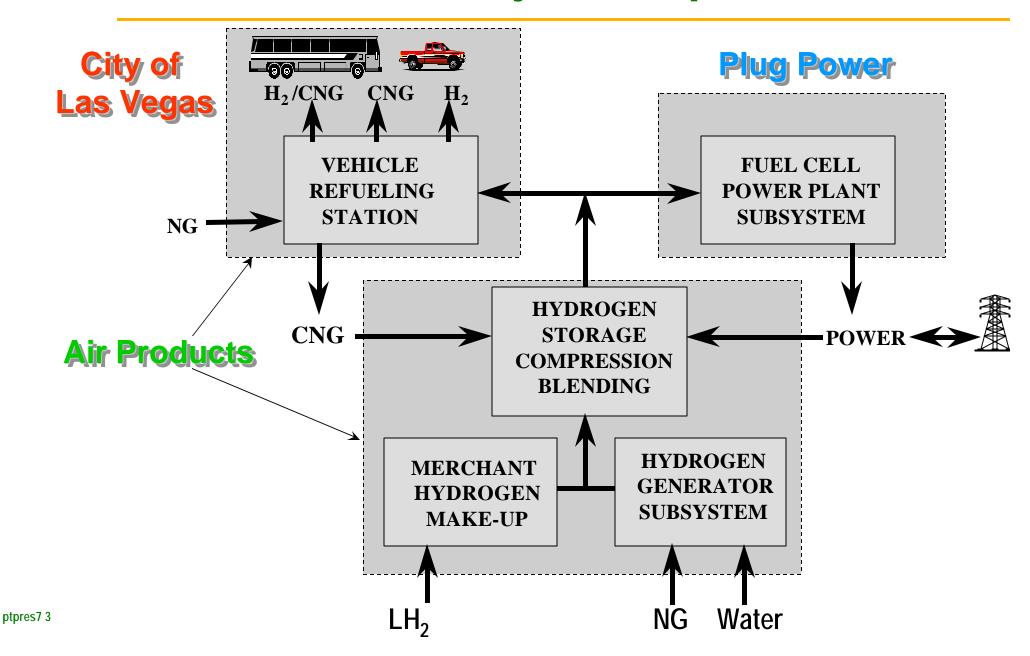


H₂ Reformer, Fuel Cell Power Plant, & Vehicle Refueling System

Venki Raman Air Products and Chemicals Inc. Allentown, Pennsylvania, USA

DOE Hydrogen Program Annual Review San Ramon, CA May 9-11, 2000



Long-Term Goals/Project Objectives

- Resolve design issues & demonstrate small, on-site H₂ production for fuel cells and H₂ fuel stations
- Design/construct/operate multipurpose refueling station
 - Dispense CNG, H₂/CNG blends, and pure H₂ to 27 vehicles
 - Ultimately serve as a link in a national H₂ corridor
- Design/construct/operate 50kW fuel cell
- Evaluate operability/reliability/economic feasibility, and certify integrated power generation and vehicle refueling designs

Overall Project Scope

Project Partners

- Plug Power Inc., Latham, NY
 - Major owners/ strategic partners: MTI Inc., DTE Energy , General Electric, SoCal Gas (Sempra)
 - Developing a 7 kW home fuel cell
 - Developing 50 kW fuel cells for vehicles and buildings under separate DOE funding
- City of Las Vegas (CLV)
 - Host site for the project
 - 120 CNG vehicles operated by the RTC in Las Vegas
 - Purchasing 6 new buses for conversion to CNG/ H₂

Task 1 Design & Development

- 1.1 Finalize Project Plan (May 2000)
- 1.2 Reformer Design & Development
 - Preliminary Prototype Testing
 - Prep. Prototype for relocation to Las Vegas
 - Scaled-up H₂ Generator design
- 1.3 50 kW PEM Fuel Cell System
- 1.4 CLV Fueling Station/Subsystem Integration

