and should just return.

Using Run-Time-Support Functions and Building Libraries122 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com add_device — Add Device to Device Table

add_device Add Device to Device Table

Syntax for C #include <file.h>

int add_device(char *name,
unsigned flags,
int (*dopen)(),
int (*dclose)(),
int (*dread)(),
int (*dwrite)(),
fpos_t (*dlseek)(),
int (*dunlink)(),
int (*drename)());

Defined in lowlev.c in rtssrc.zip

Description The add_device function adds a device record to the device table allowing that device to
be used for input/output from C. The first entry in the device table is predefined to be the
host device on which the debugger is running. The function add_device() finds the first
empty position in the device table and initializes the fields of the structure that represent
a device.

To open a stream on a newly added device use fopen() with a string of the format
devicename:filename as the first argument.
• The name is a character string denoting the device name. The name is limited to 8

characters.
• The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time
_MSA Denotes that the device supports multiple open streams
More flags can be added by defining them in stdio.h.

• The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are
function pointers to the device drivers that are called by the low-level functions to
perform I/O on the specified device. You must declare these functions with the
interface specified in Section 7.2.1. The device drivers for the host that the MSP430
debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful
1 if fails

Example Example 7-1 does the following:
• Adds the device mydevice to the device table
• Opens a file named test on that device and associates it with the file *fid
• Writes the string Hello, world into the file
• Closes the file

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

close — Close File or Device for I/O www.ti.com

close Close File or Device for I/O

Syntax for C #include <stdio.h>
#include <file.h>

int close (int file_descriptor);
Syntax for C++ #include <cstdio>

#include <file.h>

int std::close (int file_descriptor);
Description The close function closes the device or file associated with file_descriptor.

The file_descriptor is the stream number assigned by the low-level routines that is
associated with the opened device or file.

Return Value The return value is one of the following:

0 if successful
1 if fails

lseek Set File Position Indicator

Syntax for C #include <stdio.h>
#include <file.h>

long lseek (intfile_descriptor, long offset, intorigin);
Syntax for C++ #include <cstdio>

#include <file.h>

long std::lseek (int file_descriptor , long offset , int origin);
Description The lseek function sets the file position indicator for the given file to origin + offset. The

file position indicator measures the position in characters from the beginning of the file.
• The file_descriptor is the stream number assigned by the low-level routines that the

device-level driver must associate with the opened file or device.
• The offset indicates the relative offset from the origin in characters.
• The origin is used to indicate which of the base locations the offset is measured from.

The origin must be a value returned by one of the following macros:
SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file

Return Value The return function is one of the following:

new value of the file-position indicator if successful
EOF if fails

Using Run-Time-Support Functions and Building Libraries124 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com open — Open File or Device for I/O

open Open File or Device for I/O

Syntax for C #include <stdio.h>
#include <file.h>

int open (const char * path , unsigned flags , int file_descriptor);
Syntax for C++ #include <cstdio>

#include <file.h>

int std::open (const char * path , unsigned flags , int file_descriptor);
Description The open function opens the device or file specified by path and prepares it for I/O.

• The path is the filename of the file to be opened, including path information.
• The flags are attributes that specify how the device or file is manipulated. The flags

are specified using the following symbols:
O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

These parameters can be ignored in some cases, depending on how data is
interpreted by the device. However, the high-level I/O calls look at how the file was
opened in an fopen statement and prevent certain actions, depending on the open
attributes.

• The file_descriptor is the stream number assigned by the low-level routines that is
associated with the opened file or device.
The next available file_descriptor (in order from 3 to 20) is assigned to each new
device opened. You can use the finddevice() function to return the device structure
and use this pointer to search the _stream array for the same pointer. The
file_descriptor number is the other member of the _stream array.

Return Value The function returns one of the following values:

#-1 if successful
-1 if fails

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

read — Read Characters from Buffer www.ti.com

read Read Characters from Buffer

Syntax for C #include <stdio.h>
#include <file.h>

int read (int file_descriptor , char * buffer , unsigned count);
Syntax for C++ #include <cstdio>

#include <file.h>

int std::read (int file_descriptor , char *buffer , unsigned count);
Description The read function reads the number of characters specified by count to the buffer from

the device or file associated with file_descriptor.
• The file_descriptor is the stream number assigned by the low-level routines that is

associated with the opened file or device.
• The buffer is the location of the buffer where the read characters are placed.
• The count is the number of characters to read from the device or file.

Return Value The function returns one of the following values:

0 if EOF was encountered before the read was complete
number of characters read in every other instance
-1 if fails

rename Rename File

Syntax for C #include <stdio.h>
#include <file.h>

int rename (const char * old_name , const char * new_name);
Syntax for C++ #include <cstdio>

#include <file.h>

int std::rename (const char * old_name , const char * new_name);
Description The rename function changes the name of a file.

• The old_name is the current name of the file.
• The new_name is the new name for the file.

Return Value The function returns one of the following values:

0 if successful
Non-0 if not successful

Using Run-Time-Support Functions and Building Libraries126 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com unlink — Delete File

unlink Delete File

Syntax for C #include <stdio.h>
#include <file.h>

int unlink (const char * path);
Syntax for C++ #include <cstdio>

#include <file.h>

int std::unlink (const char * path);
Description The unlink function deletes the file specified by path.

The path is the filename of the file to be opened, including path information.

Return Value The function returns one of the following values:

0 if successful
1 if fails

write Write Characters to Buffer

Syntax for C #include <stdio.h>
#include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count);
Syntax for C++ #include <cstdio>

#include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count);
Description The write function writes the number of characters specified by count from the buffer to

the device or file associated with file_descriptor.
• The file_descriptor is the stream number assigned by the low-level routines. It is

associated with the opened file or device.
• The buffer is the location of the buffer where the write characters are placed.
• The count is the number of characters to write to the device or file.

Return Value The function returns one of the following values:

number of characters written if successful
1 if fails

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.2.2 Adding a Device for C I/O
write — Write Characters to Buffer www.ti.com

The low-level functions provide facilities that allow you to add and use a device for I/O at run time. The
procedure for using these facilities is:
1. Define the device-level functions as described in Section 7.2.1.

Note: Use Unique Function Names

The function names open, close, read, and so on, are used by the low-level routines. Use
other names for the device-level functions that you write.

2. Use the low-level function add_device() to add your device to the device_table. The device table is a
statically defined array that supports n devices, where n is defined by the macro _NDEVICE found in
stdio.h/cstdio. The structure representing a device is also defined in stdio.h/cstdio and is composed of
the following fields:

name String for device name
flags Flags that specify whether the device supports multiple streams or not
function pointers Pointers to the device-level functions:

• CLOSE • RENAME
• LSEEK • WRITE
• OPEN • UNLINK
• READ

The first entry in the device table is predefined to be the host device on which the debugger is running.
The low-level routine add_device() finds the first empty position in the device table and initializes the
device fields with the passed-in arguments. For a complete description, see the add_device function .

3. Once the device is added, call fopen() to open a stream and associate it with that device. Use
devicename:filename as the first argument to fopen().

