
Time-Dependent Perturbation Theory

The Time-Evolution Operator

The time-evolution of a wavefunction can be expressed by the effect of a time evolution operator
on an initial wavefunction through the relation

Ψ(~r, t) = U(t)Ψ(~r, 0), with U(0) = 1. (1)

Stationary States

Given a Hamiltonian H◦ for which eigenfunctions {φi} and eigenvalues {εi} can be found, the
time-dependence of any state φk is the simple time-dependent phase factor

U◦(t) = e−iεkt/~. (2)

This is readily seen by using the definition φ(t) = U◦(t)φk in the Schrödinger equation

i~
∂

∂t
φ(t) = H◦φ(t). (3)

Since H◦ and φk are independent of time,

i~
∂

∂t
U◦φk = H◦U◦φk =⇒ dU◦

U◦
= − i

~
H◦dt =⇒ U◦(t) = e−

i
~H◦t, (4)

and
U◦(t)φk = e−

i
~H◦tφk = e−

i
~ εktφk. (5)

Thus, the states are stationary, that is, the wavefunctions are independent of time to within a phase
factor and the probabilities are independent of time.

General Time Evolution Operator

Using the definition of equation (1) in the Schrödinger equation

i~
∂

∂t
ψ(~r, t) = Hψ(~r, t) =⇒ i~

(
∂

∂t
U(t)

)
ψ(~r, 0) = HU(t)ψ(~r, 0), (6)

yields the differential equation for U(t)

i~
∂

∂t
U(t) = HU(t) or dU(t) = − i

~
HU(t)dt. (7)

When the Hamiltonian is a general function of time, this equation can be integrated to yield

U(t) = U(0)− i

~

∫ t

0
H(t1)U(t1) dt1. (8)
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The solution to this integral equation can be obtained by interation. The first order approximation
can be obtained by substituting the zero order approximation U(0) = 1 into the integral

U(t) = 1− i

~

∫ t

0
H(t1) dt1. (9)

The second order approximation is obtained by replacing U(t) in the integral with the first order
expression

U(t1) = 1− i

~

∫ t1

0
H(t2) dt2, (10)

which results in

U(t) = 1− i

~

∫ t

0
H(t1)dt1 +

(
− i
~

)2 ∫ t

0

∫ t1

0
H(t1)H(t2)dt2dt1. (11)

Iterating indefinitely,

U(t) = 1− i

~

∫ t

0
H(t1) dt1 +

(
− i
~

)2 ∫ t

0

∫ t1

0
H(t1)H(t2) dt1 dt2

+
(
− i
~

)3 ∫ t

0

∫ t1

0

∫ t2

0
H(t1)H(t2)H(t3) dt1 dt2 dt3 + · · · . (12)

Thus, U(t) can be evaluated to any order in the Hamiltonian. Notice that the integrals are ordered
in time, that is t > t1 > t2 · · · , and that the ordering of the Hamiltonian operators must be
preserved in the general case.

Effect of a Time-Dependent Perturbation

Consider the caseH = Ho+V (t), where V (t) is an operator representing a much smaller energy than
the eigenvalues ofH◦. V is said to be a small perturbation to the initial physical system. Notice that
V << H◦ in an operator sense, that is, the expectation value of V is much less than that of H◦.
In the time-independent case, the perturbation created corrections to the initial wavefunctions,
corrections of various orders in the perturbation. With a time-dependent perturbation, these
corrections will now be dependent upon time as well. The initial wavefunctions are solutions to the
time-independent Schrödinger equation determined using analytical or variational methods, and
they can include the effects of a static perturbation included in H◦.

If the perturbation V (t) is suddenly switched on at t = 0, then the wavefunction will gradually
evolve from an initial stationary state of H◦ as a time-dependent coherent superposition of the
eigenstates of H◦. This is expressed mathematically as

φ(t) = U(t)φi =
∑

k

cik(t)φk =
∑

k

cik|k〉. (13)

Using the concept of a vector space, the set { |k〉 } is presumed to be a complete basis for the
description of any state vector |φ(t)〉. An important general expression for the coefficients is

ck(t) = 〈k|φ(t)〉 , (14)

which is simply the projection of φ(t) on to the |k〉 axis. Thus, the set of coefficients {cik} can be
determined using

cik = 〈k|φ(t)〉 = 〈k|U(t)φi〉 = 〈k|U(t)|i〉 = Uki. (15)
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Time Evolution Operator for a Time-Dependent Perturbation

To determine U(t) for this additive Hamiltonian, it is reasonable to assume that the operator is
can be written in the form

U(t) = U◦(t)Uv(t), where U◦(t) = e−
i
~H◦t. (16)

Using this definition in the Schrodinger equation yields

i~
[(

∂

∂t
U◦

)
Uv + U◦

(
∂

∂t
Uv

)]
= HU◦Uv = H◦U◦Uv + V (t)U◦Uv. (17)

Then, (4) leads to

H◦U◦Uv + i~U◦
∂

∂t
Uv = H◦U◦Uv + V (t)U◦Uv , (18)

or simply

i~U◦
∂

∂t
Uv = V (t)U◦Uv . (19)

Operating on the left with U †◦ yields the relation

i~
∂

∂t
Uv = U †◦V (t)U◦Uv = VH(t)Uv , (20)

where VH(t) is the Heisenberg representation of the operator V(t). Solving the resulting integral
equation by iteration yields

Uv(t) = 1− i

~

∫ t

0
VH(t1) dt1 +

(
− i
~

)2 ∫ t

0

∫ t1

0
VH(t1)VH(t2) dt1 dt2

+
(
− i
~

)3 ∫ t

0

∫ t1

0

∫ t2

0
VH(t1)VH(t2)VH(t3) dt1 dt2 dt3 + · · · . (21)

First-Order Evolution of the Wavefunction

The first-order approximation to Uv(t), the second term in Eq. (??), describes the most simple
interaction between the quantum system and the agent creating the perturbation. When the
perturbation arises from an applied electromagnetic field, this terms describes the interaction of
the system with the field once, that is, the absorption or emission of a single photon. The zero-order
expression for ck(t) arises from the zero-order approximation for U , that is U(t) = U◦Uv = U◦.
Then

ck(t) = 〈k|U◦|i〉 = 〈k|e− i
~H◦t|i〉 = e−

i
~ εit〈k|i〉 = e−

i
~ εitδki . (22)

So, the state of the system does not change. The first order term in Uv contributes

ck(t) = 〈k|U◦
(
− i
~

∫ t

0
e

i
~H◦t1V (t1)e−

i
~H◦t1 dt1

)
|i〉 , (23)
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