Task 2 - Construction & Installation

2.1 Reformer Subsystem

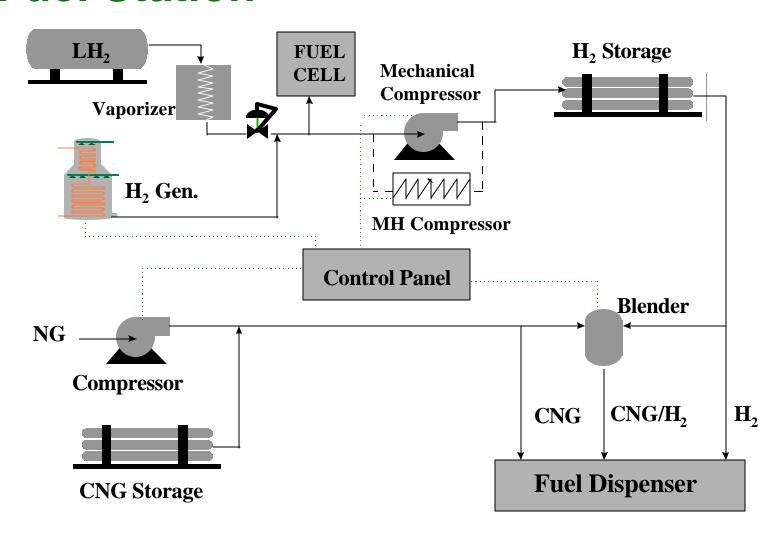
- Phase 2 Prototype installation
- Phase 3 Scale-up unit installation

2.2 50 kW PEM Fuel Cell

- Off-site assembly & testing
- Installation at CLV site (July 2001)

2.3 CLV Refueling Station

- Phase 1: Merchant H₂ supply
- Phase 2 & 3: Integration of reformers


Task 3 - System/Station Operations

- 3.1 Permitting & Safety Review
- 3.2 Start-Up Testing
- 3.3 Facility O & M
 - Phase 1: 3 5 vehicles
 - Phase 2: 9 18 vehicles + 50 kW Fuel Cell
 - Phase 3: 18 27 vehicles

Task 4 - Project Management & Reporting

Fuel Station

Projected H₂ Demand

Operations Phase	<u>Hydrogen</u> <u>Applications</u>	H ₂ Demand SCFD	<u>Proposed Hydrogen Supply</u>
<u>Phase 1</u> Sept 2000 - Jun 2001	1 - 3 H ₂ /CNG LDVs 1 H ₂ Hybrid Elec. bus 1 H ₂ /CNG Bus - Jan 2001	1,000 - 3,000	Install LH_2 tank and fueling equipment initially Install H_2 generator Prototype as available
Phase 2 Jul 2001 - Dec 2001	6 - 11 H ₂ /CNG LDVs 1 H ₂ Hybrid Elec.bus 2- 6 H ₂ /CNG Buses 50kW Fuel Cell @ 25 - 50% rate	Vehicle 3,000 - 15,000 Fuel Cell 9,000 - 21,000	H ₂ Generator prototype -24,000 SCFD LH ₂ is used as backup/peak shave. Fuel Cell balances H ₂ generator production
<u>Phase 3</u> Jan 2002 - Sept 2004	11 - 20 H ₂ /CNG LDVs 1 H ₂ Hybrid Elec Bus 6 H ₂ /CNG Buses 50kW Fuel Cell @ 100% rate	Vehicle 15,000 - 17,000 Fuel Cell 39,000	Install scaleup H ₂ generator, provided bus fleet buildup meets targets.

FY2000 Objectives & Rationale

 Achieve acceptable commercial operation of prototype H₂ generator (1000 SCFH) for integration with 50 kW fuel cell and fuel station.

- Begin conceptual development of a commercial design for scaled-up H₂ generator.
 - To realize the potential for commercial economics as vehicle usage increases.

FY2000 Objectives & Rationale (continued)

- Begin design and manufacture of a 50 kW PEM Fuel
 Cell Power Plant.
 - Integration with the H₂ production and compression system, and with the power needs of the site.
- Install H₂ and H₂/CNG mixed-fuel station for the City of Las Vegas.

Current Year Tasks/Progress

- Task 1.1 Firm Plan nearing completion
- Task 1.2.1.1 Preliminary Testing nearing completion
- Task 1.3 50 kW Fuel Cell Design initiated April 2000
- Task 1.4 Refueling Station Design pending completion of Task 1.1

Status of Business Plan & Safety Review

- Business plans will follow installation and routine operation of the integrated systems
 - Partners are interested in total integrated system as well as individual components
- Safety is top priority in design, construction and operation
 - All safety and industry codes are addressed in designs
 - Reviews at each phase design, construction, and operation
 - Follow philosophy of CTA and Ford H₂ fueling facilities
 - Air Products' 40 years of experience in commercial H₂

Objectives for FY2001

- Achieve integrated operation and improve reliability.
 - Collect information on the reliability of the subcomponents for any corrective actions required.
- Gain operating experience on the fuel station and determine needs for improvement.
- Determine the feasibility and need for construction of the scaled-up hydrogen generator.