Example 7-1 illustrates adding and using a device for C I/O:

Example 7-1. Program for C I/O Device

#include <stdio.h>
/**/
/* Declarations of the user-defined device drivers */
/**/
extern int my_open(const char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, const char *buffer, unsigned count);
extern long my_lseek(int fno, long offset, int origin);
extern int my_unlink(const char *path);
extern int my_rename(const char *old_name, char *new_name);
main()
{

FILE *fid;
add_device("mydevice", _MSA, my_open, my_close, my_read, my_write, my_lseek,

my_unlink, my_rename);
fid = fopen("mydevice:test","w");
fprintf(fid,"Hello, world\n");

fclose(fid);
}

128 Using Run-Time-Support Functions and Building Libraries SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)

7.4 Library-Build Process

www.ti.com Handling Reentrancy (_register_lock() and _register_unlock() Functions)

The C standard assumes only one thread of execution, with the only exception being extremly narrow
support for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything
in a signal handler. However, BIOS applications have multiple threads which need to modify the same
global program state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does
provide rudimentary support for multi-threaded reentrancy by providing support for critical sections. This
implementation does not protect you from reentrancy issues such as calling run-time-support functions
from inside interrupts; this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a
single-threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded
system such as BIOS, the kernel arranges to install semaphore lock primitive functions in these hooks,
which are then called when the run-time-support enters code that needs to be protected by a critical
section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be
protected with a critical section, there are calls to the function _lock(). This calls the provided primitive, if
installed, and acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is
called to to release the semaphore.

Usually BIOS is responsible for creating and installing the primitives, so you do not need to take any
action. However, this mechanism can be used in multi-threaded applications which do not use the BIOS
LCK mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation
functions are called to instruct the run-time-support environment to use these new primitives:
void _register_lock (void (*lock)());

void _register_unlock(void (*unlock)());

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments
and return no values, and which implement some sort of global semaphore locking:

extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;
static int sema_depth = 0;
static void my_lock(void)
{

while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_ID);
sema_depth++;

}
static void my_unlock(void)
{

if (!--sema_depth) ATOMIC_CLEAR(sema);
}

The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.

When using the C/C++ compiler, you can compile your code under a number of different configurations
and options that are not necessarily compatible with one another. Because it would be cumbersome to
include all possible combinations in individual run-time-support libraries, this package includes a basic
run-time-support library, rts430.lib. Also included are library versions that support various MSP430 devices
and versions that support C++ exception handling.

You can also build your own run-time-support libraries using the self-contained run-time-support build
process, which is found in rtssrc.zip. This process is described in this chapter and the archiver described
in the MSP430 Assembly Language Tools User's Guide.

SLAU132C–November 2008 Using Run-Time-Support Functions and Building Libraries 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

7.4.1 Required Non-Texas Instruments Software

7.4.2 Using the Library-Build Process

7.4.3 Library Naming Conventions

Library-Build Process www.ti.com

To use the self-contained run-time-support build process to rebuild a library with custom options, the
following support items are required:
• Perl version 5.6 or later available as perl

Perl is a high-level programming language designed for process, file, and text manipulation. It is:
– Generally available from http://www.perl.org/get.htm
– Available from ActiveState.com as ActivePerl for the PC
– Available as part of the Cygwin package for the PC
It must be installed and added to PATH so it is available at the command-line prompt as perl. To
ensure perl is available, open a Command Prompt window and execute:
perl -v

No special or additional Perl modules are required beyond the standard perl module distribution.
• GNU-compatible command-line make tool, such as gmake

More information is available from GNU at http://www.gnu.org/software/ make. This file requires a host
C compiler to build. GNU make (gmake) is shipped as part of Code Composer Studio on Windows.
GNU make is also included in some Unix support packages for Windows, such as the MKS Toolkit,
Cygwin, and Interix. The GNU make used on Windows platforms should explicitly report This program
built for Windows32 when the following is executed from the Command Prompt window:
gmake -h

Once the perl and gmake tools are available, unzip the rtssrc.zip into a new, empty directory. See the
Makefile for additional information on how to customize a library build by modifying the LIBLIST and/or the
OPT_XXX macros

Once the desired changes have been made, simply use the following syntax from the command-line while
in the rtssrc.zip top level directory to rebuild the selected rtsname library.

gmake rtsname

To use custom options to rebuild a library, simply change the list of options for the appropriate base listed
in Section 7.4.3 and then rebuild the library. See the tables in Section 2.3 for a summary of available
generic and MSP430-specific options.

To build an library with a completely different set of options, define a new OPT_XXX base, choose the
type of library per Section 7.4.3, and then rebuild the library. Not all library types are supported by all
targets. You may need to make changes to targets_rts_cfg.pm to ensure the proper files are included in
your custom library.

The names of the MSP430 run-time support libraries have been changed to improve the clarity and
uniformity of the names given the large number of libraries that now exist. Library names from prior
releases will be deprecated, but still supplied for compatibility.

The classic run-time support libraries now have the following naming scheme:

rts430[x[l]][_eh].lib

rts430 Indicates an MSP430 library.
x Optional x indicates an MSP430X library.
l Optional l after x indicates a large-data model MSP430X library.
_eh Indicates the library has exception handling support

Using Run-Time-Support Functions and Building Libraries130 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Chapter 8
SLAU132C–November 2008

C++ Name Demangler

The C++ compiler implements function overloading, operator overloading, and type-safe linking by
encoding a function's signature in its link-level name. The process of encoding the signature into the
linkname is often referred to as name mangling. When you inspect mangled names, such as in assembly
files or linker output, it can be difficult to associate a mangled name with its corresponding name in the
C++ source code. The C++ name demangler is a debugging aid that translates each mangled name it
detects to its original name found in the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads
in input, looking for mangled names. All unmangled text is copied to output unaltered. All mangled names
are demangled before being copied to output.

Topic .. Page

8.1 Invoking the C++ Name Demangler.. 132
8.2 C++ Name Demangler Options .. 132
8.3 Sample Usage of the C++ Name Demangler................................ 132

SLAU132C–November 2008 C++ Name Demangler 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

8.1 Invoking the C++ Name Demangler

8.2 C++ Name Demangler Options

8.3 Sample Usage of the C++ Name Demangler

Invoking the C++ Name Demangler www.ti.com

The syntax for invoking the C++ name demangler is:

dem430 [options] [filenames]

dem430 Command that invokes the C++ name demangler.
options Options affect how the name demangler behaves. Options can appear anywhere on the

command line. (Options are discussed in Section 8.2.)
filenames Text input files, such as the assembly file output by the compiler, the assembler listing file,

and the linker map file. If no filenames are specified on the command line, dem430 uses
standard in.

By default, the C++ name demangler outputs to standard out. You can use the -o file option if you want to
output to a file.

The following options apply only to the C++ name demangler:

-h Prints a help screen that provides an online summary of the C++ name demangler
options

-o file Outputs to the given file rather than to standard out
-u Specifies that external names do not have a C++ prefix
-v Enables verbose mode (outputs a banner)

The examples in this section illustrate the demangling process. Example 8-1 shows a sample C++
program. Example 8-2 shows the resulting assembly that is output by the compiler. In this example, the
linknames of all the functions are mangled; that is, their signature information is encoded into their names.

Example 8-1. C Code for calories_in_a_banana

class banana {
public:

int calories(void);
banana();
~banana();

};

int calories_in_a_banana(void)
{

banana x;
return x.calories();

}

C++ Name Demangler132 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Sample Usage of the C++ Name Demangler

Example 8-2. Resulting Assembly for calories_in_a_banana

calories_in_a_banana__Fv:
;* --*

SUB.W #4,SP
MOV.W SP,r12 ; |10|
ADD.W #2,r12 ; |10|
CALL #__ct__6bananaFv ; |10|

; |10|
MOV.W SP,r12 ; |11|
ADD.W #2,r12 ; |11|
CALL #calories__6bananaFv ; |11|

; |11|
MOV.W r12,0(SP) ; |11|
MOV.W SP,r12 ; |11|
ADD.W #2,r12 ; |11|
MOV.W #2,r13 ; |11|
CALL #__dt__6bananaFv ; |11|

; |11|
MOV.W 0(SP),r12 ; |11|
ADD.W #4,SP
RET

Executing the C++ name demangler demangles all names that it believes to be mangled. If you enter:
dem430 calories_in_a_banana.asm

the result is shown in Example 8-3. The linknames in Example 8-2 ___ct__6bananaFv,
_calories__6bananaFv, and ___dt__6bananaFv are demangled.

