H₂ Reformer, Fuel Cell Power Plant, & Vehicle Refueling System **Venki Raman Air Products and Chemicals Inc. Allentown, Pennsylvania, USA** DOE Hydrogen Program Annual Review San Ramon, CA May 9-11, 2000 ### Long-Term Goals/Project Objectives - Resolve design issues & demonstrate small, on-site H₂ production for fuel cells and H₂ fuel stations - Design/construct/operate multipurpose refueling station - Dispense CNG, H₂/CNG blends, and pure H₂ to 27 vehicles - Ultimately serve as a link in a national H₂ corridor - Design/construct/operate 50kW fuel cell - Evaluate operability/reliability/economic feasibility, and certify integrated power generation and vehicle refueling designs #### **Overall Project Scope** #### **Project Partners** - Plug Power Inc., Latham, NY - Major owners/ strategic partners: MTI Inc., DTE Energy , General Electric, SoCal Gas (Sempra) - Developing a 7 kW home fuel cell - Developing 50 kW fuel cells for vehicles and buildings under separate DOE funding - City of Las Vegas (CLV) - Host site for the project - 120 CNG vehicles operated by the RTC in Las Vegas - Purchasing 6 new buses for conversion to CNG/ H₂ ### Task 1 Design & Development - 1.1 Finalize Project Plan (May 2000) - 1.2 Reformer Design & Development - Preliminary Prototype Testing - Prep. Prototype for relocation to Las Vegas - Scaled-up H₂ Generator design - 1.3 50 kW PEM Fuel Cell System - 1.4 CLV Fueling Station/Subsystem Integration #### Task 2 - Construction & Installation #### 2.1 Reformer Subsystem - Phase 2 Prototype installation - Phase 3 Scale-up unit installation #### 2.2 50 kW PEM Fuel Cell - Off-site assembly & testing - Installation at CLV site (July 2001) #### 2.3 CLV Refueling Station - Phase 1: Merchant H₂ supply - Phase 2 & 3: Integration of reformers ### Task 3 - System/Station Operations - 3.1 Permitting & Safety Review - 3.2 Start-Up Testing - 3.3 Facility O & M - Phase 1: 3 5 vehicles - Phase 2: 9 18 vehicles + 50 kW Fuel Cell - Phase 3: 18 27 vehicles ## Task 4 - Project Management & Reporting #### **Fuel Station** ## **Projected H₂ Demand** | Operations Phase | <u>Hydrogen</u>
<u>Applications</u> | H ₂ Demand
SCFD | <u>Proposed Hydrogen Supply</u> | |--|--|--|--| | <u>Phase 1</u>
Sept 2000 - Jun 2001 | 1 - 3 H ₂ /CNG LDVs
1 H ₂ Hybrid Elec. bus
1 H ₂ /CNG Bus - Jan 2001 | 1,000 - 3,000 | Install LH_2 tank and fueling equipment initially Install H_2 generator Prototype as available | | Phase 2 Jul 2001 - Dec 2001 | 6 - 11 H ₂ /CNG LDVs
1 H ₂ Hybrid Elec.bus
2- 6 H ₂ /CNG Buses
50kW Fuel Cell
@ 25 - 50% rate | Vehicle
3,000 - 15,000
Fuel Cell
9,000 - 21,000 | H ₂ Generator prototype -24,000
SCFD
LH ₂ is used as backup/peak shave.
Fuel Cell balances H ₂ generator
production | | <u>Phase 3</u>
Jan 2002 - Sept 2004 | 11 - 20 H ₂ /CNG LDVs
1 H ₂ Hybrid Elec Bus
6 H ₂ /CNG Buses
50kW Fuel Cell
@ 100% rate | Vehicle
15,000 - 17,000
Fuel Cell
39,000 | Install scaleup H ₂ generator, provided bus fleet buildup meets targets. | ### FY2000 Objectives & Rationale Achieve acceptable commercial operation of prototype H₂ generator (1000 SCFH) for integration with 50 kW fuel cell and fuel station. - Begin conceptual development of a commercial design for scaled-up H₂ generator. - To realize the potential for commercial economics as vehicle usage increases. ## FY2000 Objectives & Rationale (continued) - Begin design and manufacture of a 50 kW PEM Fuel Cell Power Plant. - Integration with the H₂ production and compression system, and with the power needs of the site. - Install H₂ and H₂/CNG mixed-fuel station for the City of Las Vegas. ### **Current Year Tasks/Progress** - Task 1.1 Firm Plan nearing completion - Task 1.2.1.1 Preliminary Testing nearing completion - Task 1.3 50 kW Fuel Cell Design initiated April 2000 - Task 1.4 Refueling Station Design pending completion of Task 1.1 ## Status of Business Plan & Safety Review - Business plans will follow installation and routine operation of the integrated systems - Partners are interested in total integrated system as well as individual components - Safety is top priority in design, construction and operation - All safety and industry codes are addressed in designs - Reviews at each phase design, construction, and operation - Follow philosophy of CTA and Ford H₂ fueling facilities - Air Products' 40 years of experience in commercial H₂ #### **Objectives for FY2001** - Achieve integrated operation and improve reliability. - Collect information on the reliability of the subcomponents for any corrective actions required. - Gain operating experience on the fuel station and determine needs for improvement. - Determine the feasibility and need for construction of the scaled-up hydrogen generator.