ADVANCED DIRECT METHANOL FUEL CELLS

Co-Operative Agreement DE-FC02-98EE50536

Giner, Inc.

Presented at DOE/ONR Fuel Cell Workshop

Baltimore, MD

October 6, 1999

DRAWBACKS OF PRESENT-DAY DMFC MEMBRANES

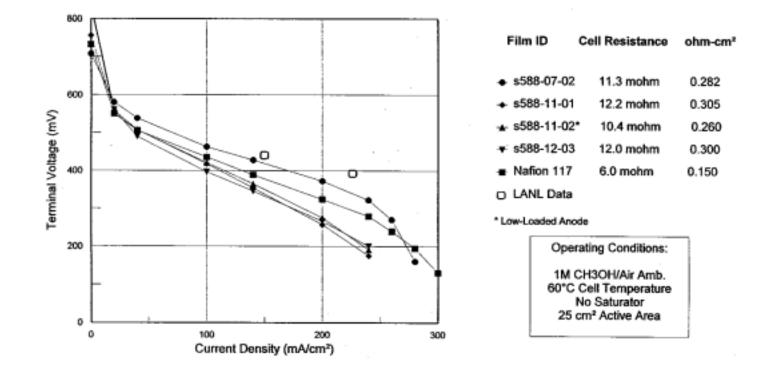
- Crossover Loss of fuel from anode (methanol oxidation) to cathode (O₂ reduction) side of fuel cell
 - Impact: Reduced fuel efficiency (parasitic fuel loss) Reduced cathode voltage resulting in reduced fuel cell power
- Cost State-of-the-Art Nafion cost is \$70/ft² (\$340/kW based on LANL data) (0.37 V @ 600 mA/cm²; 100°C, 30 psig; National Lab Review Meeting, June 1999)

Impact: High cost of DMFC stack

BENEFITS EXPECTED FROM ADVANCED MEMBRANE DEVELOPMENT

- Improved DMFC Performance
- Improved DMFC Efficiency
- Lower Membrane and Membrane-Electrode Assembly (MEA) Cost, Relative to Nafion⁵⁶

APPROACH TO MEMBRANE DEVELOPMENT

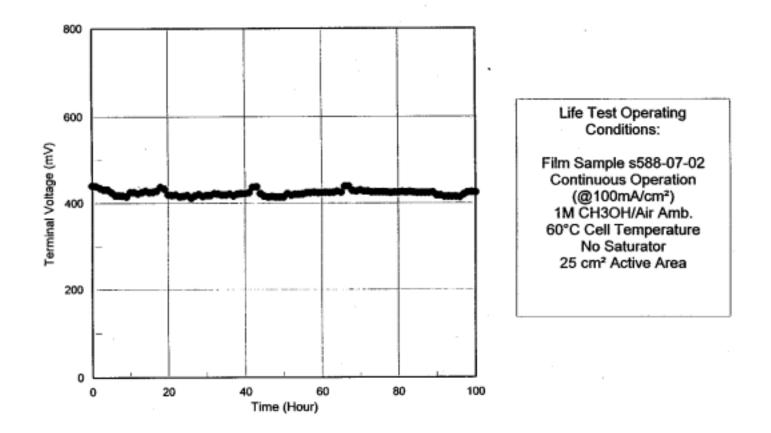

- Using pre-cross-linked fluorinated base polymers, graft select monomers with additional cross-linking if necessary, to the base film. Finally, sulfonate and hydrolyze to provide proton conductivity.
- Subsequent to membrane preparation, evaluate select chemical/physical membrane properties. Evaluate the most promising membranes in a complete LFDMFC.

Comparison of Membrane Properties

Property	Nafion 117 ¹	s588-07-02 ²
Ion-Exchange Capacity (meq/g)	0.91	1.30
Water Content (%)	34.6	10.4
H^+ Resistivity (Ω -cm ²)	0.229	0.282
Thickness (dry) (mils)	7.4	5
N ₂ Permeability $\left(\frac{cm^3 - mil}{ft^2 - hr - atm}\right)$		
	148.3	82.5
Crease/Crack	Pass	Pass

¹Baseline Membrane

²Advanced Membrane



DMFC Performance of Advanced Membranes

Methanol Permeability and Fuel Cell Performance

		CH ₃ OH Permeability	Cell Potential
Membrane Sample ID	MEA#	Equivalent Current Density (mA/cm ²) @100mA/cm ² , 60°C, 1M CH ₃ OH	@ 100 mA, cm ² , CH ₃ OH/Air (mV)
s588-07-02	588-09-01	33	463
s588-11-01	588-14-01	32	417
s588-11-02 ¹	588-14-02	42	421
s588-12-03	588-15-01	30	397
Nafion 117 (Baseline)	554-68-00	62	436

¹ low-loaded anode

Short-Term Life Stability, Advanced Membrane

Economic Analysis

Item	Cost (\$ per square feet)	
Base Films	0.64 to 0.90	
Radiation	0.04 to 0.12	
Sulfonation	0.20	
Monomers	0.50 to 5.00 per pound	
Estimated Manufacturing Cost	1 to 2	
Estimated Cost*, \$/kW	4 to 9	

* Based on 0.4 V @ 600 mA/cm²; 90°C, 20 psig air, 1M CH₃OH