Example 8-3. Result After Running the C++ Name Demangler

calories_in_a_banana():
;* --*

SUB.W #4,SP
MOV.W SP,r12 ; |10|
ADD.W #2,r12 ; |10|
CALL #banana::banana() ; |10|

; |10|
MOV.W SP,r12 ; |11|
ADD.W #2,r12 ; |11|
CALL #banana::calories() ; |11|

; |11|
MOV.W r12,0(SP) ; |11|
MOV.W SP,r12 ; |11|
ADD.W #2,r12 ; |11|
MOV.W #2,r13 ; |11|
CALL #banana::~banana() ; |11|

; |11|
MOV.W 0(SP),r12 ; |11|
ADD.W #4,SP
RET

SLAU132C–November 2008 C++ Name Demangler 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

C++ Name Demangler134 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A
SLAU132C–November 2008

Glossary

absolute lister—A debugging tool that allows you to create assembler listings that contain absolute
addresses.

alias disambiguation—A technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

aliasing— The ability for a single object to be accessed in more than one way, such as when two pointers
point to a single object. It can disrupt optimization, because any indirect reference could refer to
any other object.

allocation— A process in which the linker calculates the final memory addresses of output sections.

ANSI— American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library—A collection of individual files grouped into a single file by the archiver.

archiver— A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

assembler— A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assignment statement—A statement that initializes a variable with a value.

autoinitialization— The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at run time—An autoinitialization method used by the linker when linking C code. The
linker uses this method when you invoke it with the --rom_model link option. The linker loads the
.cinit section of data tables into memory, and variables are initialized at run time.

BIS— Bit instruction set.

block— A set of statements that are grouped together within braces and treated as an entity.

.bss section—One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte— Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler—A software program that translates C source statements into assembly language
source statements.

code generator—A compiler tool that takes the file produced by the parser or the optimizer and produces
an assembly language source file.

COFF— Common object file format; a system of object files configured according to a standard developed
by AT&T. These files are relocatable in memory space.

SLAU132C–November 2008 Glossary 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

command file—A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment— A source statement (or portion of a source statement) that documents or improves readability
of a source file. Comments are not compiled, assembled, or linked; they have no effect on the
object file.

compiler program— A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

configured memory— Memory that the linker has specified for allocation.

constant— A type whose value cannot change.

cross-reference listing—An output file created by the assembler that lists the symbols that were defined,
what line they were defined on, which lines referenced them, and their final values.

.data section—One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

direct call—A function call where one function calls another using the function's name.

directives— Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

disambiguation— See alias disambiguation

dynamic memory allocation—A technique used by several functions (such as malloc, calloc, and
realloc) to dynamically allocate memory for variables at run time. This is accomplished by defining a
large memory pool (heap) and using the functions to allocate memory from the heap.

ELF— Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator— A hardware development system that duplicates the MSP430 operation.

entry point—A point in target memory where execution starts.

environment variable—A system symbol that you define and assign to a string. Environmental variables
are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog— The portion of code in a function that restores the stack and returns.

executable module—A linked object file that can be executed in a target system.

expression— A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol—A symbol that is used in the current program module but defined or declared in a
different program module.

file-level optimization—A level of optimization where the compiler uses the information that it has about
the entire file to optimize your code (as opposed to program-level optimization, where the compiler
uses information that it has about the entire program to optimize your code).

function inlining—The process of inserting code for a function at the point of call. This saves the
overhead of a function call and allows the optimizer to optimize the function in the context of the
surrounding code.

global symbol—A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

136 Glossary SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

high-level language debugging—The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

indirect call—A function call where one function calls another function by giving the address of the called
function.

initialization at load time—An autoinitialization method used by the linker when linking C/C++ code. The
linker uses this method when you invoke it with the --ram_model link option. This method initializes
variables at load time instead of run time.

initialized section—A section from an object file that will be linked into an executable module.

integrated preprocessor—A C/C++ preprocessor that is merged with the parser, allowing for faster
compilation. Stand-alone preprocessing or preprocessed listing is also available.

interlist feature—A feature that inserts as comments your original C/C++ source statements into the
assembly language output from the assembler. The C/C++ statements are inserted next to the
equivalent assembly instructions.

intrinsics— Operators that are used like functions and produce assembly language code that would
otherwise be inexpressible in C, or would take greater time and effort to code.

ISO— International Organization for Standardization; a worldwide federation of national standards bodies,
which establishes international standards voluntarily followed by industries.

K&R C—Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C
Programming Language (K&R). Most K&R C programs written for earlier, non-ISO C compilers
should correctly compile and run without modification.

label— A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker— A software program that combines object files to form an object module that can be allocated into
system memory and executed by the device.

listing file—An output file, created by the assembler, that lists source statements, their line numbers, and
their effects on the section program counter (SPC).

loader— A device that places an executable module into system memory.

loop unrolling—An optimization that expands small loops so that each iteration of the loop appears in
your code. Although loop unrolling increases code size, it can improve the performance of your
code.

macro— A user-defined routine that can be used as an instruction.

macro call—The process of invoking a macro.

macro definition—A block of source statements that define the name and the code that make up a
macro.

macro expansion—The process of inserting source statements into your code in place of a macro call.

map file—An output file, created by the linker, that shows the memory configuration, section composition,
section allocation, symbol definitions and the addresses at which the symbols were defined for your
program.

memory map—A map of target system memory space that is partitioned into functional blocks.

name mangling—A compiler-specific feature that encodes a function name with information regarding the
function's arguments return types.

object file—An assembled or linked file that contains machine-language object code.

SLAU132C–November 2008 Glossary 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

object library—An archive library made up of individual object files.

object module—A linked, executable object file that can be downloaded and executed on a target
system.

operand— An argument of an assembly language instruction, assembler directive, or macro directive that
supplies information to the operation performed by the instruction or directive.

optimizer— A software tool that improves the execution speed and reduces the size of C programs.

options— Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module—A linked, executable object file that is downloaded and executed on a target system.

output section—A final, allocated section in a linked, executable module.

parser— A software tool that reads the source file, performs preprocessing functions, checks the syntax,
and produces an intermediate file used as input for the optimizer or code generator.

pipelining— A technique where a second instruction begins executing before the first instruction has
been completed. You can have several instructions in the pipeline, each at a different processing
stage.

pragma— A preprocessor directive that provides directions to the compiler about how to treat a particular
statement.

preprocessor— A software tool that interprets macro definitions, expands macros, interprets header files,
interprets conditional compilation, and acts upon preprocessor directives.

program-level optimization—An aggressive level of optimization where all of the source files are
compiled into one intermediate file. Because the compiler can see the entire program, several
optimizations are performed with program-level optimization that are rarely applied during file-level
optimization.

prolog— The portion of code in a function that sets up the stack.

quiet run— An option that suppresses the normal banner and the progress information.

raw data—Executable code or initialized data in an output section.

run-time environment—The run time parameters in which your program must function. These
parameters are defined by the memory and register conventions, stack organization, function call
conventions, and system initialization.

run-time-support functions—Standard ISO functions that perform tasks that are not part of the C
language (such as memory allocation, string conversion, and string searches).

run-time-support library—A library file, rts.src, that contains the source for the run time-support
functions.

section— A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

sign extend—A process that fills the unused MSBs of a value with the value's sign bit.

simulator— A software development system that simulates MSP430 operation.

source file—A file that contains C/C++ code or assembly language code that is compiled or assembled to
form an object file.

stand-alone preprocessor—A software tool that expands macros, #include files, and conditional
compilation as an independent program. It also performs integrated preprocessing, which includes
parsing of instructions.

138 Glossary SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

static variable—A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class—An entry in the symbol table that indicates how to access a symbol.

string table—A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure— A collection of one or more variables grouped together under a single name.

symbol— A string of alphanumeric characters that represents an address or a value.

symbolic debugging—The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as a simulator or an emulator.

target system—The system on which the object code you have developed is executed.

.text section—One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

trigraph sequence—A 3-character sequence that has a meaning (as defined by the ISO 646-1983
Invariant Code Set). These characters cannot be represented in the C character set and are
expanded to one character. For example, the trigraph ??' is expanded to ^.

trip count— The number of times that a loop executes before it terminates.

uninitialized section—A object file section that reserves space in the memory map but that has no actual
contents. These sections are built with the .bss and .usect directives.

unsigned value—A value that is treated as a nonnegative number, regardless of its actual sign.

variable— A symbol representing a quantity that can assume any of a set of values.

veneer— A sequence of instructions that serves as an alternate entry point into a routine if a state
change is required.

word— A 16-bit addressable location in target memory

SLAU132C–November 2008 Glossary 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Index

__DATE__ macro 35 alias for --gen_func_subsections compiler option 65
__FILE__ macro 35 aliasing 52

defined 135__LARGE_CODE_MODEL__ macro 35
allocate memory__LARGE_DATA_MODEL__ macro 35

sections 69__LINE__ macro 35
allocation__MSP430__ macro 35

defined 135__MSP430X461X__ macro 35
alt.h pathname 36__register_lock() function 129
ANSI__register_unlock() function 129

C__signed_chars__ macro 35
changing the language mode 88__STACK_SIZE
compatibility with K&R C 88using 96

ANSI/ISO__STDC__ macro 35
MSP430 differences from__TI_COMPILER_VERSION__ macro 35

from standard C++ 72__TIME__ macro 35
-apd alias for --asm_dependency assembler option 31__unsigned_chars__ macro 35
-api alias for --asm_includes assembler option 31_c_int00 described 68
archive library_INLINE macro 35

defined 135_never_executed intrinsic 57
linking 66_SYSMEM_SIZE 96

archiver
defined 135A
described 15-aa alias for --absolute_listing assembler option 31

--arg_size linker option 62-a alias for --absolute_exe linker option 62
-args alias for --arg_size linker option 62--abs_directory compiler option 31
.args section-abs alias for --run_abs linker option 63

allocating in memory 69.abs extension 29
argumentsabs function 43

accessing 103--absolute_exe linker option 62
-ar linker option 62--absolute_listing assembler option 31
-as alias for --output_all_syms assembler option 32absolute lister
--asm_define assembler option 31defined 135
--asm_dependency assembler option 31described 15
--asm_directory compiler option 31absolute listing
--asm_extension compiler option 30creating 31
--asm_file compiler option 30-ac alias for --syms_ignore_case assembler option 32
--asm_includes assembler option 31-ad alias for --asm_define assembler option 31
--asm_listing assembler option 31add_device function 123
--asm_undefine assembler option 31-ahc alias for --copy_file assembler option 32
.asm extension 29-ahi alias for --include_file assembler option 32
asm statement-al alias for --asm_listing assembler option 31

described 77alias disambiguation
in optimized code 52defined 135
using 106described 56

assembler--aliased_variables compiler option 27, 52
controlling with compiler 31aliased variables 52
defined 135-@ alias for --cmd_file compiler option 25

140 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

-c alias for --compile_only compiler option 25described 15
-c alias for --rom_model linker option 63, 68, 114options summary 23
--call_assumptions compiler option 50assembly language

accessing calling conventions
constants 105 accessing arguments and local variables 103
global variables 104 how a called function responds 102

how a function makes a call 102variables 104
calloc functioncode interfacing 103

dynamic memory allocation 96embedding 77
C/C++ compilerincluding 106

defined 135interlisting with C/C++ code 44
described 15interrupt routines 107

C/C++ languagemodule interfacing 103
accessing assembler constants 105retaining output 26
accessing assembler global variables 104assembly listing file creation 31
accessing assembler variables 104assembly source debugging 29
const keyword 74assignment statement
global constructors and destructors 68defined 135
interlisting with assembly 44-au alias for --asm_undefine assembler option 31

--auto_inline compiler option 53 interrupt keyword 74
autoinitialization placing assembler statements in 106

at run time pragma directives 78
defined 135 restrict keyword 75
described 114 volatile keyword 75

defined 135 .c extension 29
characterinitialization tables 112

escape sequences in 89of variables 112
string constants 99types of 68

.cinit section-ax alias for --cross_reference assembler option 32
allocating in memory 69

B assembly module use of 103
-b alias for --no_sym_merge linker option 63 described 95
banner suppressing 26 C I/O
bit fields library 121

size and type 89 cl6x command 61
block cl430 invoking 18

defined 135 cl430 --run_linker command 60
memory allocation 69 C language

branch optimizations 56 interrupt routines 106
.bss section C++ language characteristics 72

allocating in memory 69 close I/O function 124
defined 135 --cmd_fle compiler option 25
described 95 C++ name demangler

byte described 15, 16, 131
defined 135 example 132

invoking 132
C options 132

C++ CODE_SECTION pragma 79
standard library summary 118 code generator

--c_extension compiler option 30 defined 135
--c_file compiler option 30 COFF
c_int00 symbol 111 defined 135
C_OPTION 32 command file
--c_src_interlist compiler option 25, 53 appending to command line 25
--c_src_interlist option defined 136

compiler 44 linker 69

SLAU132C–November 2008 Index 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

comments --copy_file assembler option 32
defined 136 copy file using -ahc assembler option 32

common object file format cost-based register allocation optimization 56
defined 135 --cpp_default compiler option 30

compatibility with K&R C 88 --cpp_extension compiler option 30
--compile_only compiler option 25 --cpp_file compiler option 30
compiler -cr alias for --ram_model linker option 63, 68, 114

defined 135 --create_pch compiler option 34
diagnostic messages 38 --cross_reference assembler option 32
diagnostic options 39 cross-reference lister

described 15frequently used options 25
cross-reference listinginvoking 18

defined 136optimizer 48
generating with assembler 32options
generating with compiler shell 41assembler 23

compiler 19
Dconventions 19

-D alias for --define_name compiler option 25deprecated 32
DATA_ALIGN pragma 80diagnostics 22
DATA_SECTION pragma 81input file extension 20
data flow optimizations 56input files 20
data object representation 97linker 24, 25
.data section 95optimizer 23

defined 136
output files 20 data types
parser 21 how stored in memory 97
profiling 20 list of 73
summary 19 storage 97
symbolic debugging 20 pointer to member function 98

overview 16, 18 debugging
preprocessor options 37 optimized code 55
sections 69 --define_name compiler option 25
setting default options with MSP430_C_OPTION 32 --define linker option 62

compiling C/C++ code dem430 132
after preprocessing 37 deprecated compiler options 32
compile only 27 development flow diagram 14
overview, commands, and options 18 device
with the optimizer 48 adding 128

--compress_dwarf linker option 62 functions 123
configured memory --diag_error compiler option 39

defined 136 --diag_error linker option 62
constant --diag_remark compiler option 39

accessing assembler constants from C/C++ 105 --diag_remark linker option 62
character strings 99 --diag_suppress compiler option 40
defined 136 --diag_suppress linker option 62
escape sequences in character constants 89 --diag_warning compiler option 40
string 89 --diag_warning linker option 62

const keyword 74 diagnostic identifiers in raw listing file 42
.const section diagnostic messages

allocating in memory 69 controlling 39
described 95 description 38

control-flow simplification 56 errors 38
controlling diagnostic messages 39 fatal errors 38
conventions format 38

function calls 101 generating 39
register 100 other messages 41

142 Index SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

MSP430_C_OPTION 32remarks 38
-eo alias for --obj_extension compiler option 30suppressing 39
-ep alias for --cpp_extension compiler option 30warnings 38
epilogdirect call

defined 136defined 136
EPROM programmer 15directives
errordefined 136

messages 38directories
handling with options 40alternate for include files 36
preprocessor 35for include files 26, 36

-es alias for --listing_extension compiler option 30naming alternates with environment variables 33
escape sequences 89specifying 31
establishing standard macro definitions 26disable
exception handlingautomatic inline expansion 53

--exceptions compiler option 25automatic selection of run-time-support library 67
--exceptions compiler option 25conditional linking 62
executable and linking formatlinking 61

defined 136merge of symbolic debugging information 63
executable moduleoptimization information file 49

defined 136symbolic debugging 29
--exit_hook compiler option 46--disable_auto_rts linker option 62, 67
--exit_param compiler option 46--disable_clink linker option 62
exit hooks--disable_pp linker option 62

--exit_hook option 46--display_error_number compiler option 40
exit hooks parameters--display_error_number linker option 62 --exit_param option 46

display compiler syntax and options expression--help compiler option 26
defined 136display progress and toolset data simplification 56--verbose compiler option 27

extensionsDWARF debug format 29
abs 29dynamic memory allocation
asm 29defined 136
c 29described 96
cc 29
cpp 29E
cxx 29-ea alias for --asm_extension compiler option 30
nfo 49-e alias for --entry_point linker option 62
obj 29-ec alias for --c_extension compiler option 30
s 29ELF

defined 136 sa 29
specifying 30--embedded_cpp compiler option 89

external declarations 88embedded C++ mode 89
external symbolemulator

defined 136 defined 136
--entry_hook compiler option 46

F--entry_param compiler option 46
-fa alias for --asm_file compiler option 30--entry_point linker option 62
fabs function 43entry hooks
-f alias for --fill_value linker option 62--entry_hook option 46
fatal error 38entry hooks parameters

--entry_param option 46 -fb alias for --abs_directory compiler option 31
entry point -fc alias for --c_file compiler option 30

defined 136 -ff alias for --list_directory compiler option 31
environment variable -fg alias for --cpp_default compiler option 30

defined 136 file
MSP430_C_DIR 33, 36 copy 32

SLAU132C–November 2008 Index 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

include 32 accessing assembler variables from C/C++ 104
file-level optimization 49 autoinitialization 112

defined 136 initializing 87
filename reserved space 95

extension specification 30 GNU compiler extensions 90
specifying 29

--fill_value linker option 62 H
-fo alias for --obj_file compiler option 30 -h alias for --help compiler option 26
--fp_mode compiler option 26 -h alias for --make_static linker option 63
--fp_reassoc compiler option 26 handling reentrancy

--register_lock() and __register_unlock() 129-fp alias for --cpp_file compiler option 30
-h C++ name demangler option 132-fr alias for --obj_directory compiler option 31
heap-fs alias for --asm_directory compiler option 31

-ft alias for --temp_directory compiler option 31 described 96
reserved space 95FUNC_CANNOT_INLINE pragma 82

--heap_size linker option 62FUNC_EXT_CALLED pragma
-heap alias for --heap_size linker option 62described 82
-help alias for --linker_help linker option 63use with --program_level_compile option 51
--help compiler option 26FUNC_IS_PURE pragma 83
hex conversion utilityFUNC_NEVER_RETURNS pragma 83

described 15FUNC_NO_GLOBAL_ASG pragma 83
high-level language debuggingFUNC_NO_IND_ASG pragma 84

defined 137function
call

Iconventions 101
-I alias for --include_path compiler option 26, 36using the stack 96
-i alias for --search_path linker option 63inline expansion 43, 57
-I compiler option 36inlining defined 136
#includeprototype

fileseffects of --kr_compatible option 88
adding a directory to be searched 26responsibilities of called function 102
specifying a search path 36responsibilities of calling function 102

preprocessor directive 36structure 101
generating list of files included 38subsections 65

--include_file assembler option 32
--include_path compiler option 26, 36G
include files using --include_file assembler option 32-g alias for --make_global linker option 63
indirect call-gcc compiler option 27

defined 137GCC extensions to C
initializationbuilt-in functions 91

at load timefunction attributes 91
defined 137list supported by TI 90
described 114-g compiler option 29

of variables 87--gen_acp_raw compiler option 42
at load time 97--gen_acp_xref compiler option 41
at run time 97--gen_func_subsections compiler option 65

types 68--gen_opt_info compiler option 49
initialization tables 112--generate_dead_funcs_list linker option 62
initialized sectionsgenerating

allocating in memory 69linknames 86
defined 137list of #include files 38
described 95symbolic debugging directives 29

initializing static and global variables 87global constructors and destructors 68
with const type qualifier 87global symbol
with the linker 87defined 136

inlineglobal variables

144 Index SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

ISOassembly language 106
defined 137automatic expansion 53
standards overview 16definition-controlled function expansion 43

--issue_remarks compiler option 40function expansion 43
--issue_remarks linker option 62intrinsic operators 43

keyword and alternate keyword __inline 43 Jinput file
-j alias for --disable_clink linker option 62changing default extensions 30

changing interpretation of filenames 30 K
default extensions 29 -k alias for --keep_asm compiler option 26
extensions K&R C

summary of options 20 compatibility with ANSI C 88summary of options 20 defined 137
integrated preprocessor --keep_asm compiler option 26defined 137

keywordinterfacing C and assembly 103
const 74interlist utility
interrupt 74C/C++ source with generated assembly 25
restrict 75defined 137
volatile 75

described 15 --kr_compatible compiler option 88
invoking with compiler 44
optimizer comments or C/C++ source with assembly L
27 label
used with the optimizer 53 case sensitivity

interrupt --syms_ignore_case compiler option 32handling
defined 137described 106 retaining 32

saving registers 74, 106 labs function 43
routines -l alias for --library linker option 63, 66

assembly language 107 --large_memory_model compiler option 27C/C++ language 106
librariesinterrupt keyword 74 run-time support 118

INTERRUPT pragma 84 library
intrinsic run-time-support routines 107 building 120
intrinsics modifying a function 120

defined 137 library-build process 129
inlining operators 43 described 15

invoking
non-TI software 130

C++ name demangler 132 using 130
compiler 18 -library linker option 60, 63, 66
linker linkerthrough compiler 60

command file 69invoking the
controlling 66library-build process 130
defined 137I/O
described 15adding a device 128
disabling 61functions
invoking 26close 124
invoking through the compiler 60lseek 124

as part of the compile step 61open 125
as separate step 60read 126

options 62rename 126
summary of options 24, 25unlink 127
suppressing 25write 127

--linker_help linker option 63implementation overview 121
linkinglibrary 121

SLAU132C–November 2008 Index 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

reserved space 95C/C++ code 59
-mf alias for --opt_for_speed compiler option 27object library 119
-ml alias for --large_memory_model compiler option 27run-time-support libraries
MSP430_C_DIR 33automatic selection 67
MSP430_C_DIR environment variable 36with run-time-support libraries 66
MSP430_C_OPTION 32linknames

and interrupts 107
Nlinknames generated by the compiler 86

-n alias for --skip_assembler compiler option 27-list_directory compiler option 31
name demangler--listing_extension compiler option 30

described 15listing file
name manglingcreating cross-reference 32

defined 137defined 137
.nfo extension 49generating with preprocessor 42
--no_demangle linker option 63loader
NO_HOOKS pragma 85defined 137
--no_inlining compiler option 43using with linker 87
--no_sym_merge linker option 63local variables
--no_sym_table optionaccessing 103

linker 63loop-invariant optimizations 57
--no_warnings compiler option 40loop rotation optimization 57
--no_warnings linker option 63loops

optimization 57 Oloop unrolling
-O3 alias for --opt_level=3 compiler option 49defined 137
-O alias for --opt_level compiler option 48lseek I/O function 124
-o alias for --output_file linker option 63
--obj_directory compiler option 31M
--obj_extension compiler option 30-ma alias for --aliased_variables compiler option 27, 52
--obj_file compiler option 30macro
object filedefined 137

defined 137expansions 35
object librarymacro call defined 137

defined 138macro definition defined 137
linking code with 119macro expansion defined 137

object modulepredefined names 35
defined 138--make_global linker option 63

.obj extension 29--make_static linker option 63
-o C++ name demangler option 132-m alias for --map_file linker option 63
-oi alias for --auto_inline compiler option 53malloc function
-ol0 alias for --std_lib_func_redefined compiler option 49dynamic memory allocation 96
-ol1 alias for --std_lib_func_defined compiler option 49--map_file linker option 63
-ol2 alias for --std_lib_func_not_defined compiler optionmap file

49defined 137
-on alias for --gen_opt_info compiler option 49--mapfile_contents linker option 63
-op alias for --call_assumptions compiler option 50-mc alias for --plain_char compiler option 28
open I/O function 125-mc compiler option 28
operandmemory map

defined 138defined 137
--opt_for_speed compiler option 27memory model
--opt_level=3 compiler option 49described 94
--opt_level compiler option 48dynamic memory allocation 96
optimization

sections 95 accessing aliased variables 52
stack 96 optimizations
variable initialization 97 alias disambiguation 56

memory pool
branch 56

146 Index SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

defined 138considerations when mixing C/C++ and assembly 51
--output_all_syms assembler option 32control-flow simplification 56
-output_file linker option 60, 63controlling the level of 50
overflowcost based register allocation 56

run-time stack 111data flow 56
expression simplification 56 Pfile-level

parametersdefined 136
compiling register parameters 76described 49

parserinduction variables 57
defined 138information file options 49 summary of options 21

inline expansion 57 --pch_dir compiler option 34
levels 48 --pch_verbose compiler option 34
list of 55 --pch compiler option 34
loop-invariant code motion 57 -pdel alias for --set_error_limit compiler option 40
loop rotation 57 -pden alias for --diag_error_number compiler option 40
MSP430-specific -pdf alias for --write_diagnostics_file compiler option 40

integer division with constant divisor 57 -pdr alias for --issue_remarks compiler option 40
tail merging 57 -pds alias for --diag_suppress compiler option 40

program-level -pdse alias for --diag_error compiler option 39
defined 138 -pdsr alias for --diag_remark compiler option 39
described 50 -pdsw alias for --diag_warning compiler option 40

-specific -pdv alias for --verbose_diagnostics compiler option 40
Never_Executed intrinsic 57 -pdw alias for --no_warnings compiler option 40

strength reduction 57 -pe alias for --embedded_cpp compiler option 89
--optimize_with_debug compiler option 27 performing file-level optimization 49
optimized code -pi alias for --no_inlining compiler option 43

debugging 55 .pinit section
optimizer allocating in memory 69

defined 138 described 95
described 15 pinit symbol 68
invoking with compiler options 48 pipelining
performing file-level optimization 49 defined 138
summary of options 23 -pk alias for --kr_compatible compiler option 88

--optimizer_interlist compiler option 53 -pl alias for --gen_acp_raw compiler option 42
options -pm alias for --program_level_compile compiler option

aliases 50
compiler 19 pointer combinations 88
linker 62 -ppa alias for --preproc_with_compile compiler option 37

assembler 31 -ppc alias for --preproc_with_comments compiler option
37C++ name demangler 132

-ppd alias for --preproc_dependency compiler option 38compiler summary 19
-ppd alias for --preproc_includes compiler option 38controlling hooks 21
-ppl alias for --preproc_with_line compiler option 37conventions 19
-ppo alias for --preproc_only compiler option 37defined 138
pragmadiagnostics 22, 39

defined 138linker 62
pragma directives 78preprocessor 22, 37

CODE_SECTION 79-os alias for --optimizer_interlist compiler option 53
DATA_ALIGN 80output
DATA_SECTION 81file options summary 20
FUNC_CANNOT_INLINE 82module
FUNC_EXT_CALLED 82defined 138
FUNC_IS_PURE 83overview of files 16
FUNC_NEVER_RETURNS 83section

SLAU132C–November 2008 Index 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

--ram_model linker option 60, 63, 68, 114FUNC_NO_GLOBAL_ASG 83
--ram_model link optionFUNC_NO_IND_ASG 84

system initialization 111INTERRUPT 84
raw dataNO_HOOKS 85

defined 138vector 85
raw listing file-pr alias for --relaxed_ansi compiler option 89

generating with -pl option 42precompiled header support 34
identifiers 42automatic 34

read I/O function 126manual 34
realloc function 96predefining a constant 31
reassociation of floating-point arithmetic--preinclude compiler option 26

--fp_reassoc option 26preinitialized variables
reassociation of saturating arithmeticglobal and static 87

--sat_reassoc option 27--preproc_dependency compiler option 38
register parameters--preproc_includes compiler option 38

compiling 76--preproc_only compiler option 37
registers--preproc_with_comments compiler option 37

allocation 100--preproc_with_compile compiler option 37
conventions 100--preproc_with_line compiler option 37
saving during interrupts 74, 106preprocessed listing file

register variablesassembly dependency lines 31
compiling 76assembly include files 31

--relaxed_ansi compiler option 89generating raw information 42
relaxed ANSI/ISO mode 89

generating with comments 37 relaxed ANSI mode 89generating with #line directives 37
relaxed floating-point modepreprocessor --fp_mode option 26

controlling 35 --relocatable linker option 63
defined 138 remarks 38
error messages 35 rename I/O function 126
options 37 --reread_libs linker option 63
predefining constant names for option 25 restrict keyword 75
symbols 35 --rom_model linker option 60, 63, 68, 114

--printf_support compiler option 28 --rom_model link option
printing tool version numbers system initialization 111

--tool_version compiler option 27 --run_abs linker option 63
-priority alias for --priority linker option 63 --run_linker compiler option 26
--priority linker option 63 overriding with --rom_model compiler option 61
--program_level_compile compiler option 50 run-time environment
program-level optimization defined 138

controlling 50 function call conventions 101
defined 138 interfacing C with assembly language 103
performing 50 interrupt handling

progress information suppressing 26 described 106
prolog saving registers 74, 106

defined 138
introduction 93-ps alias for --strict_ansi compiler option 89 memory model

-px alias for --gen_acp_xref compiler option 41 during autoinitialization 97
dynamic memory allocation 96Q
sections 95-q alias for --quiet compiler option 26

register conventions 100--quiet compiler option 26
stack 96quiet run
system initialization 111defined 138

run-time initialization
of variables 97R

run-time-support-r alias for --relocatable linker option 63

148 Index SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

www.ti.com Appendix A

functions overflow
defined 138 run-time stack 111
introduction 117 pointer 96, 111

reserved space 95intrinsic arithmetic and conversion routines 107
--stack_size linker option 64libraries
--stack_size link option 111described 118
-stack alias for --stack_size linker option 64functionality summarized 118
.stack sectionlibrary-build process 129

allocating in memory 69linking C code 60, 66
described 95library

stand-alone preprocessordefined 138
defined 138described 15

static variable
defined 139S
initializing 87.sa extension 29

--std_lib_func_defined compiler option 49-s alias for --no_sym_table linker option 63
--std_lib_func_not_defined compiler option 49-s alias for --src_interlist compiler option 27
--std_lib_func_redefined compiler option 49--sat_reassoc compiler option 27
storage classsaving registers

defined 139during interrupts 106
strength reduction optimization 57saving registers during interrupts 74
--strict_ansi compiler option 89--scan_libraries linker option 63
--strict_compatibility linker option 64--search_path linker option 63
strict ANSI/ISO mode 89section
strict ANSI mode 89allocating memory 69
string constants 89.bss 95
structure.cinit 95

defined 139.const 95
STYP_COPY flag 68created by the compiler 69
suppressing diagnostic messages 39.data 95
symboldefined 138

defined 139
described 95 --symbol_map linker option 64
initialized 95 symbolic cross-reference in listing file 32
.pinit 95 symbolic debugging
.stack 95 defined 139
.sysmem 95 disabling 29
.text 95 minimal (default) 29
uninitialized 95

selecting DWARF format version 29--set_error_limit compiler option 40 using DWARF format 29
--set_error_limit linker option 64 symbols
.s extension 29 case sensitivity 32
sign extend symbol table

defined 138 creating labels 32
--silicon_version compiler option 28 --symdebug:dwarf compiler option 29
simulator --symdebug:none compiler option 29

defined 138 --symdebug:skeletal compiler option 29
--skip_assembler compiler option 27 --syms_ignore_case assembler option 32
--small_enum compiler option 28 .sysmem section
software development tools overview 14 allocating in memory 69
source file described 95

defined 138 system constraints
extensions 30 _SYSMEM_SIZE 96

--src_interlist compiler option 27 system initialization
-ss alias for --c_src_interlist compiler option 25, 44, 53 described 111
stack initialization tables 112

changing the size 111

SLAU132C–November 2008 Index 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

Appendix A www.ti.com

stack 111 -v alias for --verbose compiler option 27
system stack 96 variables

accessing assembler variables from C/C++ 104
T accessing local variables 103

target system autoinitialization 112
defined 139 compiling register variables 76

-temp_directory compiler option 31 defined 139
.text section initializing

allocating in memory 69 global 87
defined 139 static 87
described 95 -v C++ name demangler option 132

--tool_version compiler option 27 vector pragma 85
trigraph sequence veneer

defined 139 defined 139
trip count --verbose_diagnostics compiler option 40

defined 139 --verbose_diagnostics linker option 64
--verbose compiler option 27U -version alias for --tool_version compiler option 27

-u alias for --undef_sym linker option 64 volatile keyword 75
-U alias for --undefine_name compiler option 27
-u C++ name demangler option 132 W
--undef_sym linker option 64 -w alias for --warn_sections linker option 64
--undefine_name compiler option 27 --warn_sections linker option 64
--undefine linker option 64 warning messages 38
undefining a constant 27, 31 wildcards
uninitialized sections use

allocating in memory 69 compiler 29
defined 139 word
list 95 defined 139

unlink I/O function 127 --write_diagnostics_file compiler option 40
unsigned write I/O function 127

defined 139
X--use_pch compiler option 34

>> symbol 41using smallest byte size for enum type
--small_enum compiler option 28 -x alias for --reread_libs linker option 63

utilities -- xml_link_info linker option 64
overview 16

Z
V -z alias for --run_linker compiler option 26

-v alias for --silicon_version compiler option 28

Index150 SLAU132C–November 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132C

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 C/C++ Compiler Overview
	1.2.1 ANSI/ISO Standard
	1.2.2 Output Files
	1.2.3 Utilities

	2 Using the C/C++ Compiler
	2.1 About the Compiler
	2.2 Invoking the C/C++ Compiler
	2.3 Changing the Compiler's Behavior With Options
	2.3.1 Frequently Used Options
	2.3.2 Machine-Specific Options
	2.3.3 Symbolic Debugging Options
	2.3.4 Specifying Filenames
	2.3.5 Changing How the Compiler Interprets Filenames
	2.3.6 Changing How the Compiler Processes C Files
	2.3.7 Changing How the Compiler Interprets and Names Extensions
	2.3.8 Specifying Directories
	2.3.9 Assembler Options
	2.3.10 Deprecated Options

	2.4 Controlling the Compiler Through Environment Variables
	2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)
	2.4.2 Naming an Alternate Directory (MSP430_C_DIR)

	2.5 Precompiled Header Support
	2.5.1 Automatic Precompiled Header
	2.5.2 Manual Precompiled Header
	2.5.3 Additional Precompiled Header Options

	2.6 Controlling the Preprocessor
	2.6.1 Predefined Macro Names
	2.6.2 The Search Path for #include Files
	2.6.2.1 Changing the #include File Search Path (--include_path Option)

	2.6.3 Generating a Preprocessed Listing File (--preproc_only Option)
	2.6.4 Continuing Compilation After Preprocessing (--preproc_with_compile Option)
	2.6.5 Generating a Preprocessed Listing File With Comments (--preproc_with_comments Option)
	2.6.6 Generating a Preprocessed Listing File With Line-Control Information (--preproc_with_line Option)
	2.6.7 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
	2.6.8 Generating a List of Files Included With the #include Directive (--preproc_includes Option)
	2.6.9 Generating a List of Macros in a File (--preproc_macros Option)

	2.7 Understanding Diagnostic Messages
	2.7.1 Controlling Diagnostics
	2.7.2 How You Can Use Diagnostic Suppression Options

	2.8 Other Messages
	2.9 Generating Cross-Reference Listing Information (--gen_acp_xref Option)
	2.10 Generating a Raw Listing File (--gen_acp_raw Option)
	2.11 Using Inline Function Expansion
	2.11.1 Inlining Intrinsic Operators
	2.11.2 Using the inline Keyword, the --no_inlining Option, and Level 3 Optimization

	2.12 Using Interlist
	2.13 Enabling Entry Hook and Exit Hook Functions

	3 Optimizing Your Code
	3.1 Invoking Optimization
	3.2 Performing File-Level Optimization (--opt_level=3 option)
	3.2.1 Controlling File-Level Optimization (--std_lib_func_def Options)
	3.2.2 Creating an Optimization Information File (--gen_opt_info Option)

	3.3 Performing Program-Level Optimization (--program_level_compile and --opt_level=3 options)
	3.3.1 Controlling Program-Level Optimization (--call_assumptions Option)
	3.3.2 Optimization Considerations When Mixing C/C++ and Assembly

	3.4 Accessing Aliased Variables in Optimized Code
	3.5 Use Caution With asm Statements in Optimized Code
	3.6 Automatic Inline Expansion (--auto_inline Option)
	3.7 Using the Interlist Feature With Optimization
	3.8 Debugging Optimized Code
	3.9 What Kind of Optimization Is Being Performed?
	3.9.1 Cost-Based Register Allocation
	3.9.2 Alias Disambiguation
	3.9.3 Branch Optimizations and Control-Flow Simplification
	3.9.4 Data Flow Optimizations
	3.9.5 Expression Simplification
	3.9.6 Inline Expansion of Functions
	3.9.7 Induction Variables and Strength Reduction
	3.9.8 Loop-Invariant Code Motion
	3.9.9 Loop Rotation
	3.9.10 Instruction Scheduling
	3.9.11 Integer Division With Constant Divisor
	3.9.12 Tail Merging
	3.9.13 _never_executed Intrinsic

	4 Linking C/C++ Code
	4.1 Invoking the Linker Through the Compiler (-z Option)
	4.1.1 Invoking the Linker Separately
	4.1.2 Invoking the Linker as Part of the Compile Step
	4.1.3 Disabling the Linker (--compile_only Compiler Option)

	4.2 Linker Options
	4.3 Linker Code Optimizations
	4.3.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)
	4.3.2 Generating Function Subsections (--gen_func_subsections Compiler Option)

	4.4 Controlling the Linking Process
	4.4.1 Including the Run-Time-Support Library
	4.4.1.1 Manual Run-Time-Support Library Selection
	4.4.1.2 Automatic Run-Time-Support Library Selection

	4.4.2 Run-Time Initialization
	4.4.3 Initialization by the Interrupt Vector
	4.4.4 Global Object Constructors
	4.4.5 Specifying the Type of Global Variable Initialization
	4.4.6 Specifying Where to Allocate Sections in Memory
	4.4.7 A Sample Linker Command File

	5 MSP430 C/C++ Language Implementation
	5.1 Characteristics of MSP430 C
	5.2 Characteristics of MSP430 C++
	5.3 Data Types
	5.4 Keywords
	5.4.1 The const Keyword
	5.4.2 The interrupt Keyword
	5.4.3 The restrict Keyword
	5.4.4 The volatile Keyword

	5.5 C++ Exception Handling
	5.6 Register Variables and Parameters
	5.7 The asm Statement
	5.8 Pragma Directives
	5.8.1 The BIS_IE1_INTERRUPT
	5.8.2 The CODE_SECTION Pragma
	5.8.3 The DATA_ALIGN Pragma
	5.8.4 The DATA_SECTION Pragma
	5.8.5 The FUNC_CANNOT_INLINE Pragma
	5.8.6 The FUNC_EXT_CALLED Pragma
	5.8.7 The FUNC_IS_PURE Pragma
	5.8.8 The FUNC_NEVER_RETURNS Pragma
	5.8.9 The FUNC_NO_GLOBAL_ASG Pragma
	5.8.10 The FUNC_NO_IND_ASG Pragma
	5.8.11 The INTERRUPT Pragma
	5.8.12 The NO_HOOKS Pragma
	5.8.13 The vector Pragma

	5.9 The _Pragma Operator
	5.10 Generating Linknames
	5.11 Initializing Static and Global Variables
	5.11.1 Initializing Static and Global Variables With the Linker
	5.11.2 Initializing Static and Global Variables With the const Type Qualifier

	5.12 Changing the ANSI/ISO C Language Mode
	5.12.1 Compatibility With K&R C (--kr_compatible Option)
	5.12.2 Enabling Strict ANSI/ISO Mode and Relaxed ANSI/ISO Mode (--strict_ansi and --relaxed_ansi Options)
	5.12.3 Enabling Embedded C++ Mode (--embedded_cpp Option)

	5.13 GNU C Compiler Extensions
	5.13.1 Function Attributes
	5.13.2 Built-In Functions

	5.14 Compiler Limits

	6 Run-Time Environment
	6.1 Memory Model
	6.1.1 Large-Code Memory Model
	6.1.2 Large-Data Memory Model
	6.1.3 Sections
	6.1.4 C/C++ Software Stack
	6.1.5 Dynamic Memory Allocation
	6.1.6 Initialization of Variables

	6.2 Object Representation
	6.2.1 Data Type Storage
	6.2.1.1 Pointer to Member Function Types
	6.2.1.2 Structure and Array Alignment
	6.2.1.3 Field/Structure Alignment

	6.2.2 Character String Constants

	6.3 Register Conventions
	6.4 Function Structure and Calling Conventions
	6.4.1 How a Function Makes a Call
	6.4.2 How a Called Function Responds
	6.4.3 Accessing Arguments and Local Variables

	6.5 Interfacing C and C++ With Assembly Language
	6.5.1 Using Assembly Language Modules With C/C++ Code
	6.5.2 Accessing Assembly Language Variables From C/C++
	6.5.2.1 Accessing Assembly Language Global Variables
	6.5.2.2 Accessing Assembly Language Constants

	6.5.3 Sharing C/C++ Header Files With Assembly Source
	6.5.4 Using Inline Assembly Language

	6.6 Interrupt Handling
	6.6.1 Saving Registers During Interrupts
	6.6.2 Using C/C++ Interrupt Routines
	6.6.3 Using Assembly Language Interrupt Routines
	6.6.4 Interrupt Vectors
	6.6.5 Other Interrupt Information

	6.7 Intrinsic Run-Time-Support Arithmetic and Conversion Routines
	6.8 Using Intrinsics to Access Assembly Language Statements
	6.8.1 MSP430 Intrinsics
	6.8.2 The __delay_cycle Intrinsic
	6.8.3 The _never_executed Intrinsic
	6.8.3.1 Using _never_executed With a Vector Generator
	6.8.3.2 Using _never_executed With General Switch Expressions

	6.9 System Initialization
	6.9.1 System Pre-Initialization
	6.9.2 Run-Time Stack
	6.9.3 Automatic Initialization of Variables
	6.9.4 Global Constructors
	6.9.5 Initialization Tables
	6.9.6 Autoinitialization of Variables at Run Time
	6.9.7 Initialization of Variables at Load Time

	6.10 Compiling for 20-Bit MSP430X Devices

	7 Using Run-Time-Support Functions and Building Libraries
	7.1 C and C++ Run-Time Support Libraries
	7.1.1 Linking Code With the Object Library
	7.1.2 Header Files
	7.1.3 Modifying a Library Function
	7.1.4 Changes to the Run-Time-Support Libraries
	7.1.4.1 Minimal Support for Internationalization
	7.1.4.2 Allowable Number of Open Files

	7.2 The C I/O Functions
	7.2.1 Overview of Low-Level I/O Implementation
	7.2.2 Adding a Device for C I/O

	7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
	7.4 Library-Build Process
	7.4.1 Required Non-Texas Instruments Software
	7.4.2 Using the Library-Build Process
	7.4.3 Library Naming Conventions

	8 C++ Name Demangler
	8.1 Invoking the C++ Name Demangler
	8.2 C++ Name Demangler Options
	8.3 Sample Usage of the C++ Name Demangler

	A Glossary
	Index

